CGExprConstant.cpp 85.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Constant Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGCXXABI.h"
#include "CGObjCRuntime.h"
#include "CGRecordLayout.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "TargetInfo.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
using namespace clang;
using namespace CodeGen;

//===----------------------------------------------------------------------===//
//                            ConstantAggregateBuilder
//===----------------------------------------------------------------------===//

namespace {
class ConstExprEmitter;

struct ConstantAggregateBuilderUtils {
  CodeGenModule &CGM;

  ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}

  CharUnits getAlignment(const llvm::Constant *C) const {
    return CharUnits::fromQuantity(
        CGM.getDataLayout().getABITypeAlignment(C->getType()));
  }

  CharUnits getSize(llvm::Type *Ty) const {
    return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
  }

  CharUnits getSize(const llvm::Constant *C) const {
    return getSize(C->getType());
  }

  llvm::Constant *getPadding(CharUnits PadSize) const {
    llvm::Type *Ty = CGM.Int8Ty;
    if (PadSize > CharUnits::One())
      Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
    return llvm::UndefValue::get(Ty);
  }

  llvm::Constant *getZeroes(CharUnits ZeroSize) const {
    llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity());
    return llvm::ConstantAggregateZero::get(Ty);
  }
};

/// Incremental builder for an llvm::Constant* holding a struct or array
/// constant.
class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
  /// The elements of the constant. These two arrays must have the same size;
  /// Offsets[i] describes the offset of Elems[i] within the constant. The
  /// elements are kept in increasing offset order, and we ensure that there
  /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
  ///
  /// This may contain explicit padding elements (in order to create a
  /// natural layout), but need not. Gaps between elements are implicitly
  /// considered to be filled with undef.
  llvm::SmallVector<llvm::Constant*, 32> Elems;
  llvm::SmallVector<CharUnits, 32> Offsets;

  /// The size of the constant (the maximum end offset of any added element).
  /// May be larger than the end of Elems.back() if we split the last element
  /// and removed some trailing undefs.
  CharUnits Size = CharUnits::Zero();

  /// This is true only if laying out Elems in order as the elements of a
  /// non-packed LLVM struct will give the correct layout.
  bool NaturalLayout = true;

  bool split(size_t Index, CharUnits Hint);
  Optional<size_t> splitAt(CharUnits Pos);

  static llvm::Constant *buildFrom(CodeGenModule &CGM,
                                   ArrayRef<llvm::Constant *> Elems,
                                   ArrayRef<CharUnits> Offsets,
                                   CharUnits StartOffset, CharUnits Size,
                                   bool NaturalLayout, llvm::Type *DesiredTy,
                                   bool AllowOversized);

public:
  ConstantAggregateBuilder(CodeGenModule &CGM)
      : ConstantAggregateBuilderUtils(CGM) {}

  /// Update or overwrite the value starting at \p Offset with \c C.
  ///
  /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
  ///        a constant that has already been added. This flag is only used to
  ///        detect bugs.
  bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);

  /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
  bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);

  /// Attempt to condense the value starting at \p Offset to a constant of type
  /// \p DesiredTy.
  void condense(CharUnits Offset, llvm::Type *DesiredTy);

  /// Produce a constant representing the entire accumulated value, ideally of
  /// the specified type. If \p AllowOversized, the constant might be larger
  /// than implied by \p DesiredTy (eg, if there is a flexible array member).
  /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
  /// even if we can't represent it as that type.
  llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
    return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
                     NaturalLayout, DesiredTy, AllowOversized);
  }
};

template<typename Container, typename Range = std::initializer_list<
                                 typename Container::value_type>>
static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
  assert(BeginOff <= EndOff && "invalid replacement range");
  llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
}

bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
                          bool AllowOverwrite) {
  // Common case: appending to a layout.
  if (Offset >= Size) {
    CharUnits Align = getAlignment(C);
    CharUnits AlignedSize = Size.alignTo(Align);
    if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
      NaturalLayout = false;
    else if (AlignedSize < Offset) {
      Elems.push_back(getPadding(Offset - Size));
      Offsets.push_back(Size);
    }
    Elems.push_back(C);
    Offsets.push_back(Offset);
    Size = Offset + getSize(C);
    return true;
  }

  // Uncommon case: constant overlaps what we've already created.
  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
  if (!FirstElemToReplace)
    return false;

  CharUnits CSize = getSize(C);
  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
  if (!LastElemToReplace)
    return false;

  assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
         "unexpectedly overwriting field");

  replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
  replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
  Size = std::max(Size, Offset + CSize);
  NaturalLayout = false;
  return true;
}

bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
                              bool AllowOverwrite) {
  const ASTContext &Context = CGM.getContext();
  const uint64_t CharWidth = CGM.getContext().getCharWidth();

  // Offset of where we want the first bit to go within the bits of the
  // current char.
  unsigned OffsetWithinChar = OffsetInBits % CharWidth;

  // We split bit-fields up into individual bytes. Walk over the bytes and
  // update them.
  for (CharUnits OffsetInChars =
           Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
       /**/; ++OffsetInChars) {
    // Number of bits we want to fill in this char.
    unsigned WantedBits =
        std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);

    // Get a char containing the bits we want in the right places. The other
    // bits have unspecified values.
    llvm::APInt BitsThisChar = Bits;
    if (BitsThisChar.getBitWidth() < CharWidth)
      BitsThisChar = BitsThisChar.zext(CharWidth);
    if (CGM.getDataLayout().isBigEndian()) {
      // Figure out how much to shift by. We may need to left-shift if we have
      // less than one byte of Bits left.
      int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
      if (Shift > 0)
        BitsThisChar.lshrInPlace(Shift);
      else if (Shift < 0)
        BitsThisChar = BitsThisChar.shl(-Shift);
    } else {
      BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
    }
    if (BitsThisChar.getBitWidth() > CharWidth)
      BitsThisChar = BitsThisChar.trunc(CharWidth);

    if (WantedBits == CharWidth) {
      // Got a full byte: just add it directly.
      add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
          OffsetInChars, AllowOverwrite);
    } else {
      // Partial byte: update the existing integer if there is one. If we
      // can't split out a 1-CharUnit range to update, then we can't add
      // these bits and fail the entire constant emission.
      llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
      if (!FirstElemToUpdate)
        return false;
      llvm::Optional<size_t> LastElemToUpdate =
          splitAt(OffsetInChars + CharUnits::One());
      if (!LastElemToUpdate)
        return false;
      assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
             "should have at most one element covering one byte");

      // Figure out which bits we want and discard the rest.
      llvm::APInt UpdateMask(CharWidth, 0);
      if (CGM.getDataLayout().isBigEndian())
        UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
                           CharWidth - OffsetWithinChar);
      else
        UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
      BitsThisChar &= UpdateMask;

      if (*FirstElemToUpdate == *LastElemToUpdate ||
          Elems[*FirstElemToUpdate]->isNullValue() ||
          isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
        // All existing bits are either zero or undef.
        add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
            OffsetInChars, /*AllowOverwrite*/ true);
      } else {
        llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
        // In order to perform a partial update, we need the existing bitwise
        // value, which we can only extract for a constant int.
        auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
        if (!CI)
          return false;
        // Because this is a 1-CharUnit range, the constant occupying it must
        // be exactly one CharUnit wide.
        assert(CI->getBitWidth() == CharWidth && "splitAt failed");
        assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
               "unexpectedly overwriting bitfield");
        BitsThisChar |= (CI->getValue() & ~UpdateMask);
        ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
      }
    }

    // Stop if we've added all the bits.
    if (WantedBits == Bits.getBitWidth())
      break;

    // Remove the consumed bits from Bits.
    if (!CGM.getDataLayout().isBigEndian())
      Bits.lshrInPlace(WantedBits);
    Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);

    // The remanining bits go at the start of the following bytes.
    OffsetWithinChar = 0;
  }

  return true;
}

/// Returns a position within Elems and Offsets such that all elements
/// before the returned index end before Pos and all elements at or after
/// the returned index begin at or after Pos. Splits elements as necessary
/// to ensure this. Returns None if we find something we can't split.
Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
  if (Pos >= Size)
    return Offsets.size();

  while (true) {
    auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
    if (FirstAfterPos == Offsets.begin())
      return 0;

    // If we already have an element starting at Pos, we're done.
    size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
    if (Offsets[LastAtOrBeforePosIndex] == Pos)
      return LastAtOrBeforePosIndex;

    // We found an element starting before Pos. Check for overlap.
    if (Offsets[LastAtOrBeforePosIndex] +
        getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
      return LastAtOrBeforePosIndex + 1;

    // Try to decompose it into smaller constants.
    if (!split(LastAtOrBeforePosIndex, Pos))
      return None;
  }
}

/// Split the constant at index Index, if possible. Return true if we did.
/// Hint indicates the location at which we'd like to split, but may be
/// ignored.
bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
  NaturalLayout = false;
  llvm::Constant *C = Elems[Index];
  CharUnits Offset = Offsets[Index];

  if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
    replace(Elems, Index, Index + 1,
            llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
                            [&](unsigned Op) { return CA->getOperand(Op); }));
    if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) {
      // Array or vector.
      CharUnits ElemSize = getSize(Seq->getElementType());
      replace(
          Offsets, Index, Index + 1,
          llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
                          [&](unsigned Op) { return Offset + Op * ElemSize; }));
    } else {
      // Must be a struct.
      auto *ST = cast<llvm::StructType>(CA->getType());
      const llvm::StructLayout *Layout =
          CGM.getDataLayout().getStructLayout(ST);
      replace(Offsets, Index, Index + 1,
              llvm::map_range(
                  llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
                    return Offset + CharUnits::fromQuantity(
                                        Layout->getElementOffset(Op));
                  }));
    }
    return true;
  }

  if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
    // FIXME: If possible, split into two ConstantDataSequentials at Hint.
    CharUnits ElemSize = getSize(CDS->getElementType());
    replace(Elems, Index, Index + 1,
            llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
                            [&](unsigned Elem) {
                              return CDS->getElementAsConstant(Elem);
                            }));
    replace(Offsets, Index, Index + 1,
            llvm::map_range(
                llvm::seq(0u, CDS->getNumElements()),
                [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
    return true;
  }

  if (isa<llvm::ConstantAggregateZero>(C)) {
    CharUnits ElemSize = getSize(C);
    assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
    replace(Elems, Index, Index + 1,
            {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
    replace(Offsets, Index, Index + 1, {Offset, Hint});
    return true;
  }

  if (isa<llvm::UndefValue>(C)) {
    replace(Elems, Index, Index + 1, {});
    replace(Offsets, Index, Index + 1, {});
    return true;
  }

  // FIXME: We could split a ConstantInt if the need ever arose.
  // We don't need to do this to handle bit-fields because we always eagerly
  // split them into 1-byte chunks.

  return false;
}

static llvm::Constant *
EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
                  llvm::Type *CommonElementType, unsigned ArrayBound,
                  SmallVectorImpl<llvm::Constant *> &Elements,
                  llvm::Constant *Filler);

llvm::Constant *ConstantAggregateBuilder::buildFrom(
    CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
    ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
    bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
  ConstantAggregateBuilderUtils Utils(CGM);

  if (Elems.empty())
    return llvm::UndefValue::get(DesiredTy);

  auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };

  // If we want an array type, see if all the elements are the same type and
  // appropriately spaced.
  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
    assert(!AllowOversized && "oversized array emission not supported");

    bool CanEmitArray = true;
    llvm::Type *CommonType = Elems[0]->getType();
    llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
    CharUnits ElemSize = Utils.getSize(ATy->getElementType());
    SmallVector<llvm::Constant*, 32> ArrayElements;
    for (size_t I = 0; I != Elems.size(); ++I) {
      // Skip zeroes; we'll use a zero value as our array filler.
      if (Elems[I]->isNullValue())
        continue;

      // All remaining elements must be the same type.
      if (Elems[I]->getType() != CommonType ||
          Offset(I) % ElemSize != 0) {
        CanEmitArray = false;
        break;
      }
      ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
      ArrayElements.back() = Elems[I];
    }

    if (CanEmitArray) {
      return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
                               ArrayElements, Filler);
    }

    // Can't emit as an array, carry on to emit as a struct.
  }

  CharUnits DesiredSize = Utils.getSize(DesiredTy);
  CharUnits Align = CharUnits::One();
  for (llvm::Constant *C : Elems)
    Align = std::max(Align, Utils.getAlignment(C));
  CharUnits AlignedSize = Size.alignTo(Align);

  bool Packed = false;
  ArrayRef<llvm::Constant*> UnpackedElems = Elems;
  llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
  if ((DesiredSize < AlignedSize && !AllowOversized) ||
      DesiredSize.alignTo(Align) != DesiredSize) {
    // The natural layout would be the wrong size; force use of a packed layout.
    NaturalLayout = false;
    Packed = true;
  } else if (DesiredSize > AlignedSize) {
    // The constant would be too small. Add padding to fix it.
    UnpackedElemStorage.assign(Elems.begin(), Elems.end());
    UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
    UnpackedElems = UnpackedElemStorage;
  }

  // If we don't have a natural layout, insert padding as necessary.
  // As we go, double-check to see if we can actually just emit Elems
  // as a non-packed struct and do so opportunistically if possible.
  llvm::SmallVector<llvm::Constant*, 32> PackedElems;
  if (!NaturalLayout) {
    CharUnits SizeSoFar = CharUnits::Zero();
    for (size_t I = 0; I != Elems.size(); ++I) {
      CharUnits Align = Utils.getAlignment(Elems[I]);
      CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
      CharUnits DesiredOffset = Offset(I);
      assert(DesiredOffset >= SizeSoFar && "elements out of order");

      if (DesiredOffset != NaturalOffset)
        Packed = true;
      if (DesiredOffset != SizeSoFar)
        PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
      PackedElems.push_back(Elems[I]);
      SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
    }
    // If we're using the packed layout, pad it out to the desired size if
    // necessary.
    if (Packed) {
      assert((SizeSoFar <= DesiredSize || AllowOversized) &&
             "requested size is too small for contents");
      if (SizeSoFar < DesiredSize)
        PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
    }
  }

  llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
      CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);

  // Pick the type to use.  If the type is layout identical to the desired
  // type then use it, otherwise use whatever the builder produced for us.
  if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
    if (DesiredSTy->isLayoutIdentical(STy))
      STy = DesiredSTy;
  }

  return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
}

void ConstantAggregateBuilder::condense(CharUnits Offset,
                                        llvm::Type *DesiredTy) {
  CharUnits Size = getSize(DesiredTy);

  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset);
  if (!FirstElemToReplace)
    return;
  size_t First = *FirstElemToReplace;

  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size);
  if (!LastElemToReplace)
    return;
  size_t Last = *LastElemToReplace;

  size_t Length = Last - First;
  if (Length == 0)
    return;

  if (Length == 1 && Offsets[First] == Offset &&
      getSize(Elems[First]) == Size) {
    // Re-wrap single element structs if necessary. Otherwise, leave any single
    // element constant of the right size alone even if it has the wrong type.
    auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
    if (STy && STy->getNumElements() == 1 &&
        STy->getElementType(0) == Elems[First]->getType())
      Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
    return;
  }

  llvm::Constant *Replacement = buildFrom(
      CGM, makeArrayRef(Elems).slice(First, Length),
      makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
      /*known to have natural layout=*/false, DesiredTy, false);
  replace(Elems, First, Last, {Replacement});
  replace(Offsets, First, Last, {Offset});
}

//===----------------------------------------------------------------------===//
//                            ConstStructBuilder
//===----------------------------------------------------------------------===//

class ConstStructBuilder {
  CodeGenModule &CGM;
  ConstantEmitter &Emitter;
  ConstantAggregateBuilder &Builder;
  CharUnits StartOffset;

public:
  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
                                     InitListExpr *ILE, QualType StructTy);
  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
                                     const APValue &Value, QualType ValTy);
  static bool UpdateStruct(ConstantEmitter &Emitter,
                           ConstantAggregateBuilder &Const, CharUnits Offset,
                           InitListExpr *Updater);

private:
  ConstStructBuilder(ConstantEmitter &Emitter,
                     ConstantAggregateBuilder &Builder, CharUnits StartOffset)
      : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
        StartOffset(StartOffset) {}

  bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
                   llvm::Constant *InitExpr, bool AllowOverwrite = false);

  bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
                   bool AllowOverwrite = false);

  bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
                      llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);

  bool Build(InitListExpr *ILE, bool AllowOverwrite);
  bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
             const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
  llvm::Constant *Finalize(QualType Ty);
};

bool ConstStructBuilder::AppendField(
    const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
    bool AllowOverwrite) {
  const ASTContext &Context = CGM.getContext();

  CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);

  return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
}

bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
                                     llvm::Constant *InitCst,
                                     bool AllowOverwrite) {
  return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
}

bool ConstStructBuilder::AppendBitField(
    const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
    bool AllowOverwrite) {
  uint64_t FieldSize = Field->getBitWidthValue(CGM.getContext());
  llvm::APInt FieldValue = CI->getValue();

  // Promote the size of FieldValue if necessary
  // FIXME: This should never occur, but currently it can because initializer
  // constants are cast to bool, and because clang is not enforcing bitfield
  // width limits.
  if (FieldSize > FieldValue.getBitWidth())
    FieldValue = FieldValue.zext(FieldSize);

  // Truncate the size of FieldValue to the bit field size.
  if (FieldSize < FieldValue.getBitWidth())
    FieldValue = FieldValue.trunc(FieldSize);

  return Builder.addBits(FieldValue,
                         CGM.getContext().toBits(StartOffset) + FieldOffset,
                         AllowOverwrite);
}

static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
                                      ConstantAggregateBuilder &Const,
                                      CharUnits Offset, QualType Type,
                                      InitListExpr *Updater) {
  if (Type->isRecordType())
    return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);

  auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
  if (!CAT)
    return false;
  QualType ElemType = CAT->getElementType();
  CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
  llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);

  llvm::Constant *FillC = nullptr;
  if (Expr *Filler = Updater->getArrayFiller()) {
    if (!isa<NoInitExpr>(Filler)) {
      FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
      if (!FillC)
        return false;
    }
  }

  unsigned NumElementsToUpdate =
      FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
  for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
    Expr *Init = nullptr;
    if (I < Updater->getNumInits())
      Init = Updater->getInit(I);

    if (!Init && FillC) {
      if (!Const.add(FillC, Offset, true))
        return false;
    } else if (!Init || isa<NoInitExpr>(Init)) {
      continue;
    } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
      if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
                                     ChildILE))
        return false;
      // Attempt to reduce the array element to a single constant if necessary.
      Const.condense(Offset, ElemTy);
    } else {
      llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
      if (!Const.add(Val, Offset, true))
        return false;
    }
  }

  return true;
}

bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
  RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);

  unsigned FieldNo = -1;
  unsigned ElementNo = 0;

  // Bail out if we have base classes. We could support these, but they only
  // arise in C++1z where we will have already constant folded most interesting
  // cases. FIXME: There are still a few more cases we can handle this way.
  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
    if (CXXRD->getNumBases())
      return false;

  for (FieldDecl *Field : RD->fields()) {
    ++FieldNo;

    // If this is a union, skip all the fields that aren't being initialized.
    if (RD->isUnion() &&
        !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
      continue;

    // Don't emit anonymous bitfields or zero-sized fields.
    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
      continue;

    // Get the initializer.  A struct can include fields without initializers,
    // we just use explicit null values for them.
    Expr *Init = nullptr;
    if (ElementNo < ILE->getNumInits())
      Init = ILE->getInit(ElementNo++);
    if (Init && isa<NoInitExpr>(Init))
      continue;

    // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
    // represents additional overwriting of our current constant value, and not
    // a new constant to emit independently.
    if (AllowOverwrite &&
        (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
      if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
        CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
            Layout.getFieldOffset(FieldNo));
        if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
                                       Field->getType(), SubILE))
          return false;
        // If we split apart the field's value, try to collapse it down to a
        // single value now.
        Builder.condense(StartOffset + Offset,
                         CGM.getTypes().ConvertTypeForMem(Field->getType()));
        continue;
      }
    }

    llvm::Constant *EltInit =
        Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
             : Emitter.emitNullForMemory(Field->getType());
    if (!EltInit)
      return false;

    if (!Field->isBitField()) {
      // Handle non-bitfield members.
      if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
                       AllowOverwrite))
        return false;
      // After emitting a non-empty field with [[no_unique_address]], we may
      // need to overwrite its tail padding.
      if (Field->hasAttr<NoUniqueAddressAttr>())
        AllowOverwrite = true;
    } else {
      // Otherwise we have a bitfield.
      if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
        if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
                            AllowOverwrite))
          return false;
      } else {
        // We are trying to initialize a bitfield with a non-trivial constant,
        // this must require run-time code.
        return false;
      }
    }
  }

  return true;
}

namespace {
struct BaseInfo {
  BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
    : Decl(Decl), Offset(Offset), Index(Index) {
  }

  const CXXRecordDecl *Decl;
  CharUnits Offset;
  unsigned Index;

  bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
};
}

bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
                               bool IsPrimaryBase,
                               const CXXRecordDecl *VTableClass,
                               CharUnits Offset) {
  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);

  if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
    // Add a vtable pointer, if we need one and it hasn't already been added.
    if (CD->isDynamicClass() && !IsPrimaryBase) {
      llvm::Constant *VTableAddressPoint =
          CGM.getCXXABI().getVTableAddressPointForConstExpr(
              BaseSubobject(CD, Offset), VTableClass);
      if (!AppendBytes(Offset, VTableAddressPoint))
        return false;
    }

    // Accumulate and sort bases, in order to visit them in address order, which
    // may not be the same as declaration order.
    SmallVector<BaseInfo, 8> Bases;
    Bases.reserve(CD->getNumBases());
    unsigned BaseNo = 0;
    for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
         BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
      assert(!Base->isVirtual() && "should not have virtual bases here");
      const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
      CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
      Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
    }
    llvm::stable_sort(Bases);

    for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
      BaseInfo &Base = Bases[I];

      bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
      Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
            VTableClass, Offset + Base.Offset);
    }
  }

  unsigned FieldNo = 0;
  uint64_t OffsetBits = CGM.getContext().toBits(Offset);

  bool AllowOverwrite = false;
  for (RecordDecl::field_iterator Field = RD->field_begin(),
       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
    // If this is a union, skip all the fields that aren't being initialized.
    if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
      continue;

    // Don't emit anonymous bitfields or zero-sized fields.
    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
      continue;

    // Emit the value of the initializer.
    const APValue &FieldValue =
      RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
    llvm::Constant *EltInit =
      Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
    if (!EltInit)
      return false;

    if (!Field->isBitField()) {
      // Handle non-bitfield members.
      if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
                       EltInit, AllowOverwrite))
        return false;
      // After emitting a non-empty field with [[no_unique_address]], we may
      // need to overwrite its tail padding.
      if (Field->hasAttr<NoUniqueAddressAttr>())
        AllowOverwrite = true;
    } else {
      // Otherwise we have a bitfield.
      if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
                          cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
        return false;
    }
  }

  return true;
}

llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
  RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
  llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
  return Builder.build(ValTy, RD->hasFlexibleArrayMember());
}

llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
                                                InitListExpr *ILE,
                                                QualType ValTy) {
  ConstantAggregateBuilder Const(Emitter.CGM);
  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());

  if (!Builder.Build(ILE, /*AllowOverwrite*/false))
    return nullptr;

  return Builder.Finalize(ValTy);
}

llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
                                                const APValue &Val,
                                                QualType ValTy) {
  ConstantAggregateBuilder Const(Emitter.CGM);
  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());

  const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
  if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
    return nullptr;

  return Builder.Finalize(ValTy);
}

bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
                                      ConstantAggregateBuilder &Const,
                                      CharUnits Offset, InitListExpr *Updater) {
  return ConstStructBuilder(Emitter, Const, Offset)
      .Build(Updater, /*AllowOverwrite*/ true);
}

//===----------------------------------------------------------------------===//
//                             ConstExprEmitter
//===----------------------------------------------------------------------===//

static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM,
                                                    CodeGenFunction *CGF,
                                              const CompoundLiteralExpr *E) {
  CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
  if (llvm::GlobalVariable *Addr =
          CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
    return ConstantAddress(Addr, Align);

  LangAS addressSpace = E->getType().getAddressSpace();

  ConstantEmitter emitter(CGM, CGF);
  llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
                                                    addressSpace, E->getType());
  if (!C) {
    assert(!E->isFileScope() &&
           "file-scope compound literal did not have constant initializer!");
    return ConstantAddress::invalid();
  }

  auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(),
                                     CGM.isTypeConstant(E->getType(), true),
                                     llvm::GlobalValue::InternalLinkage,
                                     C, ".compoundliteral", nullptr,
                                     llvm::GlobalVariable::NotThreadLocal,
                    CGM.getContext().getTargetAddressSpace(addressSpace));
  emitter.finalize(GV);
  GV->setAlignment(Align.getAsAlign());
  CGM.setAddrOfConstantCompoundLiteral(E, GV);
  return ConstantAddress(GV, Align);
}

static llvm::Constant *
EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
                  llvm::Type *CommonElementType, unsigned ArrayBound,
                  SmallVectorImpl<llvm::Constant *> &Elements,
                  llvm::Constant *Filler) {
  // Figure out how long the initial prefix of non-zero elements is.
  unsigned NonzeroLength = ArrayBound;
  if (Elements.size() < NonzeroLength && Filler->isNullValue())
    NonzeroLength = Elements.size();
  if (NonzeroLength == Elements.size()) {
    while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
      --NonzeroLength;
  }

  if (NonzeroLength == 0)
    return llvm::ConstantAggregateZero::get(DesiredType);

  // Add a zeroinitializer array filler if we have lots of trailing zeroes.
  unsigned TrailingZeroes = ArrayBound - NonzeroLength;
  if (TrailingZeroes >= 8) {
    assert(Elements.size() >= NonzeroLength &&
           "missing initializer for non-zero element");

    // If all the elements had the same type up to the trailing zeroes, emit a
    // struct of two arrays (the nonzero data and the zeroinitializer).
    if (CommonElementType && NonzeroLength >= 8) {
      llvm::Constant *Initial = llvm::ConstantArray::get(
          llvm::ArrayType::get(CommonElementType, NonzeroLength),
          makeArrayRef(Elements).take_front(NonzeroLength));
      Elements.resize(2);
      Elements[0] = Initial;
    } else {
      Elements.resize(NonzeroLength + 1);
    }

    auto *FillerType =
        CommonElementType ? CommonElementType : DesiredType->getElementType();
    FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
    Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
    CommonElementType = nullptr;
  } else if (Elements.size() != ArrayBound) {
    // Otherwise pad to the right size with the filler if necessary.
    Elements.resize(ArrayBound, Filler);
    if (Filler->getType() != CommonElementType)
      CommonElementType = nullptr;
  }

  // If all elements have the same type, just emit an array constant.
  if (CommonElementType)
    return llvm::ConstantArray::get(
        llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);

  // We have mixed types. Use a packed struct.
  llvm::SmallVector<llvm::Type *, 16> Types;
  Types.reserve(Elements.size());
  for (llvm::Constant *Elt : Elements)
    Types.push_back(Elt->getType());
  llvm::StructType *SType =
      llvm::StructType::get(CGM.getLLVMContext(), Types, true);
  return llvm::ConstantStruct::get(SType, Elements);
}

// This class only needs to handle arrays, structs and unions. Outside C++11
// mode, we don't currently constant fold those types.  All other types are
// handled by constant folding.
//
// Constant folding is currently missing support for a few features supported
// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
class ConstExprEmitter :
  public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
  CodeGenModule &CGM;
  ConstantEmitter &Emitter;
  llvm::LLVMContext &VMContext;
public:
  ConstExprEmitter(ConstantEmitter &emitter)
    : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
  }

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  llvm::Constant *VisitStmt(Stmt *S, QualType T) {
    return nullptr;
  }

  llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
    return Visit(CE->getSubExpr(), T);
  }

  llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
    return Visit(PE->getSubExpr(), T);
  }

  llvm::Constant *
  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
                                    QualType T) {
    return Visit(PE->getReplacement(), T);
  }

  llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
                                            QualType T) {
    return Visit(GE->getResultExpr(), T);
  }

  llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
    return Visit(CE->getChosenSubExpr(), T);
  }

  llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
    return Visit(E->getInitializer(), T);
  }

  llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
      CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
    Expr *subExpr = E->getSubExpr();

    switch (E->getCastKind()) {
    case CK_ToUnion: {
      // GCC cast to union extension
      assert(E->getType()->isUnionType() &&
             "Destination type is not union type!");

      auto field = E->getTargetUnionField();

      auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
      if (!C) return nullptr;

      auto destTy = ConvertType(destType);
      if (C->getType() == destTy) return C;

      // Build a struct with the union sub-element as the first member,
      // and padded to the appropriate size.
      SmallVector<llvm::Constant*, 2> Elts;
      SmallVector<llvm::Type*, 2> Types;
      Elts.push_back(C);
      Types.push_back(C->getType());
      unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
      unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);

      assert(CurSize <= TotalSize && "Union size mismatch!");
      if (unsigned NumPadBytes = TotalSize - CurSize) {
        llvm::Type *Ty = CGM.Int8Ty;
        if (NumPadBytes > 1)
          Ty = llvm::ArrayType::get(Ty, NumPadBytes);

        Elts.push_back(llvm::UndefValue::get(Ty));
        Types.push_back(Ty);
      }

      llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
      return llvm::ConstantStruct::get(STy, Elts);
    }

    case CK_AddressSpaceConversion: {
      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
      if (!C) return nullptr;
      LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
      LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
      llvm::Type *destTy = ConvertType(E->getType());
      return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
                                                             destAS, destTy);
    }

    case CK_LValueToRValue:
    case CK_AtomicToNonAtomic:
    case CK_NonAtomicToAtomic:
    case CK_NoOp:
    case CK_ConstructorConversion:
      return Visit(subExpr, destType);

    case CK_IntToOCLSampler:
      llvm_unreachable("global sampler variables are not generated");

    case CK_Dependent: llvm_unreachable("saw dependent cast!");

    case CK_BuiltinFnToFnPtr:
      llvm_unreachable("builtin functions are handled elsewhere");

    case CK_ReinterpretMemberPointer:
    case CK_DerivedToBaseMemberPointer:
    case CK_BaseToDerivedMemberPointer: {
      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
      if (!C) return nullptr;
      return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
    }

    // These will never be supported.
    case CK_ObjCObjectLValueCast:
    case CK_ARCProduceObject:
    case CK_ARCConsumeObject:
    case CK_ARCReclaimReturnedObject:
    case CK_ARCExtendBlockObject:
    case CK_CopyAndAutoreleaseBlockObject:
      return nullptr;

    // These don't need to be handled here because Evaluate knows how to
    // evaluate them in the cases where they can be folded.
    case CK_BitCast:
    case CK_ToVoid:
    case CK_Dynamic:
    case CK_LValueBitCast:
    case CK_LValueToRValueBitCast:
    case CK_NullToMemberPointer:
    case CK_UserDefinedConversion:
    case CK_CPointerToObjCPointerCast:
    case CK_BlockPointerToObjCPointerCast:
    case CK_AnyPointerToBlockPointerCast:
    case CK_ArrayToPointerDecay:
    case CK_FunctionToPointerDecay:
    case CK_BaseToDerived:
    case CK_DerivedToBase:
    case CK_UncheckedDerivedToBase:
    case CK_MemberPointerToBoolean:
    case CK_VectorSplat:
    case CK_FloatingRealToComplex:
    case CK_FloatingComplexToReal:
    case CK_FloatingComplexToBoolean:
    case CK_FloatingComplexCast:
    case CK_FloatingComplexToIntegralComplex:
    case CK_IntegralRealToComplex:
    case CK_IntegralComplexToReal:
    case CK_IntegralComplexToBoolean:
    case CK_IntegralComplexCast:
    case CK_IntegralComplexToFloatingComplex:
    case CK_PointerToIntegral:
    case CK_PointerToBoolean:
    case CK_NullToPointer:
    case CK_IntegralCast:
    case CK_BooleanToSignedIntegral:
    case CK_IntegralToPointer:
    case CK_IntegralToBoolean:
    case CK_IntegralToFloating:
    case CK_FloatingToIntegral:
    case CK_FloatingToBoolean:
    case CK_FloatingCast:
    case CK_FixedPointCast:
    case CK_FixedPointToBoolean:
    case CK_FixedPointToIntegral:
    case CK_IntegralToFixedPoint:
    case CK_ZeroToOCLOpaqueType:
      return nullptr;
    }
    llvm_unreachable("Invalid CastKind");
  }

  llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
    // No need for a DefaultInitExprScope: we don't handle 'this' in a
    // constant expression.
    return Visit(DIE->getExpr(), T);
  }

  llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
    if (!E->cleanupsHaveSideEffects())
      return Visit(E->getSubExpr(), T);
    return nullptr;
  }

  llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E,
                                                QualType T) {
    return Visit(E->getSubExpr(), T);
  }

  llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
    auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
    assert(CAT && "can't emit array init for non-constant-bound array");
    unsigned NumInitElements = ILE->getNumInits();
    unsigned NumElements = CAT->getSize().getZExtValue();

    // Initialising an array requires us to automatically
    // initialise any elements that have not been initialised explicitly
    unsigned NumInitableElts = std::min(NumInitElements, NumElements);

    QualType EltType = CAT->getElementType();

    // Initialize remaining array elements.
    llvm::Constant *fillC = nullptr;
    if (Expr *filler = ILE->getArrayFiller()) {
      fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
      if (!fillC)
        return nullptr;
    }

    // Copy initializer elements.
    SmallVector<llvm::Constant*, 16> Elts;
    if (fillC && fillC->isNullValue())
      Elts.reserve(NumInitableElts + 1);
    else
      Elts.reserve(NumElements);

    llvm::Type *CommonElementType = nullptr;
    for (unsigned i = 0; i < NumInitableElts; ++i) {
      Expr *Init = ILE->getInit(i);
      llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
      if (!C)
        return nullptr;
      if (i == 0)
        CommonElementType = C->getType();
      else if (C->getType() != CommonElementType)
        CommonElementType = nullptr;
      Elts.push_back(C);
    }

    llvm::ArrayType *Desired =
        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
                             fillC);
  }

  llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
    return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
  }

  llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
                                             QualType T) {
    return CGM.EmitNullConstant(T);
  }

  llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
    if (ILE->isTransparent())
      return Visit(ILE->getInit(0), T);

    if (ILE->getType()->isArrayType())
      return EmitArrayInitialization(ILE, T);

    if (ILE->getType()->isRecordType())
      return EmitRecordInitialization(ILE, T);

    return nullptr;
  }

  llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
                                                QualType destType) {
    auto C = Visit(E->getBase(), destType);
    if (!C)
      return nullptr;

    ConstantAggregateBuilder Const(CGM);
    Const.add(C, CharUnits::Zero(), false);

    if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
                                   E->getUpdater()))
      return nullptr;

    llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
    bool HasFlexibleArray = false;
    if (auto *RT = destType->getAs<RecordType>())
      HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
    return Const.build(ValTy, HasFlexibleArray);
  }

  llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
    if (!E->getConstructor()->isTrivial())
      return nullptr;

    // FIXME: We should not have to call getBaseElementType here.
    const auto *RT =
        CGM.getContext().getBaseElementType(Ty)->castAs<RecordType>();
    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());

    // If the class doesn't have a trivial destructor, we can't emit it as a
    // constant expr.
    if (!RD->hasTrivialDestructor())
      return nullptr;

    // Only copy and default constructors can be trivial.


    if (E->getNumArgs()) {
      assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
      assert(E->getConstructor()->isCopyOrMoveConstructor() &&
             "trivial ctor has argument but isn't a copy/move ctor");

      Expr *Arg = E->getArg(0);
      assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
             "argument to copy ctor is of wrong type");

      return Visit(Arg, Ty);
    }

    return CGM.EmitNullConstant(Ty);
  }

  llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
    // This is a string literal initializing an array in an initializer.
    return CGM.GetConstantArrayFromStringLiteral(E);
  }

  llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
    // This must be an @encode initializing an array in a static initializer.
    // Don't emit it as the address of the string, emit the string data itself
    // as an inline array.
    std::string Str;
    CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
    const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);

    // Resize the string to the right size, adding zeros at the end, or
    // truncating as needed.
    Str.resize(CAT->getSize().getZExtValue(), '\0');
    return llvm::ConstantDataArray::getString(VMContext, Str, false);
  }

  llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
    return Visit(E->getSubExpr(), T);
  }

  // Utility methods
  llvm::Type *ConvertType(QualType T) {
    return CGM.getTypes().ConvertType(T);
  }
};

}  // end anonymous namespace.

llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
                                                        AbstractState saved) {
  Abstract = saved.OldValue;

  assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
         "created a placeholder while doing an abstract emission?");

  // No validation necessary for now.
  // No cleanup to do for now.
  return C;
}

llvm::Constant *
ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
  auto state = pushAbstract();
  auto C = tryEmitPrivateForVarInit(D);
  return validateAndPopAbstract(C, state);
}

llvm::Constant *
ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
  auto state = pushAbstract();
  auto C = tryEmitPrivate(E, destType);
  return validateAndPopAbstract(C, state);
}

llvm::Constant *
ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
  auto state = pushAbstract();
  auto C = tryEmitPrivate(value, destType);
  return validateAndPopAbstract(C, state);
}

llvm::Constant *
ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
  auto state = pushAbstract();
  auto C = tryEmitPrivate(E, destType);
  C = validateAndPopAbstract(C, state);
  if (!C) {
    CGM.Error(E->getExprLoc(),
              "internal error: could not emit constant value \"abstractly\"");
    C = CGM.EmitNullConstant(destType);
  }
  return C;
}

llvm::Constant *
ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
                              QualType destType) {
  auto state = pushAbstract();
  auto C = tryEmitPrivate(value, destType);
  C = validateAndPopAbstract(C, state);
  if (!C) {
    CGM.Error(loc,
              "internal error: could not emit constant value \"abstractly\"");
    C = CGM.EmitNullConstant(destType);
  }
  return C;
}

llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
  initializeNonAbstract(D.getType().getAddressSpace());
  return markIfFailed(tryEmitPrivateForVarInit(D));
}

llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
                                                       LangAS destAddrSpace,
                                                       QualType destType) {
  initializeNonAbstract(destAddrSpace);
  return markIfFailed(tryEmitPrivateForMemory(E, destType));
}

llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
                                                    LangAS destAddrSpace,
                                                    QualType destType) {
  initializeNonAbstract(destAddrSpace);
  auto C = tryEmitPrivateForMemory(value, destType);
  assert(C && "couldn't emit constant value non-abstractly?");
  return C;
}

llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
  assert(!Abstract && "cannot get current address for abstract constant");



  // Make an obviously ill-formed global that should blow up compilation
  // if it survives.
  auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
                                         llvm::GlobalValue::PrivateLinkage,
                                         /*init*/ nullptr,
                                         /*name*/ "",
                                         /*before*/ nullptr,
                                         llvm::GlobalVariable::NotThreadLocal,
                                         CGM.getContext().getTargetAddressSpace(DestAddressSpace));

  PlaceholderAddresses.push_back(std::make_pair(nullptr, global));

  return global;
}

void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
                                           llvm::GlobalValue *placeholder) {
  assert(!PlaceholderAddresses.empty());
  assert(PlaceholderAddresses.back().first == nullptr);
  assert(PlaceholderAddresses.back().second == placeholder);
  PlaceholderAddresses.back().first = signal;
}

namespace {
  struct ReplacePlaceholders {
    CodeGenModule &CGM;

    /// The base address of the global.
    llvm::Constant *Base;
    llvm::Type *BaseValueTy = nullptr;

    /// The placeholder addresses that were registered during emission.
    llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;

    /// The locations of the placeholder signals.
    llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;

    /// The current index stack.  We use a simple unsigned stack because
    /// we assume that placeholders will be relatively sparse in the
    /// initializer, but we cache the index values we find just in case.
    llvm::SmallVector<unsigned, 8> Indices;
    llvm::SmallVector<llvm::Constant*, 8> IndexValues;

    ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
                        ArrayRef<std::pair<llvm::Constant*,
                                           llvm::GlobalVariable*>> addresses)
        : CGM(CGM), Base(base),
          PlaceholderAddresses(addresses.begin(), addresses.end()) {
    }

    void replaceInInitializer(llvm::Constant *init) {
      // Remember the type of the top-most initializer.
      BaseValueTy = init->getType();

      // Initialize the stack.
      Indices.push_back(0);
      IndexValues.push_back(nullptr);

      // Recurse into the initializer.
      findLocations(init);

      // Check invariants.
      assert(IndexValues.size() == Indices.size() && "mismatch");
      assert(Indices.size() == 1 && "didn't pop all indices");

      // Do the replacement; this basically invalidates 'init'.
      assert(Locations.size() == PlaceholderAddresses.size() &&
             "missed a placeholder?");

      // We're iterating over a hashtable, so this would be a source of
      // non-determinism in compiler output *except* that we're just
      // messing around with llvm::Constant structures, which never itself
      // does anything that should be visible in compiler output.
      for (auto &entry : Locations) {
        assert(entry.first->getParent() == nullptr && "not a placeholder!");
        entry.first->replaceAllUsesWith(entry.second);
        entry.first->eraseFromParent();
      }
    }

  private:
    void findLocations(llvm::Constant *init) {
      // Recurse into aggregates.
      if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
        for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
          Indices.push_back(i);
          IndexValues.push_back(nullptr);

          findLocations(agg->getOperand(i));

          IndexValues.pop_back();
          Indices.pop_back();
        }
        return;
      }

      // Otherwise, check for registered constants.
      while (true) {
        auto it = PlaceholderAddresses.find(init);
        if (it != PlaceholderAddresses.end()) {
          setLocation(it->second);
          break;
        }

        // Look through bitcasts or other expressions.
        if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
          init = expr->getOperand(0);
        } else {
          break;
        }
      }
    }

    void setLocation(llvm::GlobalVariable *placeholder) {
      assert(Locations.find(placeholder) == Locations.end() &&
             "already found location for placeholder!");

      // Lazily fill in IndexValues with the values from Indices.
      // We do this in reverse because we should always have a strict
      // prefix of indices from the start.
      assert(Indices.size() == IndexValues.size());
      for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
        if (IndexValues[i]) {
#ifndef NDEBUG
          for (size_t j = 0; j != i + 1; ++j) {
            assert(IndexValues[j] &&
                   isa<llvm::ConstantInt>(IndexValues[j]) &&
                   cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
                     == Indices[j]);
          }
#endif
          break;
        }

        IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
      }

      // Form a GEP and then bitcast to the placeholder type so that the
      // replacement will succeed.
      llvm::Constant *location =
        llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy,
                                                     Base, IndexValues);
      location = llvm::ConstantExpr::getBitCast(location,
                                                placeholder->getType());

      Locations.insert({placeholder, location});
    }
  };
}

void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
  assert(InitializedNonAbstract &&
         "finalizing emitter that was used for abstract emission?");
  assert(!Finalized && "finalizing emitter multiple times");
  assert(global->getInitializer());

  // Note that we might also be Failed.
  Finalized = true;

  if (!PlaceholderAddresses.empty()) {
    ReplacePlaceholders(CGM, global, PlaceholderAddresses)
      .replaceInInitializer(global->getInitializer());
    PlaceholderAddresses.clear(); // satisfy
  }
}

ConstantEmitter::~ConstantEmitter() {
  assert((!InitializedNonAbstract || Finalized || Failed) &&
         "not finalized after being initialized for non-abstract emission");
  assert(PlaceholderAddresses.empty() && "unhandled placeholders");
}

static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
  if (auto AT = type->getAs<AtomicType>()) {
    return CGM.getContext().getQualifiedType(AT->getValueType(),
                                             type.getQualifiers());
  }
  return type;
}

llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
  // Make a quick check if variable can be default NULL initialized
  // and avoid going through rest of code which may do, for c++11,
  // initialization of memory to all NULLs.
  if (!D.hasLocalStorage()) {
    QualType Ty = CGM.getContext().getBaseElementType(D.getType());
    if (Ty->isRecordType())
      if (const CXXConstructExpr *E =
          dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
        const CXXConstructorDecl *CD = E->getConstructor();
        if (CD->isTrivial() && CD->isDefaultConstructor())
          return CGM.EmitNullConstant(D.getType());
      }
    InConstantContext = true;
  }

  QualType destType = D.getType();

  // Try to emit the initializer.  Note that this can allow some things that
  // are not allowed by tryEmitPrivateForMemory alone.
  if (auto value = D.evaluateValue()) {
    return tryEmitPrivateForMemory(*value, destType);
  }

  // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a
  // reference is a constant expression, and the reference binds to a temporary,
  // then constant initialization is performed. ConstExprEmitter will
  // incorrectly emit a prvalue constant in this case, and the calling code
  // interprets that as the (pointer) value of the reference, rather than the
  // desired value of the referee.
  if (destType->isReferenceType())
    return nullptr;

  const Expr *E = D.getInit();
  assert(E && "No initializer to emit");

  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  auto C =
    ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *
ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  auto C = tryEmitAbstract(E, nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *
ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
                                          QualType destType) {
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  auto C = tryEmitAbstract(value, nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
                                                         QualType destType) {
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
                                                         QualType destType) {
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
  auto C = tryEmitPrivate(value, nonMemoryDestType);
  return (C ? emitForMemory(C, destType) : nullptr);
}

llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
                                               llvm::Constant *C,
                                               QualType destType) {
  // For an _Atomic-qualified constant, we may need to add tail padding.
  if (auto AT = destType->getAs<AtomicType>()) {
    QualType destValueType = AT->getValueType();
    C = emitForMemory(CGM, C, destValueType);

    uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
    uint64_t outerSize = CGM.getContext().getTypeSize(destType);
    if (innerSize == outerSize)
      return C;

    assert(innerSize < outerSize && "emitted over-large constant for atomic");
    llvm::Constant *elts[] = {
      C,
      llvm::ConstantAggregateZero::get(
          llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
    };
    return llvm::ConstantStruct::getAnon(elts);
  }

  // Zero-extend bool.
  if (C->getType()->isIntegerTy(1)) {
    llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
    return llvm::ConstantExpr::getZExt(C, boolTy);
  }

  return C;
}

llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
                                                QualType destType) {
  Expr::EvalResult Result;

  bool Success = false;

  if (destType->isReferenceType())
    Success = E->EvaluateAsLValue(Result, CGM.getContext());
  else
    Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);

  llvm::Constant *C;
  if (Success && !Result.HasSideEffects)
    C = tryEmitPrivate(Result.Val, destType);
  else
    C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType);

  return C;
}

llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
  return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
}

namespace {
/// A struct which can be used to peephole certain kinds of finalization
/// that normally happen during l-value emission.
struct ConstantLValue {
  llvm::Constant *Value;
  bool HasOffsetApplied;

  /*implicit*/ ConstantLValue(llvm::Constant *value,
                              bool hasOffsetApplied = false)
    : Value(value), HasOffsetApplied(hasOffsetApplied) {}

  /*implicit*/ ConstantLValue(ConstantAddress address)
    : ConstantLValue(address.getPointer()) {}
};

/// A helper class for emitting constant l-values.
class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
                                                      ConstantLValue> {
  CodeGenModule &CGM;
  ConstantEmitter &Emitter;
  const APValue &Value;
  QualType DestType;

  // Befriend StmtVisitorBase so that we don't have to expose Visit*.
  friend StmtVisitorBase;

public:
  ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
                        QualType destType)
    : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}

  llvm::Constant *tryEmit();

private:
  llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
  ConstantLValue tryEmitBase(const APValue::LValueBase &base);

  ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
  ConstantLValue VisitConstantExpr(const ConstantExpr *E);
  ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
  ConstantLValue VisitStringLiteral(const StringLiteral *E);
  ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
  ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
  ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
  ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
  ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
  ConstantLValue VisitCallExpr(const CallExpr *E);
  ConstantLValue VisitBlockExpr(const BlockExpr *E);
  ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
  ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E);
  ConstantLValue VisitMaterializeTemporaryExpr(
                                         const MaterializeTemporaryExpr *E);

  bool hasNonZeroOffset() const {
    return !Value.getLValueOffset().isZero();
  }

  /// Return the value offset.
  llvm::Constant *getOffset() {
    return llvm::ConstantInt::get(CGM.Int64Ty,
                                  Value.getLValueOffset().getQuantity());
  }

  /// Apply the value offset to the given constant.
  llvm::Constant *applyOffset(llvm::Constant *C) {
    if (!hasNonZeroOffset())
      return C;

    llvm::Type *origPtrTy = C->getType();
    unsigned AS = origPtrTy->getPointerAddressSpace();
    llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS);
    C = llvm::ConstantExpr::getBitCast(C, charPtrTy);
    C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
    C = llvm::ConstantExpr::getPointerCast(C, origPtrTy);
    return C;
  }
};

}

llvm::Constant *ConstantLValueEmitter::tryEmit() {
  const APValue::LValueBase &base = Value.getLValueBase();

  // The destination type should be a pointer or reference
  // type, but it might also be a cast thereof.
  //
  // FIXME: the chain of casts required should be reflected in the APValue.
  // We need this in order to correctly handle things like a ptrtoint of a
  // non-zero null pointer and addrspace casts that aren't trivially
  // represented in LLVM IR.
  auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
  assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));

  // If there's no base at all, this is a null or absolute pointer,
  // possibly cast back to an integer type.
  if (!base) {
    return tryEmitAbsolute(destTy);
  }

  // Otherwise, try to emit the base.
  ConstantLValue result = tryEmitBase(base);

  // If that failed, we're done.
  llvm::Constant *value = result.Value;
  if (!value) return nullptr;

  // Apply the offset if necessary and not already done.
  if (!result.HasOffsetApplied) {
    value = applyOffset(value);
  }

  // Convert to the appropriate type; this could be an lvalue for
  // an integer.  FIXME: performAddrSpaceCast
  if (isa<llvm::PointerType>(destTy))
    return llvm::ConstantExpr::getPointerCast(value, destTy);

  return llvm::ConstantExpr::getPtrToInt(value, destTy);
}

/// Try to emit an absolute l-value, such as a null pointer or an integer
/// bitcast to pointer type.
llvm::Constant *
ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
  // If we're producing a pointer, this is easy.
  auto destPtrTy = cast<llvm::PointerType>(destTy);
  if (Value.isNullPointer()) {
    // FIXME: integer offsets from non-zero null pointers.
    return CGM.getNullPointer(destPtrTy, DestType);
  }

  // Convert the integer to a pointer-sized integer before converting it
  // to a pointer.
  // FIXME: signedness depends on the original integer type.
  auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
  llvm::Constant *C;
  C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy,
                                         /*isSigned*/ false);
  C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
  return C;
}

ConstantLValue
ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
  // Handle values.
  if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
    if (D->hasAttr<WeakRefAttr>())
      return CGM.GetWeakRefReference(D).getPointer();

    if (auto FD = dyn_cast<FunctionDecl>(D))
      return CGM.GetAddrOfFunction(FD);

    if (auto VD = dyn_cast<VarDecl>(D)) {
      // We can never refer to a variable with local storage.
      if (!VD->hasLocalStorage()) {
        if (VD->isFileVarDecl() || VD->hasExternalStorage())
          return CGM.GetAddrOfGlobalVar(VD);

        if (VD->isLocalVarDecl()) {
          return CGM.getOrCreateStaticVarDecl(
              *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
        }
      }
    }

    return nullptr;
  }

  // Handle typeid(T).
  if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) {
    llvm::Type *StdTypeInfoPtrTy =
        CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo();
    llvm::Constant *TypeInfo =
        CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
    if (TypeInfo->getType() != StdTypeInfoPtrTy)
      TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy);
    return TypeInfo;
  }

  // Otherwise, it must be an expression.
  return Visit(base.get<const Expr*>());
}

ConstantLValue
ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
  return Visit(E->getSubExpr());
}

ConstantLValue
ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
  return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E);
}

ConstantLValue
ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
  return CGM.GetAddrOfConstantStringFromLiteral(E);
}

ConstantLValue
ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
  return CGM.GetAddrOfConstantStringFromObjCEncode(E);
}

static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
                                                    QualType T,
                                                    CodeGenModule &CGM) {
  auto C = CGM.getObjCRuntime().GenerateConstantString(S);
  return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T));
}

ConstantLValue
ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
  return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
}

ConstantLValue
ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
  assert(E->isExpressibleAsConstantInitializer() &&
         "this boxed expression can't be emitted as a compile-time constant");
  auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
  return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
}

ConstantLValue
ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
  return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
}

ConstantLValue
ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
  assert(Emitter.CGF && "Invalid address of label expression outside function");
  llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
  Ptr = llvm::ConstantExpr::getBitCast(Ptr,
                                   CGM.getTypes().ConvertType(E->getType()));
  return Ptr;
}

ConstantLValue
ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
  unsigned builtin = E->getBuiltinCallee();
  if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
      builtin != Builtin::BI__builtin___NSStringMakeConstantString)
    return nullptr;

  auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
  if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
    return CGM.getObjCRuntime().GenerateConstantString(literal);
  } else {
    // FIXME: need to deal with UCN conversion issues.
    return CGM.GetAddrOfConstantCFString(literal);
  }
}

ConstantLValue
ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
  StringRef functionName;
  if (auto CGF = Emitter.CGF)
    functionName = CGF->CurFn->getName();
  else
    functionName = "global";

  return CGM.GetAddrOfGlobalBlock(E, functionName);
}

ConstantLValue
ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
  QualType T;
  if (E->isTypeOperand())
    T = E->getTypeOperand(CGM.getContext());
  else
    T = E->getExprOperand()->getType();
  return CGM.GetAddrOfRTTIDescriptor(T);
}

ConstantLValue
ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
  return CGM.GetAddrOfUuidDescriptor(E);
}

ConstantLValue
ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
                                            const MaterializeTemporaryExpr *E) {
  assert(E->getStorageDuration() == SD_Static);
  SmallVector<const Expr *, 2> CommaLHSs;
  SmallVector<SubobjectAdjustment, 2> Adjustments;
  const Expr *Inner =
      E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
  return CGM.GetAddrOfGlobalTemporary(E, Inner);
}

llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
                                                QualType DestType) {
  switch (Value.getKind()) {
  case APValue::None:
  case APValue::Indeterminate:
    // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
    return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
  case APValue::LValue:
    return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
  case APValue::Int:
    return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
  case APValue::FixedPoint:
    return llvm::ConstantInt::get(CGM.getLLVMContext(),
                                  Value.getFixedPoint().getValue());
  case APValue::ComplexInt: {
    llvm::Constant *Complex[2];

    Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
                                        Value.getComplexIntReal());
    Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
                                        Value.getComplexIntImag());

    // FIXME: the target may want to specify that this is packed.
    llvm::StructType *STy =
        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
    return llvm::ConstantStruct::get(STy, Complex);
  }
  case APValue::Float: {
    const llvm::APFloat &Init = Value.getFloat();
    if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
        !CGM.getContext().getLangOpts().NativeHalfType &&
        CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
      return llvm::ConstantInt::get(CGM.getLLVMContext(),
                                    Init.bitcastToAPInt());
    else
      return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
  }
  case APValue::ComplexFloat: {
    llvm::Constant *Complex[2];

    Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
                                       Value.getComplexFloatReal());
    Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
                                       Value.getComplexFloatImag());

    // FIXME: the target may want to specify that this is packed.
    llvm::StructType *STy =
        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
    return llvm::ConstantStruct::get(STy, Complex);
  }
  case APValue::Vector: {
    unsigned NumElts = Value.getVectorLength();
    SmallVector<llvm::Constant *, 4> Inits(NumElts);

    for (unsigned I = 0; I != NumElts; ++I) {
      const APValue &Elt = Value.getVectorElt(I);
      if (Elt.isInt())
        Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
      else if (Elt.isFloat())
        Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
      else
        llvm_unreachable("unsupported vector element type");
    }
    return llvm::ConstantVector::get(Inits);
  }
  case APValue::AddrLabelDiff: {
    const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
    const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
    llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
    llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
    if (!LHS || !RHS) return nullptr;

    // Compute difference
    llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
    LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
    RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
    llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);

    // LLVM is a bit sensitive about the exact format of the
    // address-of-label difference; make sure to truncate after
    // the subtraction.
    return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
  }
  case APValue::Struct:
  case APValue::Union:
    return ConstStructBuilder::BuildStruct(*this, Value, DestType);
  case APValue::Array: {
    const ConstantArrayType *CAT =
        CGM.getContext().getAsConstantArrayType(DestType);
    unsigned NumElements = Value.getArraySize();
    unsigned NumInitElts = Value.getArrayInitializedElts();

    // Emit array filler, if there is one.
    llvm::Constant *Filler = nullptr;
    if (Value.hasArrayFiller()) {
      Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
                                        CAT->getElementType());
      if (!Filler)
        return nullptr;
    }

    // Emit initializer elements.
    SmallVector<llvm::Constant*, 16> Elts;
    if (Filler && Filler->isNullValue())
      Elts.reserve(NumInitElts + 1);
    else
      Elts.reserve(NumElements);

    llvm::Type *CommonElementType = nullptr;
    for (unsigned I = 0; I < NumInitElts; ++I) {
      llvm::Constant *C = tryEmitPrivateForMemory(
          Value.getArrayInitializedElt(I), CAT->getElementType());
      if (!C) return nullptr;

      if (I == 0)
        CommonElementType = C->getType();
      else if (C->getType() != CommonElementType)
        CommonElementType = nullptr;
      Elts.push_back(C);
    }

    // This means that the array type is probably "IncompleteType" or some
    // type that is not ConstantArray.
    if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) {
      const ArrayType *AT = CGM.getContext().getAsArrayType(DestType);
      CommonElementType = CGM.getTypes().ConvertType(AT->getElementType());
      llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType,
                                                    NumElements);
      return llvm::ConstantAggregateZero::get(AType);
    }

    llvm::ArrayType *Desired =
        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
                             Filler);
  }
  case APValue::MemberPointer:
    return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
  }
  llvm_unreachable("Unknown APValue kind");
}

llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
    const CompoundLiteralExpr *E) {
  return EmittedCompoundLiterals.lookup(E);
}

void CodeGenModule::setAddrOfConstantCompoundLiteral(
    const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
  bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
  (void)Ok;
  assert(Ok && "CLE has already been emitted!");
}

ConstantAddress
CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
  assert(E->isFileScope() && "not a file-scope compound literal expr");
  return tryEmitGlobalCompoundLiteral(*this, nullptr, E);
}

llvm::Constant *
CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
  // Member pointer constants always have a very particular form.
  const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
  const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();

  // A member function pointer.
  if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
    return getCXXABI().EmitMemberFunctionPointer(method);

  // Otherwise, a member data pointer.
  uint64_t fieldOffset = getContext().getFieldOffset(decl);
  CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
  return getCXXABI().EmitMemberDataPointer(type, chars);
}

static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
                                               llvm::Type *baseType,
                                               const CXXRecordDecl *base);

static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
                                        const RecordDecl *record,
                                        bool asCompleteObject) {
  const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
  llvm::StructType *structure =
    (asCompleteObject ? layout.getLLVMType()
                      : layout.getBaseSubobjectLLVMType());

  unsigned numElements = structure->getNumElements();
  std::vector<llvm::Constant *> elements(numElements);

  auto CXXR = dyn_cast<CXXRecordDecl>(record);
  // Fill in all the bases.
  if (CXXR) {
    for (const auto &I : CXXR->bases()) {
      if (I.isVirtual()) {
        // Ignore virtual bases; if we're laying out for a complete
        // object, we'll lay these out later.
        continue;
      }

      const CXXRecordDecl *base =
        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());

      // Ignore empty bases.
      if (base->isEmpty() ||
          CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
              .isZero())
        continue;

      unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
      llvm::Type *baseType = structure->getElementType(fieldIndex);
      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
    }
  }

  // Fill in all the fields.
  for (const auto *Field : record->fields()) {
    // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
    // will fill in later.)
    if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
      unsigned fieldIndex = layout.getLLVMFieldNo(Field);
      elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
    }

    // For unions, stop after the first named field.
    if (record->isUnion()) {
      if (Field->getIdentifier())
        break;
      if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
        if (FieldRD->findFirstNamedDataMember())
          break;
    }
  }

  // Fill in the virtual bases, if we're working with the complete object.
  if (CXXR && asCompleteObject) {
    for (const auto &I : CXXR->vbases()) {
      const CXXRecordDecl *base =
        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());

      // Ignore empty bases.
      if (base->isEmpty())
        continue;

      unsigned fieldIndex = layout.getVirtualBaseIndex(base);

      // We might have already laid this field out.
      if (elements[fieldIndex]) continue;

      llvm::Type *baseType = structure->getElementType(fieldIndex);
      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
    }
  }

  // Now go through all other fields and zero them out.
  for (unsigned i = 0; i != numElements; ++i) {
    if (!elements[i])
      elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
  }

  return llvm::ConstantStruct::get(structure, elements);
}

/// Emit the null constant for a base subobject.
static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
                                               llvm::Type *baseType,
                                               const CXXRecordDecl *base) {
  const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);

  // Just zero out bases that don't have any pointer to data members.
  if (baseLayout.isZeroInitializableAsBase())
    return llvm::Constant::getNullValue(baseType);

  // Otherwise, we can just use its null constant.
  return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
}

llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
                                                   QualType T) {
  return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
}

llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
  if (T->getAs<PointerType>())
    return getNullPointer(
        cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);

  if (getTypes().isZeroInitializable(T))
    return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));

  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
    llvm::ArrayType *ATy =
      cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));

    QualType ElementTy = CAT->getElementType();

    llvm::Constant *Element =
      ConstantEmitter::emitNullForMemory(*this, ElementTy);
    unsigned NumElements = CAT->getSize().getZExtValue();
    SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
    return llvm::ConstantArray::get(ATy, Array);
  }

  if (const RecordType *RT = T->getAs<RecordType>())
    return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);

  assert(T->isMemberDataPointerType() &&
         "Should only see pointers to data members here!");

  return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
}

llvm::Constant *
CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
  return ::EmitNullConstant(*this, Record, false);
}