MicrosoftCXXABI.cpp 174 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
//===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This provides C++ code generation targeting the Microsoft Visual C++ ABI.
// The class in this file generates structures that follow the Microsoft
// Visual C++ ABI, which is actually not very well documented at all outside
// of Microsoft.
//
//===----------------------------------------------------------------------===//

#include "CGCXXABI.h"
#include "CGCleanup.h"
#include "CGVTables.h"
#include "CodeGenModule.h"
#include "CodeGenTypes.h"
#include "TargetInfo.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/VTableBuilder.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/IR/Intrinsics.h"

using namespace clang;
using namespace CodeGen;

namespace {

/// Holds all the vbtable globals for a given class.
struct VBTableGlobals {
  const VPtrInfoVector *VBTables;
  SmallVector<llvm::GlobalVariable *, 2> Globals;
};

class MicrosoftCXXABI : public CGCXXABI {
public:
  MicrosoftCXXABI(CodeGenModule &CGM)
      : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
        ClassHierarchyDescriptorType(nullptr),
        CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
        ThrowInfoType(nullptr) {}

  bool HasThisReturn(GlobalDecl GD) const override;
  bool hasMostDerivedReturn(GlobalDecl GD) const override;

  bool classifyReturnType(CGFunctionInfo &FI) const override;

  RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;

  bool isSRetParameterAfterThis() const override { return true; }

  bool isThisCompleteObject(GlobalDecl GD) const override {
    // The Microsoft ABI doesn't use separate complete-object vs.
    // base-object variants of constructors, but it does of destructors.
    if (isa<CXXDestructorDecl>(GD.getDecl())) {
      switch (GD.getDtorType()) {
      case Dtor_Complete:
      case Dtor_Deleting:
        return true;

      case Dtor_Base:
        return false;

      case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?");
      }
      llvm_unreachable("bad dtor kind");
    }

    // No other kinds.
    return false;
  }

  size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
                              FunctionArgList &Args) const override {
    assert(Args.size() >= 2 &&
           "expected the arglist to have at least two args!");
    // The 'most_derived' parameter goes second if the ctor is variadic and
    // has v-bases.
    if (CD->getParent()->getNumVBases() > 0 &&
        CD->getType()->castAs<FunctionProtoType>()->isVariadic())
      return 2;
    return 1;
  }

  std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override {
    std::vector<CharUnits> VBPtrOffsets;
    const ASTContext &Context = getContext();
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

    const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
    for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) {
      const ASTRecordLayout &SubobjectLayout =
          Context.getASTRecordLayout(VBT->IntroducingObject);
      CharUnits Offs = VBT->NonVirtualOffset;
      Offs += SubobjectLayout.getVBPtrOffset();
      if (VBT->getVBaseWithVPtr())
        Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
      VBPtrOffsets.push_back(Offs);
    }
    llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end());
    return VBPtrOffsets;
  }

  StringRef GetPureVirtualCallName() override { return "_purecall"; }
  StringRef GetDeletedVirtualCallName() override { return "_purecall"; }

  void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
                               Address Ptr, QualType ElementType,
                               const CXXDestructorDecl *Dtor) override;

  void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
  void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;

  void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;

  llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
                                                   const VPtrInfo &Info);

  llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
  CatchTypeInfo
  getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;

  /// MSVC needs an extra flag to indicate a catchall.
  CatchTypeInfo getCatchAllTypeInfo() override {
    return CatchTypeInfo{nullptr, 0x40};
  }

  bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
  void EmitBadTypeidCall(CodeGenFunction &CGF) override;
  llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
                          Address ThisPtr,
                          llvm::Type *StdTypeInfoPtrTy) override;

  bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
                                          QualType SrcRecordTy) override;

  llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value,
                                   QualType SrcRecordTy, QualType DestTy,
                                   QualType DestRecordTy,
                                   llvm::BasicBlock *CastEnd) override;

  llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
                                     QualType SrcRecordTy,
                                     QualType DestTy) override;

  bool EmitBadCastCall(CodeGenFunction &CGF) override;
  bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override {
    return false;
  }

  llvm::Value *
  GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
                            const CXXRecordDecl *ClassDecl,
                            const CXXRecordDecl *BaseClassDecl) override;

  llvm::BasicBlock *
  EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
                                const CXXRecordDecl *RD) override;

  llvm::BasicBlock *
  EmitDtorCompleteObjectHandler(CodeGenFunction &CGF);

  void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
                                              const CXXRecordDecl *RD) override;

  void EmitCXXConstructors(const CXXConstructorDecl *D) override;

  // Background on MSVC destructors
  // ==============================
  //
  // Both Itanium and MSVC ABIs have destructor variants.  The variant names
  // roughly correspond in the following way:
  //   Itanium       Microsoft
  //   Base       -> no name, just ~Class
  //   Complete   -> vbase destructor
  //   Deleting   -> scalar deleting destructor
  //                 vector deleting destructor
  //
  // The base and complete destructors are the same as in Itanium, although the
  // complete destructor does not accept a VTT parameter when there are virtual
  // bases.  A separate mechanism involving vtordisps is used to ensure that
  // virtual methods of destroyed subobjects are not called.
  //
  // The deleting destructors accept an i32 bitfield as a second parameter.  Bit
  // 1 indicates if the memory should be deleted.  Bit 2 indicates if the this
  // pointer points to an array.  The scalar deleting destructor assumes that
  // bit 2 is zero, and therefore does not contain a loop.
  //
  // For virtual destructors, only one entry is reserved in the vftable, and it
  // always points to the vector deleting destructor.  The vector deleting
  // destructor is the most general, so it can be used to destroy objects in
  // place, delete single heap objects, or delete arrays.
  //
  // A TU defining a non-inline destructor is only guaranteed to emit a base
  // destructor, and all of the other variants are emitted on an as-needed basis
  // in COMDATs.  Because a non-base destructor can be emitted in a TU that
  // lacks a definition for the destructor, non-base destructors must always
  // delegate to or alias the base destructor.

  AddedStructorArgs
  buildStructorSignature(GlobalDecl GD,
                         SmallVectorImpl<CanQualType> &ArgTys) override;

  /// Non-base dtors should be emitted as delegating thunks in this ABI.
  bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
                              CXXDtorType DT) const override {
    return DT != Dtor_Base;
  }

  void setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
                                  const CXXDestructorDecl *Dtor,
                                  CXXDtorType DT) const override;

  llvm::GlobalValue::LinkageTypes
  getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor,
                          CXXDtorType DT) const override;

  void EmitCXXDestructors(const CXXDestructorDecl *D) override;

  const CXXRecordDecl *
  getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
    if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
      MethodVFTableLocation ML =
          CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
      // The vbases might be ordered differently in the final overrider object
      // and the complete object, so the "this" argument may sometimes point to
      // memory that has no particular type (e.g. past the complete object).
      // In this case, we just use a generic pointer type.
      // FIXME: might want to have a more precise type in the non-virtual
      // multiple inheritance case.
      if (ML.VBase || !ML.VFPtrOffset.isZero())
        return nullptr;
    }
    return MD->getParent();
  }

  Address
  adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
                                           Address This,
                                           bool VirtualCall) override;

  void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
                                 FunctionArgList &Params) override;

  void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;

  AddedStructorArgs
  addImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D,
                             CXXCtorType Type, bool ForVirtualBase,
                             bool Delegating, CallArgList &Args) override;

  void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
                          CXXDtorType Type, bool ForVirtualBase,
                          bool Delegating, Address This,
                          QualType ThisTy) override;

  void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD,
                              llvm::GlobalVariable *VTable);

  void emitVTableDefinitions(CodeGenVTables &CGVT,
                             const CXXRecordDecl *RD) override;

  bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
                                           CodeGenFunction::VPtr Vptr) override;

  /// Don't initialize vptrs if dynamic class
  /// is marked with with the 'novtable' attribute.
  bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
    return !VTableClass->hasAttr<MSNoVTableAttr>();
  }

  llvm::Constant *
  getVTableAddressPoint(BaseSubobject Base,
                        const CXXRecordDecl *VTableClass) override;

  llvm::Value *getVTableAddressPointInStructor(
      CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
      BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;

  llvm::Constant *
  getVTableAddressPointForConstExpr(BaseSubobject Base,
                                    const CXXRecordDecl *VTableClass) override;

  llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
                                        CharUnits VPtrOffset) override;

  CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
                                     Address This, llvm::Type *Ty,
                                     SourceLocation Loc) override;

  llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
                                         const CXXDestructorDecl *Dtor,
                                         CXXDtorType DtorType, Address This,
                                         DeleteOrMemberCallExpr E) override;

  void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
                                        CallArgList &CallArgs) override {
    assert(GD.getDtorType() == Dtor_Deleting &&
           "Only deleting destructor thunks are available in this ABI");
    CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
                 getContext().IntTy);
  }

  void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;

  llvm::GlobalVariable *
  getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
                   llvm::GlobalVariable::LinkageTypes Linkage);

  llvm::GlobalVariable *
  getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
                                  const CXXRecordDecl *DstRD) {
    SmallString<256> OutName;
    llvm::raw_svector_ostream Out(OutName);
    getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out);
    StringRef MangledName = OutName.str();

    if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName))
      return VDispMap;

    MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
    unsigned NumEntries = 1 + SrcRD->getNumVBases();
    SmallVector<llvm::Constant *, 4> Map(NumEntries,
                                         llvm::UndefValue::get(CGM.IntTy));
    Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0);
    bool AnyDifferent = false;
    for (const auto &I : SrcRD->vbases()) {
      const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
      if (!DstRD->isVirtuallyDerivedFrom(VBase))
        continue;

      unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase);
      unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase);
      Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4);
      AnyDifferent |= SrcVBIndex != DstVBIndex;
    }
    // This map would be useless, don't use it.
    if (!AnyDifferent)
      return nullptr;

    llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size());
    llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map);
    llvm::GlobalValue::LinkageTypes Linkage =
        SrcRD->isExternallyVisible() && DstRD->isExternallyVisible()
            ? llvm::GlobalValue::LinkOnceODRLinkage
            : llvm::GlobalValue::InternalLinkage;
    auto *VDispMap = new llvm::GlobalVariable(
        CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage,
        /*Initializer=*/Init, MangledName);
    return VDispMap;
  }

  void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
                             llvm::GlobalVariable *GV) const;

  void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
                       GlobalDecl GD, bool ReturnAdjustment) override {
    GVALinkage Linkage =
        getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));

    if (Linkage == GVA_Internal)
      Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
    else if (ReturnAdjustment)
      Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
    else
      Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
  }

  bool exportThunk() override { return false; }

  llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
                                     const ThisAdjustment &TA) override;

  llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
                                       const ReturnAdjustment &RA) override;

  void EmitThreadLocalInitFuncs(
      CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
      ArrayRef<llvm::Function *> CXXThreadLocalInits,
      ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;

  bool usesThreadWrapperFunction(const VarDecl *VD) const override {
    return false;
  }
  LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
                                      QualType LValType) override;

  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
                       llvm::GlobalVariable *DeclPtr,
                       bool PerformInit) override;
  void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
                          llvm::FunctionCallee Dtor,
                          llvm::Constant *Addr) override;

  // ==== Notes on array cookies =========
  //
  // MSVC seems to only use cookies when the class has a destructor; a
  // two-argument usual array deallocation function isn't sufficient.
  //
  // For example, this code prints "100" and "1":
  //   struct A {
  //     char x;
  //     void *operator new[](size_t sz) {
  //       printf("%u\n", sz);
  //       return malloc(sz);
  //     }
  //     void operator delete[](void *p, size_t sz) {
  //       printf("%u\n", sz);
  //       free(p);
  //     }
  //   };
  //   int main() {
  //     A *p = new A[100];
  //     delete[] p;
  //   }
  // Whereas it prints "104" and "104" if you give A a destructor.

  bool requiresArrayCookie(const CXXDeleteExpr *expr,
                           QualType elementType) override;
  bool requiresArrayCookie(const CXXNewExpr *expr) override;
  CharUnits getArrayCookieSizeImpl(QualType type) override;
  Address InitializeArrayCookie(CodeGenFunction &CGF,
                                Address NewPtr,
                                llvm::Value *NumElements,
                                const CXXNewExpr *expr,
                                QualType ElementType) override;
  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
                                   Address allocPtr,
                                   CharUnits cookieSize) override;

  friend struct MSRTTIBuilder;

  bool isImageRelative() const {
    return CGM.getTarget().getPointerWidth(/*AddrSpace=*/0) == 64;
  }

  // 5 routines for constructing the llvm types for MS RTTI structs.
  llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
    llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
    TDTypeName += llvm::utostr(TypeInfoString.size());
    llvm::StructType *&TypeDescriptorType =
        TypeDescriptorTypeMap[TypeInfoString.size()];
    if (TypeDescriptorType)
      return TypeDescriptorType;
    llvm::Type *FieldTypes[] = {
        CGM.Int8PtrPtrTy,
        CGM.Int8PtrTy,
        llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
    TypeDescriptorType =
        llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
    return TypeDescriptorType;
  }

  llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
    if (!isImageRelative())
      return PtrType;
    return CGM.IntTy;
  }

  llvm::StructType *getBaseClassDescriptorType() {
    if (BaseClassDescriptorType)
      return BaseClassDescriptorType;
    llvm::Type *FieldTypes[] = {
        getImageRelativeType(CGM.Int8PtrTy),
        CGM.IntTy,
        CGM.IntTy,
        CGM.IntTy,
        CGM.IntTy,
        CGM.IntTy,
        getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
    };
    BaseClassDescriptorType = llvm::StructType::create(
        CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
    return BaseClassDescriptorType;
  }

  llvm::StructType *getClassHierarchyDescriptorType() {
    if (ClassHierarchyDescriptorType)
      return ClassHierarchyDescriptorType;
    // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
    ClassHierarchyDescriptorType = llvm::StructType::create(
        CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
    llvm::Type *FieldTypes[] = {
        CGM.IntTy,
        CGM.IntTy,
        CGM.IntTy,
        getImageRelativeType(
            getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
    };
    ClassHierarchyDescriptorType->setBody(FieldTypes);
    return ClassHierarchyDescriptorType;
  }

  llvm::StructType *getCompleteObjectLocatorType() {
    if (CompleteObjectLocatorType)
      return CompleteObjectLocatorType;
    CompleteObjectLocatorType = llvm::StructType::create(
        CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
    llvm::Type *FieldTypes[] = {
        CGM.IntTy,
        CGM.IntTy,
        CGM.IntTy,
        getImageRelativeType(CGM.Int8PtrTy),
        getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
        getImageRelativeType(CompleteObjectLocatorType),
    };
    llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
    if (!isImageRelative())
      FieldTypesRef = FieldTypesRef.drop_back();
    CompleteObjectLocatorType->setBody(FieldTypesRef);
    return CompleteObjectLocatorType;
  }

  llvm::GlobalVariable *getImageBase() {
    StringRef Name = "__ImageBase";
    if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
      return GV;

    auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
                                        /*isConstant=*/true,
                                        llvm::GlobalValue::ExternalLinkage,
                                        /*Initializer=*/nullptr, Name);
    CGM.setDSOLocal(GV);
    return GV;
  }

  llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
    if (!isImageRelative())
      return PtrVal;

    if (PtrVal->isNullValue())
      return llvm::Constant::getNullValue(CGM.IntTy);

    llvm::Constant *ImageBaseAsInt =
        llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
    llvm::Constant *PtrValAsInt =
        llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
    llvm::Constant *Diff =
        llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
                                   /*HasNUW=*/true, /*HasNSW=*/true);
    return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
  }

private:
  MicrosoftMangleContext &getMangleContext() {
    return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
  }

  llvm::Constant *getZeroInt() {
    return llvm::ConstantInt::get(CGM.IntTy, 0);
  }

  llvm::Constant *getAllOnesInt() {
    return  llvm::Constant::getAllOnesValue(CGM.IntTy);
  }

  CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override;

  void
  GetNullMemberPointerFields(const MemberPointerType *MPT,
                             llvm::SmallVectorImpl<llvm::Constant *> &fields);

  /// Shared code for virtual base adjustment.  Returns the offset from
  /// the vbptr to the virtual base.  Optionally returns the address of the
  /// vbptr itself.
  llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
                                       Address Base,
                                       llvm::Value *VBPtrOffset,
                                       llvm::Value *VBTableOffset,
                                       llvm::Value **VBPtr = nullptr);

  llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
                                       Address Base,
                                       int32_t VBPtrOffset,
                                       int32_t VBTableOffset,
                                       llvm::Value **VBPtr = nullptr) {
    assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
    llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
                *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
    return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
  }

  std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
  performBaseAdjustment(CodeGenFunction &CGF, Address Value,
                        QualType SrcRecordTy);

  /// Performs a full virtual base adjustment.  Used to dereference
  /// pointers to members of virtual bases.
  llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
                                 const CXXRecordDecl *RD, Address Base,
                                 llvm::Value *VirtualBaseAdjustmentOffset,
                                 llvm::Value *VBPtrOffset /* optional */);

  /// Emits a full member pointer with the fields common to data and
  /// function member pointers.
  llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
                                        bool IsMemberFunction,
                                        const CXXRecordDecl *RD,
                                        CharUnits NonVirtualBaseAdjustment,
                                        unsigned VBTableIndex);

  bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
                                   llvm::Constant *MP);

  /// - Initialize all vbptrs of 'this' with RD as the complete type.
  void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);

  /// Caching wrapper around VBTableBuilder::enumerateVBTables().
  const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);

  /// Generate a thunk for calling a virtual member function MD.
  llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
                                         const MethodVFTableLocation &ML);

  llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD,
                                        CharUnits offset);

public:
  llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;

  bool isZeroInitializable(const MemberPointerType *MPT) override;

  bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
    const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
    return RD->hasAttr<MSInheritanceAttr>();
  }

  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;

  llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
                                        CharUnits offset) override;
  llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
  llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;

  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
                                           llvm::Value *L,
                                           llvm::Value *R,
                                           const MemberPointerType *MPT,
                                           bool Inequality) override;

  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
                                          llvm::Value *MemPtr,
                                          const MemberPointerType *MPT) override;

  llvm::Value *
  EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
                               Address Base, llvm::Value *MemPtr,
                               const MemberPointerType *MPT) override;

  llvm::Value *EmitNonNullMemberPointerConversion(
      const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
      CastKind CK, CastExpr::path_const_iterator PathBegin,
      CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
      CGBuilderTy &Builder);

  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
                                           const CastExpr *E,
                                           llvm::Value *Src) override;

  llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
                                              llvm::Constant *Src) override;

  llvm::Constant *EmitMemberPointerConversion(
      const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
      CastKind CK, CastExpr::path_const_iterator PathBegin,
      CastExpr::path_const_iterator PathEnd, llvm::Constant *Src);

  CGCallee
  EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
                                  Address This, llvm::Value *&ThisPtrForCall,
                                  llvm::Value *MemPtr,
                                  const MemberPointerType *MPT) override;

  void emitCXXStructor(GlobalDecl GD) override;

  llvm::StructType *getCatchableTypeType() {
    if (CatchableTypeType)
      return CatchableTypeType;
    llvm::Type *FieldTypes[] = {
        CGM.IntTy,                           // Flags
        getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
        CGM.IntTy,                           // NonVirtualAdjustment
        CGM.IntTy,                           // OffsetToVBPtr
        CGM.IntTy,                           // VBTableIndex
        CGM.IntTy,                           // Size
        getImageRelativeType(CGM.Int8PtrTy)  // CopyCtor
    };
    CatchableTypeType = llvm::StructType::create(
        CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
    return CatchableTypeType;
  }

  llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
    llvm::StructType *&CatchableTypeArrayType =
        CatchableTypeArrayTypeMap[NumEntries];
    if (CatchableTypeArrayType)
      return CatchableTypeArrayType;

    llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
    CTATypeName += llvm::utostr(NumEntries);
    llvm::Type *CTType =
        getImageRelativeType(getCatchableTypeType()->getPointerTo());
    llvm::Type *FieldTypes[] = {
        CGM.IntTy,                               // NumEntries
        llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
    };
    CatchableTypeArrayType =
        llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
    return CatchableTypeArrayType;
  }

  llvm::StructType *getThrowInfoType() {
    if (ThrowInfoType)
      return ThrowInfoType;
    llvm::Type *FieldTypes[] = {
        CGM.IntTy,                           // Flags
        getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
        getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
        getImageRelativeType(CGM.Int8PtrTy)  // CatchableTypeArray
    };
    ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
                                             "eh.ThrowInfo");
    return ThrowInfoType;
  }

  llvm::FunctionCallee getThrowFn() {
    // _CxxThrowException is passed an exception object and a ThrowInfo object
    // which describes the exception.
    llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
    llvm::FunctionType *FTy =
        llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false);
    llvm::FunctionCallee Throw =
        CGM.CreateRuntimeFunction(FTy, "_CxxThrowException");
    // _CxxThrowException is stdcall on 32-bit x86 platforms.
    if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) {
      if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee()))
        Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
    }
    return Throw;
  }

  llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
                                          CXXCtorType CT);

  llvm::Constant *getCatchableType(QualType T,
                                   uint32_t NVOffset = 0,
                                   int32_t VBPtrOffset = -1,
                                   uint32_t VBIndex = 0);

  llvm::GlobalVariable *getCatchableTypeArray(QualType T);

  llvm::GlobalVariable *getThrowInfo(QualType T) override;

  std::pair<llvm::Value *, const CXXRecordDecl *>
  LoadVTablePtr(CodeGenFunction &CGF, Address This,
                const CXXRecordDecl *RD) override;

private:
  typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
  typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
  typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
  /// All the vftables that have been referenced.
  VFTablesMapTy VFTablesMap;
  VTablesMapTy VTablesMap;

  /// This set holds the record decls we've deferred vtable emission for.
  llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;


  /// All the vbtables which have been referenced.
  llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;

  /// Info on the global variable used to guard initialization of static locals.
  /// The BitIndex field is only used for externally invisible declarations.
  struct GuardInfo {
    GuardInfo() : Guard(nullptr), BitIndex(0) {}
    llvm::GlobalVariable *Guard;
    unsigned BitIndex;
  };

  /// Map from DeclContext to the current guard variable.  We assume that the
  /// AST is visited in source code order.
  llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
  llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
  llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;

  llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
  llvm::StructType *BaseClassDescriptorType;
  llvm::StructType *ClassHierarchyDescriptorType;
  llvm::StructType *CompleteObjectLocatorType;

  llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;

  llvm::StructType *CatchableTypeType;
  llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
  llvm::StructType *ThrowInfoType;
};

}

CGCXXABI::RecordArgABI
MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
  switch (CGM.getTarget().getTriple().getArch()) {
  default:
    // FIXME: Implement for other architectures.
    return RAA_Default;

  case llvm::Triple::thumb:
    // Use the simple Itanium rules for now.
    // FIXME: This is incompatible with MSVC for arguments with a dtor and no
    // copy ctor.
    return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default;

  case llvm::Triple::x86:
    // All record arguments are passed in memory on x86.  Decide whether to
    // construct the object directly in argument memory, or to construct the
    // argument elsewhere and copy the bytes during the call.

    // If C++ prohibits us from making a copy, construct the arguments directly
    // into argument memory.
    if (!RD->canPassInRegisters())
      return RAA_DirectInMemory;

    // Otherwise, construct the argument into a temporary and copy the bytes
    // into the outgoing argument memory.
    return RAA_Default;

  case llvm::Triple::x86_64:
  case llvm::Triple::aarch64:
    return !RD->canPassInRegisters() ? RAA_Indirect : RAA_Default;
  }

  llvm_unreachable("invalid enum");
}

void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
                                              const CXXDeleteExpr *DE,
                                              Address Ptr,
                                              QualType ElementType,
                                              const CXXDestructorDecl *Dtor) {
  // FIXME: Provide a source location here even though there's no
  // CXXMemberCallExpr for dtor call.
  bool UseGlobalDelete = DE->isGlobalDelete();
  CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
  llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE);
  if (UseGlobalDelete)
    CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
}

void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
  llvm::Value *Args[] = {
      llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
      llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
  llvm::FunctionCallee Fn = getThrowFn();
  if (isNoReturn)
    CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
  else
    CGF.EmitRuntimeCallOrInvoke(Fn, Args);
}

void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
                                     const CXXCatchStmt *S) {
  // In the MS ABI, the runtime handles the copy, and the catch handler is
  // responsible for destruction.
  VarDecl *CatchParam = S->getExceptionDecl();
  llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock();
  llvm::CatchPadInst *CPI =
      cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI());
  CGF.CurrentFuncletPad = CPI;

  // If this is a catch-all or the catch parameter is unnamed, we don't need to
  // emit an alloca to the object.
  if (!CatchParam || !CatchParam->getDeclName()) {
    CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
    return;
  }

  CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
  CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer());
  CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
  CGF.EmitAutoVarCleanups(var);
}

/// We need to perform a generic polymorphic operation (like a typeid
/// or a cast), which requires an object with a vfptr.  Adjust the
/// address to point to an object with a vfptr.
std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value,
                                       QualType SrcRecordTy) {
  Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
  const ASTContext &Context = getContext();

  // If the class itself has a vfptr, great.  This check implicitly
  // covers non-virtual base subobjects: a class with its own virtual
  // functions would be a candidate to be a primary base.
  if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
    return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0),
                           SrcDecl);

  // Okay, one of the vbases must have a vfptr, or else this isn't
  // actually a polymorphic class.
  const CXXRecordDecl *PolymorphicBase = nullptr;
  for (auto &Base : SrcDecl->vbases()) {
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) {
      PolymorphicBase = BaseDecl;
      break;
    }
  }
  assert(PolymorphicBase && "polymorphic class has no apparent vfptr?");

  llvm::Value *Offset =
    GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase);
  llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset);
  CharUnits VBaseAlign =
    CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase);
  return std::make_tuple(Address(Ptr, VBaseAlign), Offset, PolymorphicBase);
}

bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
                                                QualType SrcRecordTy) {
  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
  return IsDeref &&
         !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
}

static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF,
                                        llvm::Value *Argument) {
  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
  llvm::FunctionType *FTy =
      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
  llvm::Value *Args[] = {Argument};
  llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
  return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
}

void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
  llvm::CallBase *Call =
      emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
  Call->setDoesNotReturn();
  CGF.Builder.CreateUnreachable();
}

llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
                                         QualType SrcRecordTy,
                                         Address ThisPtr,
                                         llvm::Type *StdTypeInfoPtrTy) {
  std::tie(ThisPtr, std::ignore, std::ignore) =
      performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
  llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer());
  return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy);
}

bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
                                                         QualType SrcRecordTy) {
  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
  return SrcIsPtr &&
         !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
}

llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
    CodeGenFunction &CGF, Address This, QualType SrcRecordTy,
    QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
  llvm::Type *DestLTy = CGF.ConvertType(DestTy);

  llvm::Value *SrcRTTI =
      CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
  llvm::Value *DestRTTI =
      CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());

  llvm::Value *Offset;
  std::tie(This, Offset, std::ignore) =
      performBaseAdjustment(CGF, This, SrcRecordTy);
  llvm::Value *ThisPtr = This.getPointer();
  Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);

  // PVOID __RTDynamicCast(
  //   PVOID inptr,
  //   LONG VfDelta,
  //   PVOID SrcType,
  //   PVOID TargetType,
  //   BOOL isReference)
  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
                            CGF.Int8PtrTy, CGF.Int32Ty};
  llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
      "__RTDynamicCast");
  llvm::Value *Args[] = {
      ThisPtr, Offset, SrcRTTI, DestRTTI,
      llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
  ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args);
  return CGF.Builder.CreateBitCast(ThisPtr, DestLTy);
}

llvm::Value *
MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
                                       QualType SrcRecordTy,
                                       QualType DestTy) {
  std::tie(Value, std::ignore, std::ignore) =
      performBaseAdjustment(CGF, Value, SrcRecordTy);

  // PVOID __RTCastToVoid(
  //   PVOID inptr)
  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
  llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
      "__RTCastToVoid");
  llvm::Value *Args[] = {Value.getPointer()};
  return CGF.EmitRuntimeCall(Function, Args);
}

bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
  return false;
}

llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
    CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl,
    const CXXRecordDecl *BaseClassDecl) {
  const ASTContext &Context = getContext();
  int64_t VBPtrChars =
      Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
  llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
  CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
  CharUnits VBTableChars =
      IntSize *
      CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
  llvm::Value *VBTableOffset =
      llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());

  llvm::Value *VBPtrToNewBase =
      GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
  VBPtrToNewBase =
      CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
  return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
}

bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
  return isa<CXXConstructorDecl>(GD.getDecl());
}

static bool isDeletingDtor(GlobalDecl GD) {
  return isa<CXXDestructorDecl>(GD.getDecl()) &&
         GD.getDtorType() == Dtor_Deleting;
}

bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
  return isDeletingDtor(GD);
}

static bool IsSizeGreaterThan128(const CXXRecordDecl *RD) {
  return RD->getASTContext().getTypeSize(RD->getTypeForDecl()) > 128;
}

static bool hasMicrosoftABIRestrictions(const CXXRecordDecl *RD) {
  // For AArch64, we use the C++14 definition of an aggregate, so we also
  // check for:
  //   No private or protected non static data members.
  //   No base classes
  //   No virtual functions
  // Additionally, we need to ensure that there is a trivial copy assignment
  // operator, a trivial destructor and no user-provided constructors.
  if (RD->hasProtectedFields() || RD->hasPrivateFields())
    return true;
  if (RD->getNumBases() > 0)
    return true;
  if (RD->isPolymorphic())
    return true;
  if (RD->hasNonTrivialCopyAssignment())
    return true;
  for (const CXXConstructorDecl *Ctor : RD->ctors())
    if (Ctor->isUserProvided())
      return true;
  if (RD->hasNonTrivialDestructor())
    return true;
  return false;
}

bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
  const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
  if (!RD)
    return false;

  bool isAArch64 = CGM.getTarget().getTriple().isAArch64();
  bool isSimple = !isAArch64 || !hasMicrosoftABIRestrictions(RD);
  bool isIndirectReturn =
      isAArch64 ? (!RD->canPassInRegisters() ||
                   IsSizeGreaterThan128(RD))
                : !RD->isPOD();
  bool isInstanceMethod = FI.isInstanceMethod();

  if (isIndirectReturn || !isSimple || isInstanceMethod) {
    CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
    FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
    FI.getReturnInfo().setSRetAfterThis(isInstanceMethod);

    FI.getReturnInfo().setInReg(isAArch64 &&
                                !(isSimple && IsSizeGreaterThan128(RD)));

    return true;
  }

  // Otherwise, use the C ABI rules.
  return false;
}

llvm::BasicBlock *
MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
                                               const CXXRecordDecl *RD) {
  llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
  assert(IsMostDerivedClass &&
         "ctor for a class with virtual bases must have an implicit parameter");
  llvm::Value *IsCompleteObject =
    CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");

  llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
  llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
  CGF.Builder.CreateCondBr(IsCompleteObject,
                           CallVbaseCtorsBB, SkipVbaseCtorsBB);

  CGF.EmitBlock(CallVbaseCtorsBB);

  // Fill in the vbtable pointers here.
  EmitVBPtrStores(CGF, RD);

  // CGF will put the base ctor calls in this basic block for us later.

  return SkipVbaseCtorsBB;
}

llvm::BasicBlock *
MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) {
  llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
  assert(IsMostDerivedClass &&
         "ctor for a class with virtual bases must have an implicit parameter");
  llvm::Value *IsCompleteObject =
      CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");

  llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases");
  llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases");
  CGF.Builder.CreateCondBr(IsCompleteObject,
                           CallVbaseDtorsBB, SkipVbaseDtorsBB);

  CGF.EmitBlock(CallVbaseDtorsBB);
  // CGF will put the base dtor calls in this basic block for us later.

  return SkipVbaseDtorsBB;
}

void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
    CodeGenFunction &CGF, const CXXRecordDecl *RD) {
  // In most cases, an override for a vbase virtual method can adjust
  // the "this" parameter by applying a constant offset.
  // However, this is not enough while a constructor or a destructor of some
  // class X is being executed if all the following conditions are met:
  //  - X has virtual bases, (1)
  //  - X overrides a virtual method M of a vbase Y, (2)
  //  - X itself is a vbase of the most derived class.
  //
  // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
  // which holds the extra amount of "this" adjustment we must do when we use
  // the X vftables (i.e. during X ctor or dtor).
  // Outside the ctors and dtors, the values of vtorDisps are zero.

  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
  typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
  const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
  CGBuilderTy &Builder = CGF.Builder;

  unsigned AS = getThisAddress(CGF).getAddressSpace();
  llvm::Value *Int8This = nullptr;  // Initialize lazily.

  for (const CXXBaseSpecifier &S : RD->vbases()) {
    const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl();
    auto I = VBaseMap.find(VBase);
    assert(I != VBaseMap.end());
    if (!I->second.hasVtorDisp())
      continue;

    llvm::Value *VBaseOffset =
        GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase);
    uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity();

    // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
    llvm::Value *VtorDispValue = Builder.CreateSub(
        VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset),
        "vtordisp.value");
    VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty);

    if (!Int8This)
      Int8This = Builder.CreateBitCast(getThisValue(CGF),
                                       CGF.Int8Ty->getPointerTo(AS));
    llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
    // vtorDisp is always the 32-bits before the vbase in the class layout.
    VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
    VtorDispPtr = Builder.CreateBitCast(
        VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");

    Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr,
                               CharUnits::fromQuantity(4));
  }
}

static bool hasDefaultCXXMethodCC(ASTContext &Context,
                                  const CXXMethodDecl *MD) {
  CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
      /*IsVariadic=*/false, /*IsCXXMethod=*/true);
  CallingConv ActualCallingConv =
      MD->getType()->castAs<FunctionProtoType>()->getCallConv();
  return ExpectedCallingConv == ActualCallingConv;
}

void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
  // There's only one constructor type in this ABI.
  CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));

  // Exported default constructors either have a simple call-site where they use
  // the typical calling convention and have a single 'this' pointer for an
  // argument -or- they get a wrapper function which appropriately thunks to the
  // real default constructor.  This thunk is the default constructor closure.
  if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor())
    if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
      llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
      Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
      CGM.setGVProperties(Fn, D);
    }
}

void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
                                      const CXXRecordDecl *RD) {
  Address This = getThisAddress(CGF);
  This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8");
  const ASTContext &Context = getContext();
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

  const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
  for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
    const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I];
    llvm::GlobalVariable *GV = VBGlobals.Globals[I];
    const ASTRecordLayout &SubobjectLayout =
        Context.getASTRecordLayout(VBT->IntroducingObject);
    CharUnits Offs = VBT->NonVirtualOffset;
    Offs += SubobjectLayout.getVBPtrOffset();
    if (VBT->getVBaseWithVPtr())
      Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
    Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs);
    llvm::Value *GVPtr =
        CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
    VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(),
                                      "vbptr." + VBT->ObjectWithVPtr->getName());
    CGF.Builder.CreateStore(GVPtr, VBPtr);
  }
}

CGCXXABI::AddedStructorArgs
MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD,
                                        SmallVectorImpl<CanQualType> &ArgTys) {
  AddedStructorArgs Added;
  // TODO: 'for base' flag
  if (isa<CXXDestructorDecl>(GD.getDecl()) &&
      GD.getDtorType() == Dtor_Deleting) {
    // The scalar deleting destructor takes an implicit int parameter.
    ArgTys.push_back(getContext().IntTy);
    ++Added.Suffix;
  }
  auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl());
  if (!CD)
    return Added;

  // All parameters are already in place except is_most_derived, which goes
  // after 'this' if it's variadic and last if it's not.

  const CXXRecordDecl *Class = CD->getParent();
  const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
  if (Class->getNumVBases()) {
    if (FPT->isVariadic()) {
      ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
      ++Added.Prefix;
    } else {
      ArgTys.push_back(getContext().IntTy);
      ++Added.Suffix;
    }
  }

  return Added;
}

void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
                                                 const CXXDestructorDecl *Dtor,
                                                 CXXDtorType DT) const {
  // Deleting destructor variants are never imported or exported. Give them the
  // default storage class.
  if (DT == Dtor_Deleting) {
    GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
  } else {
    const NamedDecl *ND = Dtor;
    CGM.setDLLImportDLLExport(GV, ND);
  }
}

llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage(
    GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const {
  // Internal things are always internal, regardless of attributes. After this,
  // we know the thunk is externally visible.
  if (Linkage == GVA_Internal)
    return llvm::GlobalValue::InternalLinkage;

  switch (DT) {
  case Dtor_Base:
    // The base destructor most closely tracks the user-declared constructor, so
    // we delegate back to the normal declarator case.
    return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage,
                                           /*IsConstantVariable=*/false);
  case Dtor_Complete:
    // The complete destructor is like an inline function, but it may be
    // imported and therefore must be exported as well. This requires changing
    // the linkage if a DLL attribute is present.
    if (Dtor->hasAttr<DLLExportAttr>())
      return llvm::GlobalValue::WeakODRLinkage;
    if (Dtor->hasAttr<DLLImportAttr>())
      return llvm::GlobalValue::AvailableExternallyLinkage;
    return llvm::GlobalValue::LinkOnceODRLinkage;
  case Dtor_Deleting:
    // Deleting destructors are like inline functions. They have vague linkage
    // and are emitted everywhere they are used. They are internal if the class
    // is internal.
    return llvm::GlobalValue::LinkOnceODRLinkage;
  case Dtor_Comdat:
    llvm_unreachable("MS C++ ABI does not support comdat dtors");
  }
  llvm_unreachable("invalid dtor type");
}

void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
  // The TU defining a dtor is only guaranteed to emit a base destructor.  All
  // other destructor variants are delegating thunks.
  CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));

  // If the class is dllexported, emit the complete (vbase) destructor wherever
  // the base dtor is emitted.
  // FIXME: To match MSVC, this should only be done when the class is exported
  // with -fdllexport-inlines enabled.
  if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>())
    CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
}

CharUnits
MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());

  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
    // Complete destructors take a pointer to the complete object as a
    // parameter, thus don't need this adjustment.
    if (GD.getDtorType() == Dtor_Complete)
      return CharUnits();

    // There's no Dtor_Base in vftable but it shares the this adjustment with
    // the deleting one, so look it up instead.
    GD = GlobalDecl(DD, Dtor_Deleting);
  }

  MethodVFTableLocation ML =
      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
  CharUnits Adjustment = ML.VFPtrOffset;

  // Normal virtual instance methods need to adjust from the vfptr that first
  // defined the virtual method to the virtual base subobject, but destructors
  // do not.  The vector deleting destructor thunk applies this adjustment for
  // us if necessary.
  if (isa<CXXDestructorDecl>(MD))
    Adjustment = CharUnits::Zero();

  if (ML.VBase) {
    const ASTRecordLayout &DerivedLayout =
        getContext().getASTRecordLayout(MD->getParent());
    Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
  }

  return Adjustment;
}

Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
    CodeGenFunction &CGF, GlobalDecl GD, Address This,
    bool VirtualCall) {
  if (!VirtualCall) {
    // If the call of a virtual function is not virtual, we just have to
    // compensate for the adjustment the virtual function does in its prologue.
    CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
    if (Adjustment.isZero())
      return This;

    This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
    assert(Adjustment.isPositive());
    return CGF.Builder.CreateConstByteGEP(This, Adjustment);
  }

  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());

  GlobalDecl LookupGD = GD;
  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
    // Complete dtors take a pointer to the complete object,
    // thus don't need adjustment.
    if (GD.getDtorType() == Dtor_Complete)
      return This;

    // There's only Dtor_Deleting in vftable but it shares the this adjustment
    // with the base one, so look up the deleting one instead.
    LookupGD = GlobalDecl(DD, Dtor_Deleting);
  }
  MethodVFTableLocation ML =
      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);

  CharUnits StaticOffset = ML.VFPtrOffset;

  // Base destructors expect 'this' to point to the beginning of the base
  // subobject, not the first vfptr that happens to contain the virtual dtor.
  // However, we still need to apply the virtual base adjustment.
  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
    StaticOffset = CharUnits::Zero();

  Address Result = This;
  if (ML.VBase) {
    Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);

    const CXXRecordDecl *Derived = MD->getParent();
    const CXXRecordDecl *VBase = ML.VBase;
    llvm::Value *VBaseOffset =
      GetVirtualBaseClassOffset(CGF, Result, Derived, VBase);
    llvm::Value *VBasePtr =
      CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset);
    CharUnits VBaseAlign =
      CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase);
    Result = Address(VBasePtr, VBaseAlign);
  }
  if (!StaticOffset.isZero()) {
    assert(StaticOffset.isPositive());
    Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
    if (ML.VBase) {
      // Non-virtual adjustment might result in a pointer outside the allocated
      // object, e.g. if the final overrider class is laid out after the virtual
      // base that declares a method in the most derived class.
      // FIXME: Update the code that emits this adjustment in thunks prologues.
      Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset);
    } else {
      Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset);
    }
  }
  return Result;
}

void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
                                                QualType &ResTy,
                                                FunctionArgList &Params) {
  ASTContext &Context = getContext();
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
  assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
  if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
    auto *IsMostDerived = ImplicitParamDecl::Create(
        Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
        &Context.Idents.get("is_most_derived"), Context.IntTy,
        ImplicitParamDecl::Other);
    // The 'most_derived' parameter goes second if the ctor is variadic and last
    // if it's not.  Dtors can't be variadic.
    const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
    if (FPT->isVariadic())
      Params.insert(Params.begin() + 1, IsMostDerived);
    else
      Params.push_back(IsMostDerived);
    getStructorImplicitParamDecl(CGF) = IsMostDerived;
  } else if (isDeletingDtor(CGF.CurGD)) {
    auto *ShouldDelete = ImplicitParamDecl::Create(
        Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
        &Context.Idents.get("should_call_delete"), Context.IntTy,
        ImplicitParamDecl::Other);
    Params.push_back(ShouldDelete);
    getStructorImplicitParamDecl(CGF) = ShouldDelete;
  }
}

void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
  // Naked functions have no prolog.
  if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>())
    return;

  // Overridden virtual methods of non-primary bases need to adjust the incoming
  // 'this' pointer in the prologue. In this hierarchy, C::b will subtract
  // sizeof(void*) to adjust from B* to C*:
  //   struct A { virtual void a(); };
  //   struct B { virtual void b(); };
  //   struct C : A, B { virtual void b(); };
  //
  // Leave the value stored in the 'this' alloca unadjusted, so that the
  // debugger sees the unadjusted value. Microsoft debuggers require this, and
  // will apply the ThisAdjustment in the method type information.
  // FIXME: Do something better for DWARF debuggers, which won't expect this,
  // without making our codegen depend on debug info settings.
  llvm::Value *This = loadIncomingCXXThis(CGF);
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
  if (!CGF.CurFuncIsThunk && MD->isVirtual()) {
    CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD);
    if (!Adjustment.isZero()) {
      unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
      llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
                 *thisTy = This->getType();
      This = CGF.Builder.CreateBitCast(This, charPtrTy);
      assert(Adjustment.isPositive());
      This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
                                                    -Adjustment.getQuantity());
      This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted");
    }
  }
  setCXXABIThisValue(CGF, This);

  // If this is a function that the ABI specifies returns 'this', initialize
  // the return slot to 'this' at the start of the function.
  //
  // Unlike the setting of return types, this is done within the ABI
  // implementation instead of by clients of CGCXXABI because:
  // 1) getThisValue is currently protected
  // 2) in theory, an ABI could implement 'this' returns some other way;
  //    HasThisReturn only specifies a contract, not the implementation
  if (HasThisReturn(CGF.CurGD))
    CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
  else if (hasMostDerivedReturn(CGF.CurGD))
    CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
                            CGF.ReturnValue);

  if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
    assert(getStructorImplicitParamDecl(CGF) &&
           "no implicit parameter for a constructor with virtual bases?");
    getStructorImplicitParamValue(CGF)
      = CGF.Builder.CreateLoad(
          CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
          "is_most_derived");
  }

  if (isDeletingDtor(CGF.CurGD)) {
    assert(getStructorImplicitParamDecl(CGF) &&
           "no implicit parameter for a deleting destructor?");
    getStructorImplicitParamValue(CGF)
      = CGF.Builder.CreateLoad(
          CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
          "should_call_delete");
  }
}

CGCXXABI::AddedStructorArgs MicrosoftCXXABI::addImplicitConstructorArgs(
    CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
    bool ForVirtualBase, bool Delegating, CallArgList &Args) {
  assert(Type == Ctor_Complete || Type == Ctor_Base);

  // Check if we need a 'most_derived' parameter.
  if (!D->getParent()->getNumVBases())
    return AddedStructorArgs{};

  // Add the 'most_derived' argument second if we are variadic or last if not.
  const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
  llvm::Value *MostDerivedArg;
  if (Delegating) {
    MostDerivedArg = getStructorImplicitParamValue(CGF);
  } else {
    MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
  }
  RValue RV = RValue::get(MostDerivedArg);
  if (FPT->isVariadic()) {
    Args.insert(Args.begin() + 1, CallArg(RV, getContext().IntTy));
    return AddedStructorArgs::prefix(1);
  }
  Args.add(RV, getContext().IntTy);
  return AddedStructorArgs::suffix(1);
}

void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
                                         const CXXDestructorDecl *DD,
                                         CXXDtorType Type, bool ForVirtualBase,
                                         bool Delegating, Address This,
                                         QualType ThisTy) {
  // Use the base destructor variant in place of the complete destructor variant
  // if the class has no virtual bases. This effectively implements some of the
  // -mconstructor-aliases optimization, but as part of the MS C++ ABI.
  if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0)
    Type = Dtor_Base;

  GlobalDecl GD(DD, Type);
  CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD);

  if (DD->isVirtual()) {
    assert(Type != CXXDtorType::Dtor_Deleting &&
           "The deleting destructor should only be called via a virtual call");
    This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
                                                    This, false);
  }

  llvm::BasicBlock *BaseDtorEndBB = nullptr;
  if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) {
    BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF);
  }

  CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
                            /*ImplicitParam=*/nullptr,
                            /*ImplicitParamTy=*/QualType(), nullptr);
  if (BaseDtorEndBB) {
    // Complete object handler should continue to be the remaining
    CGF.Builder.CreateBr(BaseDtorEndBB);
    CGF.EmitBlock(BaseDtorEndBB);
  }
}

void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info,
                                             const CXXRecordDecl *RD,
                                             llvm::GlobalVariable *VTable) {
  if (!CGM.getCodeGenOpts().LTOUnit)
    return;

  // The location of the first virtual function pointer in the virtual table,
  // aka the "address point" on Itanium. This is at offset 0 if RTTI is
  // disabled, or sizeof(void*) if RTTI is enabled.
  CharUnits AddressPoint =
      getContext().getLangOpts().RTTIData
          ? getContext().toCharUnitsFromBits(
                getContext().getTargetInfo().getPointerWidth(0))
          : CharUnits::Zero();

  if (Info.PathToIntroducingObject.empty()) {
    CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
    return;
  }

  // Add a bitset entry for the least derived base belonging to this vftable.
  CGM.AddVTableTypeMetadata(VTable, AddressPoint,
                            Info.PathToIntroducingObject.back());

  // Add a bitset entry for each derived class that is laid out at the same
  // offset as the least derived base.
  for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) {
    const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1];
    const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I];

    const ASTRecordLayout &Layout =
        getContext().getASTRecordLayout(DerivedRD);
    CharUnits Offset;
    auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD);
    if (VBI == Layout.getVBaseOffsetsMap().end())
      Offset = Layout.getBaseClassOffset(BaseRD);
    else
      Offset = VBI->second.VBaseOffset;
    if (!Offset.isZero())
      return;
    CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD);
  }

  // Finally do the same for the most derived class.
  if (Info.FullOffsetInMDC.isZero())
    CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
}

void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
                                            const CXXRecordDecl *RD) {
  MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
  const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);

  for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) {
    llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
    if (VTable->hasInitializer())
      continue;

    const VTableLayout &VTLayout =
      VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);

    llvm::Constant *RTTI = nullptr;
    if (any_of(VTLayout.vtable_components(),
               [](const VTableComponent &VTC) { return VTC.isRTTIKind(); }))
      RTTI = getMSCompleteObjectLocator(RD, *Info);

    ConstantInitBuilder Builder(CGM);
    auto Components = Builder.beginStruct();
    CGVT.createVTableInitializer(Components, VTLayout, RTTI);
    Components.finishAndSetAsInitializer(VTable);

    emitVTableTypeMetadata(*Info, RD, VTable);
  }
}

bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField(
    CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
  return Vptr.NearestVBase != nullptr;
}

llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
    CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
    const CXXRecordDecl *NearestVBase) {
  llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass);
  if (!VTableAddressPoint) {
    assert(Base.getBase()->getNumVBases() &&
           !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
  }
  return VTableAddressPoint;
}

static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
                              const CXXRecordDecl *RD, const VPtrInfo &VFPtr,
                              SmallString<256> &Name) {
  llvm::raw_svector_ostream Out(Name);
  MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out);
}

llvm::Constant *
MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base,
                                       const CXXRecordDecl *VTableClass) {
  (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
  VFTableIdTy ID(VTableClass, Base.getBaseOffset());
  return VFTablesMap[ID];
}

llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
    BaseSubobject Base, const CXXRecordDecl *VTableClass) {
  llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass);
  assert(VFTable && "Couldn't find a vftable for the given base?");
  return VFTable;
}

llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
                                                       CharUnits VPtrOffset) {
  // getAddrOfVTable may return 0 if asked to get an address of a vtable which
  // shouldn't be used in the given record type. We want to cache this result in
  // VFTablesMap, thus a simple zero check is not sufficient.

  VFTableIdTy ID(RD, VPtrOffset);
  VTablesMapTy::iterator I;
  bool Inserted;
  std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
  if (!Inserted)
    return I->second;

  llvm::GlobalVariable *&VTable = I->second;

  MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
  const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);

  if (DeferredVFTables.insert(RD).second) {
    // We haven't processed this record type before.
    // Queue up this vtable for possible deferred emission.
    CGM.addDeferredVTable(RD);

#ifndef NDEBUG
    // Create all the vftables at once in order to make sure each vftable has
    // a unique mangled name.
    llvm::StringSet<> ObservedMangledNames;
    for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
      SmallString<256> Name;
      mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name);
      if (!ObservedMangledNames.insert(Name.str()).second)
        llvm_unreachable("Already saw this mangling before?");
    }
#endif
  }

  const std::unique_ptr<VPtrInfo> *VFPtrI = std::find_if(
      VFPtrs.begin(), VFPtrs.end(), [&](const std::unique_ptr<VPtrInfo>& VPI) {
        return VPI->FullOffsetInMDC == VPtrOffset;
      });
  if (VFPtrI == VFPtrs.end()) {
    VFTablesMap[ID] = nullptr;
    return nullptr;
  }
  const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI;

  SmallString<256> VFTableName;
  mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName);

  // Classes marked __declspec(dllimport) need vftables generated on the
  // import-side in order to support features like constexpr.  No other
  // translation unit relies on the emission of the local vftable, translation
  // units are expected to generate them as needed.
  //
  // Because of this unique behavior, we maintain this logic here instead of
  // getVTableLinkage.
  llvm::GlobalValue::LinkageTypes VFTableLinkage =
      RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage
                                   : CGM.getVTableLinkage(RD);
  bool VFTableComesFromAnotherTU =
      llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
      llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
  bool VTableAliasIsRequred =
      !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;

  if (llvm::GlobalValue *VFTable =
          CGM.getModule().getNamedGlobal(VFTableName)) {
    VFTablesMap[ID] = VFTable;
    VTable = VTableAliasIsRequred
                 ? cast<llvm::GlobalVariable>(
                       cast<llvm::GlobalAlias>(VFTable)->getBaseObject())
                 : cast<llvm::GlobalVariable>(VFTable);
    return VTable;
  }

  const VTableLayout &VTLayout =
      VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC);
  llvm::GlobalValue::LinkageTypes VTableLinkage =
      VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;

  StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();

  llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout);

  // Create a backing variable for the contents of VTable.  The VTable may
  // or may not include space for a pointer to RTTI data.
  llvm::GlobalValue *VFTable;
  VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
                                    /*isConstant=*/true, VTableLinkage,
                                    /*Initializer=*/nullptr, VTableName);
  VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);

  llvm::Comdat *C = nullptr;
  if (!VFTableComesFromAnotherTU &&
      (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) ||
       (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) &&
        VTableAliasIsRequred)))
    C = CGM.getModule().getOrInsertComdat(VFTableName.str());

  // Only insert a pointer into the VFTable for RTTI data if we are not
  // importing it.  We never reference the RTTI data directly so there is no
  // need to make room for it.
  if (VTableAliasIsRequred) {
    llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0),
                                 llvm::ConstantInt::get(CGM.Int32Ty, 0),
                                 llvm::ConstantInt::get(CGM.Int32Ty, 1)};
    // Create a GEP which points just after the first entry in the VFTable,
    // this should be the location of the first virtual method.
    llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
        VTable->getValueType(), VTable, GEPIndices);
    if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
      VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
      if (C)
        C->setSelectionKind(llvm::Comdat::Largest);
    }
    VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy,
                                        /*AddressSpace=*/0, VFTableLinkage,
                                        VFTableName.str(), VTableGEP,
                                        &CGM.getModule());
    VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  } else {
    // We don't need a GlobalAlias to be a symbol for the VTable if we won't
    // be referencing any RTTI data.
    // The GlobalVariable will end up being an appropriate definition of the
    // VFTable.
    VFTable = VTable;
  }
  if (C)
    VTable->setComdat(C);

  if (RD->hasAttr<DLLExportAttr>())
    VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);

  VFTablesMap[ID] = VFTable;
  return VTable;
}

CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
                                                    GlobalDecl GD,
                                                    Address This,
                                                    llvm::Type *Ty,
                                                    SourceLocation Loc) {
  CGBuilderTy &Builder = CGF.Builder;

  Ty = Ty->getPointerTo()->getPointerTo();
  Address VPtr =
      adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);

  auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
  llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent());

  MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
  MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD);

  // Compute the identity of the most derived class whose virtual table is
  // located at the MethodVFTableLocation ML.
  auto getObjectWithVPtr = [&] {
    return llvm::find_if(VFTContext.getVFPtrOffsets(
                             ML.VBase ? ML.VBase : MethodDecl->getParent()),
                         [&](const std::unique_ptr<VPtrInfo> &Info) {
                           return Info->FullOffsetInMDC == ML.VFPtrOffset;
                         })
        ->get()
        ->ObjectWithVPtr;
  };

  llvm::Value *VFunc;
  if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) {
    VFunc = CGF.EmitVTableTypeCheckedLoad(
        getObjectWithVPtr(), VTable,
        ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8);
  } else {
    if (CGM.getCodeGenOpts().PrepareForLTO)
      CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc);

    llvm::Value *VFuncPtr =
        Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
    VFunc = Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
  }

  CGCallee Callee(GD, VFunc);
  return Callee;
}

llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
    CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
    Address This, DeleteOrMemberCallExpr E) {
  auto *CE = E.dyn_cast<const CXXMemberCallExpr *>();
  auto *D = E.dyn_cast<const CXXDeleteExpr *>();
  assert((CE != nullptr) ^ (D != nullptr));
  assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
  assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);

  // We have only one destructor in the vftable but can get both behaviors
  // by passing an implicit int parameter.
  GlobalDecl GD(Dtor, Dtor_Deleting);
  const CGFunctionInfo *FInfo =
      &CGM.getTypes().arrangeCXXStructorDeclaration(GD);
  llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
  CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty);

  ASTContext &Context = getContext();
  llvm::Value *ImplicitParam = llvm::ConstantInt::get(
      llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
      DtorType == Dtor_Deleting);

  QualType ThisTy;
  if (CE) {
    ThisTy = CE->getObjectType();
  } else {
    ThisTy = D->getDestroyedType();
  }

  This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
  RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
                                        ImplicitParam, Context.IntTy, CE);
  return RV.getScalarVal();
}

const VBTableGlobals &
MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
  // At this layer, we can key the cache off of a single class, which is much
  // easier than caching each vbtable individually.
  llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
  bool Added;
  std::tie(Entry, Added) =
      VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
  VBTableGlobals &VBGlobals = Entry->second;
  if (!Added)
    return VBGlobals;

  MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
  VBGlobals.VBTables = &Context.enumerateVBTables(RD);

  // Cache the globals for all vbtables so we don't have to recompute the
  // mangled names.
  llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
  for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
                                      E = VBGlobals.VBTables->end();
       I != E; ++I) {
    VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
  }

  return VBGlobals;
}

llvm::Function *
MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
                                        const MethodVFTableLocation &ML) {
  assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
         "can't form pointers to ctors or virtual dtors");

  // Calculate the mangled name.
  SmallString<256> ThunkName;
  llvm::raw_svector_ostream Out(ThunkName);
  getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out);

  // If the thunk has been generated previously, just return it.
  if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
    return cast<llvm::Function>(GV);

  // Create the llvm::Function.
  const CGFunctionInfo &FnInfo =
      CGM.getTypes().arrangeUnprototypedMustTailThunk(MD);
  llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
  llvm::Function *ThunkFn =
      llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
                             ThunkName.str(), &CGM.getModule());
  assert(ThunkFn->getName() == ThunkName && "name was uniqued!");

  ThunkFn->setLinkage(MD->isExternallyVisible()
                          ? llvm::GlobalValue::LinkOnceODRLinkage
                          : llvm::GlobalValue::InternalLinkage);
  if (MD->isExternallyVisible())
    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));

  CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
  CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);

  // Add the "thunk" attribute so that LLVM knows that the return type is
  // meaningless. These thunks can be used to call functions with differing
  // return types, and the caller is required to cast the prototype
  // appropriately to extract the correct value.
  ThunkFn->addFnAttr("thunk");

  // These thunks can be compared, so they are not unnamed.
  ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);

  // Start codegen.
  CodeGenFunction CGF(CGM);
  CGF.CurGD = GlobalDecl(MD);
  CGF.CurFuncIsThunk = true;

  // Build FunctionArgs, but only include the implicit 'this' parameter
  // declaration.
  FunctionArgList FunctionArgs;
  buildThisParam(CGF, FunctionArgs);

  // Start defining the function.
  CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
                    FunctionArgs, MD->getLocation(), SourceLocation());
  setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));

  // Load the vfptr and then callee from the vftable.  The callee should have
  // adjusted 'this' so that the vfptr is at offset zero.
  llvm::Value *VTable = CGF.GetVTablePtr(
      getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent());

  llvm::Value *VFuncPtr =
      CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
  llvm::Value *Callee =
    CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());

  CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee});

  return ThunkFn;
}

void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
  const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
  for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
    const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I];
    llvm::GlobalVariable *GV = VBGlobals.Globals[I];
    if (GV->isDeclaration())
      emitVBTableDefinition(*VBT, RD, GV);
  }
}

llvm::GlobalVariable *
MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
                                  llvm::GlobalVariable::LinkageTypes Linkage) {
  SmallString<256> OutName;
  llvm::raw_svector_ostream Out(OutName);
  getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
  StringRef Name = OutName.str();

  llvm::ArrayType *VBTableType =
      llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases());

  assert(!CGM.getModule().getNamedGlobal(Name) &&
         "vbtable with this name already exists: mangling bug?");
  CharUnits Alignment =
      CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy);
  llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable(
      Name, VBTableType, Linkage, Alignment.getQuantity());
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);

  if (RD->hasAttr<DLLImportAttr>())
    GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
  else if (RD->hasAttr<DLLExportAttr>())
    GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);

  if (!GV->hasExternalLinkage())
    emitVBTableDefinition(VBT, RD, GV);

  return GV;
}

void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
                                            const CXXRecordDecl *RD,
                                            llvm::GlobalVariable *GV) const {
  const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr;

  assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() &&
         "should only emit vbtables for classes with vbtables");

  const ASTRecordLayout &BaseLayout =
      getContext().getASTRecordLayout(VBT.IntroducingObject);
  const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);

  SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(),
                                           nullptr);

  // The offset from ObjectWithVPtr's vbptr to itself always leads.
  CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
  Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());

  MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
  for (const auto &I : ObjectWithVPtr->vbases()) {
    const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
    CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
    assert(!Offset.isNegative());

    // Make it relative to the subobject vbptr.
    CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
    if (VBT.getVBaseWithVPtr())
      CompleteVBPtrOffset +=
          DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
    Offset -= CompleteVBPtrOffset;

    unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase);
    assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
    Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
  }

  assert(Offsets.size() ==
         cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
                               ->getElementType())->getNumElements());
  llvm::ArrayType *VBTableType =
    llvm::ArrayType::get(CGM.IntTy, Offsets.size());
  llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
  GV->setInitializer(Init);

  if (RD->hasAttr<DLLImportAttr>())
    GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage);
}

llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
                                                    Address This,
                                                    const ThisAdjustment &TA) {
  if (TA.isEmpty())
    return This.getPointer();

  This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);

  llvm::Value *V;
  if (TA.Virtual.isEmpty()) {
    V = This.getPointer();
  } else {
    assert(TA.Virtual.Microsoft.VtordispOffset < 0);
    // Adjust the this argument based on the vtordisp value.
    Address VtorDispPtr =
        CGF.Builder.CreateConstInBoundsByteGEP(This,
                 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset));
    VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty);
    llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
    V = CGF.Builder.CreateGEP(This.getPointer(),
                              CGF.Builder.CreateNeg(VtorDisp));

    // Unfortunately, having applied the vtordisp means that we no
    // longer really have a known alignment for the vbptr step.
    // We'll assume the vbptr is pointer-aligned.

    if (TA.Virtual.Microsoft.VBPtrOffset) {
      // If the final overrider is defined in a virtual base other than the one
      // that holds the vfptr, we have to use a vtordispex thunk which looks up
      // the vbtable of the derived class.
      assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
      assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
      llvm::Value *VBPtr;
      llvm::Value *VBaseOffset =
          GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()),
                                  -TA.Virtual.Microsoft.VBPtrOffset,
                                  TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
      V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
    }
  }

  if (TA.NonVirtual) {
    // Non-virtual adjustment might result in a pointer outside the allocated
    // object, e.g. if the final overrider class is laid out after the virtual
    // base that declares a method in the most derived class.
    V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
  }

  // Don't need to bitcast back, the call CodeGen will handle this.
  return V;
}

llvm::Value *
MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
                                         const ReturnAdjustment &RA) {
  if (RA.isEmpty())
    return Ret.getPointer();

  auto OrigTy = Ret.getType();
  Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty);

  llvm::Value *V = Ret.getPointer();
  if (RA.Virtual.Microsoft.VBIndex) {
    assert(RA.Virtual.Microsoft.VBIndex > 0);
    int32_t IntSize = CGF.getIntSize().getQuantity();
    llvm::Value *VBPtr;
    llvm::Value *VBaseOffset =
        GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset,
                                IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
    V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
  }

  if (RA.NonVirtual)
    V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);

  // Cast back to the original type.
  return CGF.Builder.CreateBitCast(V, OrigTy);
}

bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
                                   QualType elementType) {
  // Microsoft seems to completely ignore the possibility of a
  // two-argument usual deallocation function.
  return elementType.isDestructedType();
}

bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
  // Microsoft seems to completely ignore the possibility of a
  // two-argument usual deallocation function.
  return expr->getAllocatedType().isDestructedType();
}

CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
  // The array cookie is always a size_t; we then pad that out to the
  // alignment of the element type.
  ASTContext &Ctx = getContext();
  return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
                  Ctx.getTypeAlignInChars(type));
}

llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
                                                  Address allocPtr,
                                                  CharUnits cookieSize) {
  Address numElementsPtr =
    CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy);
  return CGF.Builder.CreateLoad(numElementsPtr);
}

Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
                                               Address newPtr,
                                               llvm::Value *numElements,
                                               const CXXNewExpr *expr,
                                               QualType elementType) {
  assert(requiresArrayCookie(expr));

  // The size of the cookie.
  CharUnits cookieSize = getArrayCookieSizeImpl(elementType);

  // Compute an offset to the cookie.
  Address cookiePtr = newPtr;

  // Write the number of elements into the appropriate slot.
  Address numElementsPtr
    = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy);
  CGF.Builder.CreateStore(numElements, numElementsPtr);

  // Finally, compute a pointer to the actual data buffer by skipping
  // over the cookie completely.
  return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
}

static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
                                        llvm::FunctionCallee Dtor,
                                        llvm::Constant *Addr) {
  // Create a function which calls the destructor.
  llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);

  // extern "C" int __tlregdtor(void (*f)(void));
  llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
      CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false);

  llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction(
      TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true);
  if (llvm::Function *TLRegDtorFn =
          dyn_cast<llvm::Function>(TLRegDtor.getCallee()))
    TLRegDtorFn->setDoesNotThrow();

  CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
}

void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
                                         llvm::FunctionCallee Dtor,
                                         llvm::Constant *Addr) {
  if (D.isNoDestroy(CGM.getContext()))
    return;

  if (D.getTLSKind())
    return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);

  // The default behavior is to use atexit.
  CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
}

void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
    CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
    ArrayRef<llvm::Function *> CXXThreadLocalInits,
    ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
  if (CXXThreadLocalInits.empty())
    return;

  CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() ==
                                  llvm::Triple::x86
                              ? "/include:___dyn_tls_init@12"
                              : "/include:__dyn_tls_init");

  // This will create a GV in the .CRT$XDU section.  It will point to our
  // initialization function.  The CRT will call all of these function
  // pointers at start-up time and, eventually, at thread-creation time.
  auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
    llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
        CGM.getModule(), InitFunc->getType(), /*isConstant=*/true,
        llvm::GlobalVariable::InternalLinkage, InitFunc,
        Twine(InitFunc->getName(), "$initializer$"));
    InitFuncPtr->setSection(".CRT$XDU");
    // This variable has discardable linkage, we have to add it to @llvm.used to
    // ensure it won't get discarded.
    CGM.addUsedGlobal(InitFuncPtr);
    return InitFuncPtr;
  };

  std::vector<llvm::Function *> NonComdatInits;
  for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
    llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(
        CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I])));
    llvm::Function *F = CXXThreadLocalInits[I];

    // If the GV is already in a comdat group, then we have to join it.
    if (llvm::Comdat *C = GV->getComdat())
      AddToXDU(F)->setComdat(C);
    else
      NonComdatInits.push_back(F);
  }

  if (!NonComdatInits.empty()) {
    llvm::FunctionType *FTy =
        llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
    llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction(
        FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(),
        SourceLocation(), /*TLS=*/true);
    CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);

    AddToXDU(InitFunc);
  }
}

LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
                                                     const VarDecl *VD,
                                                     QualType LValType) {
  CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
  return LValue();
}

static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) {
  StringRef VarName("_Init_thread_epoch");
  CharUnits Align = CGM.getIntAlign();
  if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
    return ConstantAddress(GV, Align);
  auto *GV = new llvm::GlobalVariable(
      CGM.getModule(), CGM.IntTy,
      /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage,
      /*Initializer=*/nullptr, VarName,
      /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
  GV->setAlignment(Align.getAsAlign());
  return ConstantAddress(GV, Align);
}

static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) {
  llvm::FunctionType *FTy =
      llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
                              CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
  return CGM.CreateRuntimeFunction(
      FTy, "_Init_thread_header",
      llvm::AttributeList::get(CGM.getLLVMContext(),
                               llvm::AttributeList::FunctionIndex,
                               llvm::Attribute::NoUnwind),
      /*Local=*/true);
}

static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) {
  llvm::FunctionType *FTy =
      llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
                              CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
  return CGM.CreateRuntimeFunction(
      FTy, "_Init_thread_footer",
      llvm::AttributeList::get(CGM.getLLVMContext(),
                               llvm::AttributeList::FunctionIndex,
                               llvm::Attribute::NoUnwind),
      /*Local=*/true);
}

static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) {
  llvm::FunctionType *FTy =
      llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
                              CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
  return CGM.CreateRuntimeFunction(
      FTy, "_Init_thread_abort",
      llvm::AttributeList::get(CGM.getLLVMContext(),
                               llvm::AttributeList::FunctionIndex,
                               llvm::Attribute::NoUnwind),
      /*Local=*/true);
}

namespace {
struct ResetGuardBit final : EHScopeStack::Cleanup {
  Address Guard;
  unsigned GuardNum;
  ResetGuardBit(Address Guard, unsigned GuardNum)
      : Guard(Guard), GuardNum(GuardNum) {}

  void Emit(CodeGenFunction &CGF, Flags flags) override {
    // Reset the bit in the mask so that the static variable may be
    // reinitialized.
    CGBuilderTy &Builder = CGF.Builder;
    llvm::LoadInst *LI = Builder.CreateLoad(Guard);
    llvm::ConstantInt *Mask =
        llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum));
    Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
  }
};

struct CallInitThreadAbort final : EHScopeStack::Cleanup {
  llvm::Value *Guard;
  CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {}

  void Emit(CodeGenFunction &CGF, Flags flags) override {
    // Calling _Init_thread_abort will reset the guard's state.
    CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
  }
};
}

void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
                                      llvm::GlobalVariable *GV,
                                      bool PerformInit) {
  // MSVC only uses guards for static locals.
  if (!D.isStaticLocal()) {
    assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
    // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
    llvm::Function *F = CGF.CurFn;
    F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
    F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
    return;
  }

  bool ThreadlocalStatic = D.getTLSKind();
  bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;

  // Thread-safe static variables which aren't thread-specific have a
  // per-variable guard.
  bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;

  CGBuilderTy &Builder = CGF.Builder;
  llvm::IntegerType *GuardTy = CGF.Int32Ty;
  llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
  CharUnits GuardAlign = CharUnits::fromQuantity(4);

  // Get the guard variable for this function if we have one already.
  GuardInfo *GI = nullptr;
  if (ThreadlocalStatic)
    GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
  else if (!ThreadsafeStatic)
    GI = &GuardVariableMap[D.getDeclContext()];

  llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
  unsigned GuardNum;
  if (D.isExternallyVisible()) {
    // Externally visible variables have to be numbered in Sema to properly
    // handle unreachable VarDecls.
    GuardNum = getContext().getStaticLocalNumber(&D);
    assert(GuardNum > 0);
    GuardNum--;
  } else if (HasPerVariableGuard) {
    GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
  } else {
    // Non-externally visible variables are numbered here in CodeGen.
    GuardNum = GI->BitIndex++;
  }

  if (!HasPerVariableGuard && GuardNum >= 32) {
    if (D.isExternallyVisible())
      ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
    GuardNum %= 32;
    GuardVar = nullptr;
  }

  if (!GuardVar) {
    // Mangle the name for the guard.
    SmallString<256> GuardName;
    {
      llvm::raw_svector_ostream Out(GuardName);
      if (HasPerVariableGuard)
        getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
                                                               Out);
      else
        getMangleContext().mangleStaticGuardVariable(&D, Out);
    }

    // Create the guard variable with a zero-initializer. Just absorb linkage,
    // visibility and dll storage class from the guarded variable.
    GuardVar =
        new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
                                 GV->getLinkage(), Zero, GuardName.str());
    GuardVar->setVisibility(GV->getVisibility());
    GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
    GuardVar->setAlignment(GuardAlign.getAsAlign());
    if (GuardVar->isWeakForLinker())
      GuardVar->setComdat(
          CGM.getModule().getOrInsertComdat(GuardVar->getName()));
    if (D.getTLSKind())
      GuardVar->setThreadLocal(true);
    if (GI && !HasPerVariableGuard)
      GI->Guard = GuardVar;
  }

  ConstantAddress GuardAddr(GuardVar, GuardAlign);

  assert(GuardVar->getLinkage() == GV->getLinkage() &&
         "static local from the same function had different linkage");

  if (!HasPerVariableGuard) {
    // Pseudo code for the test:
    // if (!(GuardVar & MyGuardBit)) {
    //   GuardVar |= MyGuardBit;
    //   ... initialize the object ...;
    // }

    // Test our bit from the guard variable.
    llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum);
    llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr);
    llvm::Value *NeedsInit =
        Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero);
    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
    llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
    CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock,
                                 CodeGenFunction::GuardKind::VariableGuard, &D);

    // Set our bit in the guard variable and emit the initializer and add a global
    // destructor if appropriate.
    CGF.EmitBlock(InitBlock);
    Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr);
    CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum);
    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
    CGF.PopCleanupBlock();
    Builder.CreateBr(EndBlock);

    // Continue.
    CGF.EmitBlock(EndBlock);
  } else {
    // Pseudo code for the test:
    // if (TSS > _Init_thread_epoch) {
    //   _Init_thread_header(&TSS);
    //   if (TSS == -1) {
    //     ... initialize the object ...;
    //     _Init_thread_footer(&TSS);
    //   }
    // }
    //
    // The algorithm is almost identical to what can be found in the appendix
    // found in N2325.

    // This BasicBLock determines whether or not we have any work to do.
    llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr);
    FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
    llvm::LoadInst *InitThreadEpoch =
        Builder.CreateLoad(getInitThreadEpochPtr(CGM));
    llvm::Value *IsUninitialized =
        Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
    llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
    llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
    CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock,
                                 CodeGenFunction::GuardKind::VariableGuard, &D);

    // This BasicBlock attempts to determine whether or not this thread is
    // responsible for doing the initialization.
    CGF.EmitBlock(AttemptInitBlock);
    CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM),
                                GuardAddr.getPointer());
    llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr);
    SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
    llvm::Value *ShouldDoInit =
        Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
    Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);

    // Ok, we ended up getting selected as the initializing thread.
    CGF.EmitBlock(InitBlock);
    CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr);
    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
    CGF.PopCleanupBlock();
    CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM),
                                GuardAddr.getPointer());
    Builder.CreateBr(EndBlock);

    CGF.EmitBlock(EndBlock);
  }
}

bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
  // Null-ness for function memptrs only depends on the first field, which is
  // the function pointer.  The rest don't matter, so we can zero initialize.
  if (MPT->isMemberFunctionPointer())
    return true;

  // The virtual base adjustment field is always -1 for null, so if we have one
  // we can't zero initialize.  The field offset is sometimes also -1 if 0 is a
  // valid field offset.
  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
  return (!inheritanceModelHasVBTableOffsetField(Inheritance) &&
          RD->nullFieldOffsetIsZero());
}

llvm::Type *
MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
  llvm::SmallVector<llvm::Type *, 4> fields;
  if (MPT->isMemberFunctionPointer())
    fields.push_back(CGM.VoidPtrTy);  // FunctionPointerOrVirtualThunk
  else
    fields.push_back(CGM.IntTy);  // FieldOffset

  if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
                                       Inheritance))
    fields.push_back(CGM.IntTy);
  if (inheritanceModelHasVBPtrOffsetField(Inheritance))
    fields.push_back(CGM.IntTy);
  if (inheritanceModelHasVBTableOffsetField(Inheritance))
    fields.push_back(CGM.IntTy);  // VirtualBaseAdjustmentOffset

  if (fields.size() == 1)
    return fields[0];
  return llvm::StructType::get(CGM.getLLVMContext(), fields);
}

void MicrosoftCXXABI::
GetNullMemberPointerFields(const MemberPointerType *MPT,
                           llvm::SmallVectorImpl<llvm::Constant *> &fields) {
  assert(fields.empty());
  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
  if (MPT->isMemberFunctionPointer()) {
    // FunctionPointerOrVirtualThunk
    fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
  } else {
    if (RD->nullFieldOffsetIsZero())
      fields.push_back(getZeroInt());  // FieldOffset
    else
      fields.push_back(getAllOnesInt());  // FieldOffset
  }

  if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
                                       Inheritance))
    fields.push_back(getZeroInt());
  if (inheritanceModelHasVBPtrOffsetField(Inheritance))
    fields.push_back(getZeroInt());
  if (inheritanceModelHasVBTableOffsetField(Inheritance))
    fields.push_back(getAllOnesInt());
}

llvm::Constant *
MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
  llvm::SmallVector<llvm::Constant *, 4> fields;
  GetNullMemberPointerFields(MPT, fields);
  if (fields.size() == 1)
    return fields[0];
  llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
  assert(Res->getType() == ConvertMemberPointerType(MPT));
  return Res;
}

llvm::Constant *
MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
                                       bool IsMemberFunction,
                                       const CXXRecordDecl *RD,
                                       CharUnits NonVirtualBaseAdjustment,
                                       unsigned VBTableIndex) {
  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();

  // Single inheritance class member pointer are represented as scalars instead
  // of aggregates.
  if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance))
    return FirstField;

  llvm::SmallVector<llvm::Constant *, 4> fields;
  fields.push_back(FirstField);

  if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance))
    fields.push_back(llvm::ConstantInt::get(
      CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));

  if (inheritanceModelHasVBPtrOffsetField(Inheritance)) {
    CharUnits Offs = CharUnits::Zero();
    if (VBTableIndex)
      Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
    fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
  }

  // The rest of the fields are adjusted by conversions to a more derived class.
  if (inheritanceModelHasVBTableOffsetField(Inheritance))
    fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));

  return llvm::ConstantStruct::getAnon(fields);
}

llvm::Constant *
MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
                                       CharUnits offset) {
  return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset);
}

llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD,
                                                       CharUnits offset) {
  if (RD->getMSInheritanceModel() ==
      MSInheritanceModel::Virtual)
    offset -= getContext().getOffsetOfBaseWithVBPtr(RD);
  llvm::Constant *FirstField =
    llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
  return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
                               CharUnits::Zero(), /*VBTableIndex=*/0);
}

llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
                                                   QualType MPType) {
  const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>();
  const ValueDecl *MPD = MP.getMemberPointerDecl();
  if (!MPD)
    return EmitNullMemberPointer(DstTy);

  ASTContext &Ctx = getContext();
  ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath();

  llvm::Constant *C;
  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) {
    C = EmitMemberFunctionPointer(MD);
  } else {
    // For a pointer to data member, start off with the offset of the field in
    // the class in which it was declared, and convert from there if necessary.
    // For indirect field decls, get the outermost anonymous field and use the
    // parent class.
    CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD));
    const FieldDecl *FD = dyn_cast<FieldDecl>(MPD);
    if (!FD)
      FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin());
    const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent());
    RD = RD->getMostRecentNonInjectedDecl();
    C = EmitMemberDataPointer(RD, FieldOffset);
  }

  if (!MemberPointerPath.empty()) {
    const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext());
    const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr();
    const MemberPointerType *SrcTy =
        Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy)
            ->castAs<MemberPointerType>();

    bool DerivedMember = MP.isMemberPointerToDerivedMember();
    SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath;
    const CXXRecordDecl *PrevRD = SrcRD;
    for (const CXXRecordDecl *PathElem : MemberPointerPath) {
      const CXXRecordDecl *Base = nullptr;
      const CXXRecordDecl *Derived = nullptr;
      if (DerivedMember) {
        Base = PathElem;
        Derived = PrevRD;
      } else {
        Base = PrevRD;
        Derived = PathElem;
      }
      for (const CXXBaseSpecifier &BS : Derived->bases())
        if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() ==
            Base->getCanonicalDecl())
          DerivedToBasePath.push_back(&BS);
      PrevRD = PathElem;
    }
    assert(DerivedToBasePath.size() == MemberPointerPath.size());

    CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer
                                : CK_BaseToDerivedMemberPointer;
    C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(),
                                    DerivedToBasePath.end(), C);
  }
  return C;
}

llvm::Constant *
MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
  assert(MD->isInstance() && "Member function must not be static!");

  CharUnits NonVirtualBaseAdjustment = CharUnits::Zero();
  const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl();
  CodeGenTypes &Types = CGM.getTypes();

  unsigned VBTableIndex = 0;
  llvm::Constant *FirstField;
  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
  if (!MD->isVirtual()) {
    llvm::Type *Ty;
    // Check whether the function has a computable LLVM signature.
    if (Types.isFuncTypeConvertible(FPT)) {
      // The function has a computable LLVM signature; use the correct type.
      Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
    } else {
      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
      // function type is incomplete.
      Ty = CGM.PtrDiffTy;
    }
    FirstField = CGM.GetAddrOfFunction(MD, Ty);
  } else {
    auto &VTableContext = CGM.getMicrosoftVTableContext();
    MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD);
    FirstField = EmitVirtualMemPtrThunk(MD, ML);
    // Include the vfptr adjustment if the method is in a non-primary vftable.
    NonVirtualBaseAdjustment += ML.VFPtrOffset;
    if (ML.VBase)
      VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
  }

  if (VBTableIndex == 0 &&
      RD->getMSInheritanceModel() ==
          MSInheritanceModel::Virtual)
    NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD);

  // The rest of the fields are common with data member pointers.
  FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
  return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
                               NonVirtualBaseAdjustment, VBTableIndex);
}

/// Member pointers are the same if they're either bitwise identical *or* both
/// null.  Null-ness for function members is determined by the first field,
/// while for data member pointers we must compare all fields.
llvm::Value *
MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
                                             llvm::Value *L,
                                             llvm::Value *R,
                                             const MemberPointerType *MPT,
                                             bool Inequality) {
  CGBuilderTy &Builder = CGF.Builder;

  // Handle != comparisons by switching the sense of all boolean operations.
  llvm::ICmpInst::Predicate Eq;
  llvm::Instruction::BinaryOps And, Or;
  if (Inequality) {
    Eq = llvm::ICmpInst::ICMP_NE;
    And = llvm::Instruction::Or;
    Or = llvm::Instruction::And;
  } else {
    Eq = llvm::ICmpInst::ICMP_EQ;
    And = llvm::Instruction::And;
    Or = llvm::Instruction::Or;
  }

  // If this is a single field member pointer (single inheritance), this is a
  // single icmp.
  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
  if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(),
                                      Inheritance))
    return Builder.CreateICmp(Eq, L, R);

  // Compare the first field.
  llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
  llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
  llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");

  // Compare everything other than the first field.
  llvm::Value *Res = nullptr;
  llvm::StructType *LType = cast<llvm::StructType>(L->getType());
  for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
    llvm::Value *LF = Builder.CreateExtractValue(L, I);
    llvm::Value *RF = Builder.CreateExtractValue(R, I);
    llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
    if (Res)
      Res = Builder.CreateBinOp(And, Res, Cmp);
    else
      Res = Cmp;
  }

  // Check if the first field is 0 if this is a function pointer.
  if (MPT->isMemberFunctionPointer()) {
    // (l1 == r1 && ...) || l0 == 0
    llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
    llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
    Res = Builder.CreateBinOp(Or, Res, IsZero);
  }

  // Combine the comparison of the first field, which must always be true for
  // this comparison to succeeed.
  return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
}

llvm::Value *
MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
                                            llvm::Value *MemPtr,
                                            const MemberPointerType *MPT) {
  CGBuilderTy &Builder = CGF.Builder;
  llvm::SmallVector<llvm::Constant *, 4> fields;
  // We only need one field for member functions.
  if (MPT->isMemberFunctionPointer())
    fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
  else
    GetNullMemberPointerFields(MPT, fields);
  assert(!fields.empty());
  llvm::Value *FirstField = MemPtr;
  if (MemPtr->getType()->isStructTy())
    FirstField = Builder.CreateExtractValue(MemPtr, 0);
  llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");

  // For function member pointers, we only need to test the function pointer
  // field.  The other fields if any can be garbage.
  if (MPT->isMemberFunctionPointer())
    return Res;

  // Otherwise, emit a series of compares and combine the results.
  for (int I = 1, E = fields.size(); I < E; ++I) {
    llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
    llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
    Res = Builder.CreateOr(Res, Next, "memptr.tobool");
  }
  return Res;
}

bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
                                                  llvm::Constant *Val) {
  // Function pointers are null if the pointer in the first field is null.
  if (MPT->isMemberFunctionPointer()) {
    llvm::Constant *FirstField = Val->getType()->isStructTy() ?
      Val->getAggregateElement(0U) : Val;
    return FirstField->isNullValue();
  }

  // If it's not a function pointer and it's zero initializable, we can easily
  // check zero.
  if (isZeroInitializable(MPT) && Val->isNullValue())
    return true;

  // Otherwise, break down all the fields for comparison.  Hopefully these
  // little Constants are reused, while a big null struct might not be.
  llvm::SmallVector<llvm::Constant *, 4> Fields;
  GetNullMemberPointerFields(MPT, Fields);
  if (Fields.size() == 1) {
    assert(Val->getType()->isIntegerTy());
    return Val == Fields[0];
  }

  unsigned I, E;
  for (I = 0, E = Fields.size(); I != E; ++I) {
    if (Val->getAggregateElement(I) != Fields[I])
      break;
  }
  return I == E;
}

llvm::Value *
MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
                                         Address This,
                                         llvm::Value *VBPtrOffset,
                                         llvm::Value *VBTableOffset,
                                         llvm::Value **VBPtrOut) {
  CGBuilderTy &Builder = CGF.Builder;
  // Load the vbtable pointer from the vbptr in the instance.
  This = Builder.CreateElementBitCast(This, CGM.Int8Ty);
  llvm::Value *VBPtr =
    Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr");
  if (VBPtrOut) *VBPtrOut = VBPtr;
  VBPtr = Builder.CreateBitCast(VBPtr,
            CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace()));

  CharUnits VBPtrAlign;
  if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) {
    VBPtrAlign = This.getAlignment().alignmentAtOffset(
                                   CharUnits::fromQuantity(CI->getSExtValue()));
  } else {
    VBPtrAlign = CGF.getPointerAlign();
  }

  llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable");

  // Translate from byte offset to table index. It improves analyzability.
  llvm::Value *VBTableIndex = Builder.CreateAShr(
      VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
      "vbtindex", /*isExact=*/true);

  // Load an i32 offset from the vb-table.
  llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
  VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
  return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4),
                                   "vbase_offs");
}

// Returns an adjusted base cast to i8*, since we do more address arithmetic on
// it.
llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
    CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
    Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
  CGBuilderTy &Builder = CGF.Builder;
  Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty);
  llvm::BasicBlock *OriginalBB = nullptr;
  llvm::BasicBlock *SkipAdjustBB = nullptr;
  llvm::BasicBlock *VBaseAdjustBB = nullptr;

  // In the unspecified inheritance model, there might not be a vbtable at all,
  // in which case we need to skip the virtual base lookup.  If there is a
  // vbtable, the first entry is a no-op entry that gives back the original
  // base, so look for a virtual base adjustment offset of zero.
  if (VBPtrOffset) {
    OriginalBB = Builder.GetInsertBlock();
    VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
    SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
    llvm::Value *IsVirtual =
      Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
                           "memptr.is_vbase");
    Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
    CGF.EmitBlock(VBaseAdjustBB);
  }

  // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
  // know the vbptr offset.
  if (!VBPtrOffset) {
    CharUnits offs = CharUnits::Zero();
    if (!RD->hasDefinition()) {
      DiagnosticsEngine &Diags = CGF.CGM.getDiags();
      unsigned DiagID = Diags.getCustomDiagID(
          DiagnosticsEngine::Error,
          "member pointer representation requires a "
          "complete class type for %0 to perform this expression");
      Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
    } else if (RD->getNumVBases())
      offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
    VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
  }
  llvm::Value *VBPtr = nullptr;
  llvm::Value *VBaseOffs =
    GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
  llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);

  // Merge control flow with the case where we didn't have to adjust.
  if (VBaseAdjustBB) {
    Builder.CreateBr(SkipAdjustBB);
    CGF.EmitBlock(SkipAdjustBB);
    llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
    Phi->addIncoming(Base.getPointer(), OriginalBB);
    Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
    return Phi;
  }
  return AdjustedBase;
}

llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
    CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
    const MemberPointerType *MPT) {
  assert(MPT->isMemberDataPointer());
  unsigned AS = Base.getAddressSpace();
  llvm::Type *PType =
      CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
  CGBuilderTy &Builder = CGF.Builder;
  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();

  // Extract the fields we need, regardless of model.  We'll apply them if we
  // have them.
  llvm::Value *FieldOffset = MemPtr;
  llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
  llvm::Value *VBPtrOffset = nullptr;
  if (MemPtr->getType()->isStructTy()) {
    // We need to extract values.
    unsigned I = 0;
    FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
    if (inheritanceModelHasVBPtrOffsetField(Inheritance))
      VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
    if (inheritanceModelHasVBTableOffsetField(Inheritance))
      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
  }

  llvm::Value *Addr;
  if (VirtualBaseAdjustmentOffset) {
    Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
                             VBPtrOffset);
  } else {
    Addr = Base.getPointer();
  }

  // Cast to char*.
  Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS));

  // Apply the offset, which we assume is non-null.
  Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset");

  // Cast the address to the appropriate pointer type, adopting the address
  // space of the base pointer.
  return Builder.CreateBitCast(Addr, PType);
}

llvm::Value *
MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
                                             const CastExpr *E,
                                             llvm::Value *Src) {
  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
         E->getCastKind() == CK_BaseToDerivedMemberPointer ||
         E->getCastKind() == CK_ReinterpretMemberPointer);

  // Use constant emission if we can.
  if (isa<llvm::Constant>(Src))
    return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));

  // We may be adding or dropping fields from the member pointer, so we need
  // both types and the inheritance models of both records.
  const MemberPointerType *SrcTy =
    E->getSubExpr()->getType()->castAs<MemberPointerType>();
  const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
  bool IsFunc = SrcTy->isMemberFunctionPointer();

  // If the classes use the same null representation, reinterpret_cast is a nop.
  bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
  if (IsReinterpret && IsFunc)
    return Src;

  CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
  CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
  if (IsReinterpret &&
      SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
    return Src;

  CGBuilderTy &Builder = CGF.Builder;

  // Branch past the conversion if Src is null.
  llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
  llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);

  // C++ 5.2.10p9: The null member pointer value is converted to the null member
  //   pointer value of the destination type.
  if (IsReinterpret) {
    // For reinterpret casts, sema ensures that src and dst are both functions
    // or data and have the same size, which means the LLVM types should match.
    assert(Src->getType() == DstNull->getType());
    return Builder.CreateSelect(IsNotNull, Src, DstNull);
  }

  llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
  llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
  llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
  Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
  CGF.EmitBlock(ConvertBB);

  llvm::Value *Dst = EmitNonNullMemberPointerConversion(
      SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src,
      Builder);

  Builder.CreateBr(ContinueBB);

  // In the continuation, choose between DstNull and Dst.
  CGF.EmitBlock(ContinueBB);
  llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
  Phi->addIncoming(DstNull, OriginalBB);
  Phi->addIncoming(Dst, ConvertBB);
  return Phi;
}

llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion(
    const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
    CastExpr::path_const_iterator PathBegin,
    CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
    CGBuilderTy &Builder) {
  const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
  const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
  MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel();
  MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel();
  bool IsFunc = SrcTy->isMemberFunctionPointer();
  bool IsConstant = isa<llvm::Constant>(Src);

  // Decompose src.
  llvm::Value *FirstField = Src;
  llvm::Value *NonVirtualBaseAdjustment = getZeroInt();
  llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt();
  llvm::Value *VBPtrOffset = getZeroInt();
  if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) {
    // We need to extract values.
    unsigned I = 0;
    FirstField = Builder.CreateExtractValue(Src, I++);
    if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance))
      NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
    if (inheritanceModelHasVBPtrOffsetField(SrcInheritance))
      VBPtrOffset = Builder.CreateExtractValue(Src, I++);
    if (inheritanceModelHasVBTableOffsetField(SrcInheritance))
      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
  }

  bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer);
  const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy;
  const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl();

  // For data pointers, we adjust the field offset directly.  For functions, we
  // have a separate field.
  llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;

  // The virtual inheritance model has a quirk: the virtual base table is always
  // referenced when dereferencing a member pointer even if the member pointer
  // is non-virtual.  This is accounted for by adjusting the non-virtual offset
  // to point backwards to the top of the MDC from the first VBase.  Undo this
  // adjustment to normalize the member pointer.
  llvm::Value *SrcVBIndexEqZero =
      Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
  if (SrcInheritance == MSInheritanceModel::Virtual) {
    if (int64_t SrcOffsetToFirstVBase =
            getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) {
      llvm::Value *UndoSrcAdjustment = Builder.CreateSelect(
          SrcVBIndexEqZero,
          llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase),
          getZeroInt());
      NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment);
    }
  }

  // A non-zero vbindex implies that we are dealing with a source member in a
  // floating virtual base in addition to some non-virtual offset.  If the
  // vbindex is zero, we are dealing with a source that exists in a non-virtual,
  // fixed, base.  The difference between these two cases is that the vbindex +
  // nvoffset *always* point to the member regardless of what context they are
  // evaluated in so long as the vbindex is adjusted.  A member inside a fixed
  // base requires explicit nv adjustment.
  llvm::Constant *BaseClassOffset = llvm::ConstantInt::get(
      CGM.IntTy,
      CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd)
          .getQuantity());

  llvm::Value *NVDisp;
  if (IsDerivedToBase)
    NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj");
  else
    NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj");

  NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt());

  // Update the vbindex to an appropriate value in the destination because
  // SrcRD's vbtable might not be a strict prefix of the one in DstRD.
  llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero;
  if (inheritanceModelHasVBTableOffsetField(DstInheritance) &&
      inheritanceModelHasVBTableOffsetField(SrcInheritance)) {
    if (llvm::GlobalVariable *VDispMap =
            getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) {
      llvm::Value *VBIndex = Builder.CreateExactUDiv(
          VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4));
      if (IsConstant) {
        llvm::Constant *Mapping = VDispMap->getInitializer();
        VirtualBaseAdjustmentOffset =
            Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex));
      } else {
        llvm::Value *Idxs[] = {getZeroInt(), VBIndex};
        VirtualBaseAdjustmentOffset =
            Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs),
                                      CharUnits::fromQuantity(4));
      }

      DstVBIndexEqZero =
          Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
    }
  }

  // Set the VBPtrOffset to zero if the vbindex is zero.  Otherwise, initialize
  // it to the offset of the vbptr.
  if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) {
    llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get(
        CGM.IntTy,
        getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity());
    VBPtrOffset =
        Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset);
  }

  // Likewise, apply a similar adjustment so that dereferencing the member
  // pointer correctly accounts for the distance between the start of the first
  // virtual base and the top of the MDC.
  if (DstInheritance == MSInheritanceModel::Virtual) {
    if (int64_t DstOffsetToFirstVBase =
            getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) {
      llvm::Value *DoDstAdjustment = Builder.CreateSelect(
          DstVBIndexEqZero,
          llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase),
          getZeroInt());
      NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment);
    }
  }

  // Recompose dst from the null struct and the adjusted fields from src.
  llvm::Value *Dst;
  if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) {
    Dst = FirstField;
  } else {
    Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy));
    unsigned Idx = 0;
    Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
    if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance))
      Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++);
    if (inheritanceModelHasVBPtrOffsetField(DstInheritance))
      Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++);
    if (inheritanceModelHasVBTableOffsetField(DstInheritance))
      Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++);
  }
  return Dst;
}

llvm::Constant *
MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
                                             llvm::Constant *Src) {
  const MemberPointerType *SrcTy =
      E->getSubExpr()->getType()->castAs<MemberPointerType>();
  const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();

  CastKind CK = E->getCastKind();

  return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(),
                                     E->path_end(), Src);
}

llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion(
    const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
    CastExpr::path_const_iterator PathBegin,
    CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) {
  assert(CK == CK_DerivedToBaseMemberPointer ||
         CK == CK_BaseToDerivedMemberPointer ||
         CK == CK_ReinterpretMemberPointer);
  // If src is null, emit a new null for dst.  We can't return src because dst
  // might have a new representation.
  if (MemberPointerConstantIsNull(SrcTy, Src))
    return EmitNullMemberPointer(DstTy);

  // We don't need to do anything for reinterpret_casts of non-null member
  // pointers.  We should only get here when the two type representations have
  // the same size.
  if (CK == CK_ReinterpretMemberPointer)
    return Src;

  CGBuilderTy Builder(CGM, CGM.getLLVMContext());
  auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion(
      SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder));

  return Dst;
}

CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
    CodeGenFunction &CGF, const Expr *E, Address This,
    llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr,
    const MemberPointerType *MPT) {
  assert(MPT->isMemberFunctionPointer());
  const FunctionProtoType *FPT =
    MPT->getPointeeType()->castAs<FunctionProtoType>();
  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
  llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(
      CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr));
  CGBuilderTy &Builder = CGF.Builder;

  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();

  // Extract the fields we need, regardless of model.  We'll apply them if we
  // have them.
  llvm::Value *FunctionPointer = MemPtr;
  llvm::Value *NonVirtualBaseAdjustment = nullptr;
  llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
  llvm::Value *VBPtrOffset = nullptr;
  if (MemPtr->getType()->isStructTy()) {
    // We need to extract values.
    unsigned I = 0;
    FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
    if (inheritanceModelHasNVOffsetField(MPT, Inheritance))
      NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
    if (inheritanceModelHasVBPtrOffsetField(Inheritance))
      VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
    if (inheritanceModelHasVBTableOffsetField(Inheritance))
      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
  }

  if (VirtualBaseAdjustmentOffset) {
    ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This,
                                   VirtualBaseAdjustmentOffset, VBPtrOffset);
  } else {
    ThisPtrForCall = This.getPointer();
  }

  if (NonVirtualBaseAdjustment) {
    // Apply the adjustment and cast back to the original struct type.
    llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy);
    Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
    ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(),
                                           "this.adjusted");
  }

  FunctionPointer =
    Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
  CGCallee Callee(FPT, FunctionPointer);
  return Callee;
}

CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
  return new MicrosoftCXXABI(CGM);
}

// MS RTTI Overview:
// The run time type information emitted by cl.exe contains 5 distinct types of
// structures.  Many of them reference each other.
//
// TypeInfo:  Static classes that are returned by typeid.
//
// CompleteObjectLocator:  Referenced by vftables.  They contain information
//   required for dynamic casting, including OffsetFromTop.  They also contain
//   a reference to the TypeInfo for the type and a reference to the
//   CompleteHierarchyDescriptor for the type.
//
// ClassHierarchyDescriptor: Contains information about a class hierarchy.
//   Used during dynamic_cast to walk a class hierarchy.  References a base
//   class array and the size of said array.
//
// BaseClassArray: Contains a list of classes in a hierarchy.  BaseClassArray is
//   somewhat of a misnomer because the most derived class is also in the list
//   as well as multiple copies of virtual bases (if they occur multiple times
//   in the hierarchy.)  The BaseClassArray contains one BaseClassDescriptor for
//   every path in the hierarchy, in pre-order depth first order.  Note, we do
//   not declare a specific llvm type for BaseClassArray, it's merely an array
//   of BaseClassDescriptor pointers.
//
// BaseClassDescriptor: Contains information about a class in a class hierarchy.
//   BaseClassDescriptor is also somewhat of a misnomer for the same reason that
//   BaseClassArray is.  It contains information about a class within a
//   hierarchy such as: is this base is ambiguous and what is its offset in the
//   vbtable.  The names of the BaseClassDescriptors have all of their fields
//   mangled into them so they can be aggressively deduplicated by the linker.

static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
  StringRef MangledName("??_7type_info@@6B@");
  if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
    return VTable;
  return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
                                  /*isConstant=*/true,
                                  llvm::GlobalVariable::ExternalLinkage,
                                  /*Initializer=*/nullptr, MangledName);
}

namespace {

/// A Helper struct that stores information about a class in a class
/// hierarchy.  The information stored in these structs struct is used during
/// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
// During RTTI creation, MSRTTIClasses are stored in a contiguous array with
// implicit depth first pre-order tree connectivity.  getFirstChild and
// getNextSibling allow us to walk the tree efficiently.
struct MSRTTIClass {
  enum {
    IsPrivateOnPath = 1 | 8,
    IsAmbiguous = 2,
    IsPrivate = 4,
    IsVirtual = 16,
    HasHierarchyDescriptor = 64
  };
  MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
  uint32_t initialize(const MSRTTIClass *Parent,
                      const CXXBaseSpecifier *Specifier);

  MSRTTIClass *getFirstChild() { return this + 1; }
  static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
    return Child + 1 + Child->NumBases;
  }

  const CXXRecordDecl *RD, *VirtualRoot;
  uint32_t Flags, NumBases, OffsetInVBase;
};

/// Recursively initialize the base class array.
uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
                                 const CXXBaseSpecifier *Specifier) {
  Flags = HasHierarchyDescriptor;
  if (!Parent) {
    VirtualRoot = nullptr;
    OffsetInVBase = 0;
  } else {
    if (Specifier->getAccessSpecifier() != AS_public)
      Flags |= IsPrivate | IsPrivateOnPath;
    if (Specifier->isVirtual()) {
      Flags |= IsVirtual;
      VirtualRoot = RD;
      OffsetInVBase = 0;
    } else {
      if (Parent->Flags & IsPrivateOnPath)
        Flags |= IsPrivateOnPath;
      VirtualRoot = Parent->VirtualRoot;
      OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
          .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
    }
  }
  NumBases = 0;
  MSRTTIClass *Child = getFirstChild();
  for (const CXXBaseSpecifier &Base : RD->bases()) {
    NumBases += Child->initialize(this, &Base) + 1;
    Child = getNextChild(Child);
  }
  return NumBases;
}

static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
  switch (Ty->getLinkage()) {
  case NoLinkage:
  case InternalLinkage:
  case UniqueExternalLinkage:
    return llvm::GlobalValue::InternalLinkage;

  case VisibleNoLinkage:
  case ModuleInternalLinkage:
  case ModuleLinkage:
  case ExternalLinkage:
    return llvm::GlobalValue::LinkOnceODRLinkage;
  }
  llvm_unreachable("Invalid linkage!");
}

/// An ephemeral helper class for building MS RTTI types.  It caches some
/// calls to the module and information about the most derived class in a
/// hierarchy.
struct MSRTTIBuilder {
  enum {
    HasBranchingHierarchy = 1,
    HasVirtualBranchingHierarchy = 2,
    HasAmbiguousBases = 4
  };

  MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
      : CGM(ABI.CGM), Context(CGM.getContext()),
        VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
        Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
        ABI(ABI) {}

  llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
  llvm::GlobalVariable *
  getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
  llvm::GlobalVariable *getClassHierarchyDescriptor();
  llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info);

  CodeGenModule &CGM;
  ASTContext &Context;
  llvm::LLVMContext &VMContext;
  llvm::Module &Module;
  const CXXRecordDecl *RD;
  llvm::GlobalVariable::LinkageTypes Linkage;
  MicrosoftCXXABI &ABI;
};

} // namespace

/// Recursively serializes a class hierarchy in pre-order depth first
/// order.
static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
                                    const CXXRecordDecl *RD) {
  Classes.push_back(MSRTTIClass(RD));
  for (const CXXBaseSpecifier &Base : RD->bases())
    serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
}

/// Find ambiguity among base classes.
static void
detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
  llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
  llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
  llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
  for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
    if ((Class->Flags & MSRTTIClass::IsVirtual) &&
        !VirtualBases.insert(Class->RD).second) {
      Class = MSRTTIClass::getNextChild(Class);
      continue;
    }
    if (!UniqueBases.insert(Class->RD).second)
      AmbiguousBases.insert(Class->RD);
    Class++;
  }
  if (AmbiguousBases.empty())
    return;
  for (MSRTTIClass &Class : Classes)
    if (AmbiguousBases.count(Class.RD))
      Class.Flags |= MSRTTIClass::IsAmbiguous;
}

llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
  SmallString<256> MangledName;
  {
    llvm::raw_svector_ostream Out(MangledName);
    ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
  }

  // Check to see if we've already declared this ClassHierarchyDescriptor.
  if (auto CHD = Module.getNamedGlobal(MangledName))
    return CHD;

  // Serialize the class hierarchy and initialize the CHD Fields.
  SmallVector<MSRTTIClass, 8> Classes;
  serializeClassHierarchy(Classes, RD);
  Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
  detectAmbiguousBases(Classes);
  int Flags = 0;
  for (auto Class : Classes) {
    if (Class.RD->getNumBases() > 1)
      Flags |= HasBranchingHierarchy;
    // Note: cl.exe does not calculate "HasAmbiguousBases" correctly.  We
    // believe the field isn't actually used.
    if (Class.Flags & MSRTTIClass::IsAmbiguous)
      Flags |= HasAmbiguousBases;
  }
  if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
    Flags |= HasVirtualBranchingHierarchy;
  // These gep indices are used to get the address of the first element of the
  // base class array.
  llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
                               llvm::ConstantInt::get(CGM.IntTy, 0)};

  // Forward-declare the class hierarchy descriptor
  auto Type = ABI.getClassHierarchyDescriptorType();
  auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
                                      /*Initializer=*/nullptr,
                                      MangledName);
  if (CHD->isWeakForLinker())
    CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));

  auto *Bases = getBaseClassArray(Classes);

  // Initialize the base class ClassHierarchyDescriptor.
  llvm::Constant *Fields[] = {
      llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime
      llvm::ConstantInt::get(CGM.IntTy, Flags),
      llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
      ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
          Bases->getValueType(), Bases,
          llvm::ArrayRef<llvm::Value *>(GEPIndices))),
  };
  CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
  return CHD;
}

llvm::GlobalVariable *
MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
  SmallString<256> MangledName;
  {
    llvm::raw_svector_ostream Out(MangledName);
    ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
  }

  // Forward-declare the base class array.
  // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
  // mode) bytes of padding.  We provide a pointer sized amount of padding by
  // adding +1 to Classes.size().  The sections have pointer alignment and are
  // marked pick-any so it shouldn't matter.
  llvm::Type *PtrType = ABI.getImageRelativeType(
      ABI.getBaseClassDescriptorType()->getPointerTo());
  auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
  auto *BCA =
      new llvm::GlobalVariable(Module, ArrType,
                               /*isConstant=*/true, Linkage,
                               /*Initializer=*/nullptr, MangledName);
  if (BCA->isWeakForLinker())
    BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));

  // Initialize the BaseClassArray.
  SmallVector<llvm::Constant *, 8> BaseClassArrayData;
  for (MSRTTIClass &Class : Classes)
    BaseClassArrayData.push_back(
        ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
  BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
  BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
  return BCA;
}

llvm::GlobalVariable *
MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
  // Compute the fields for the BaseClassDescriptor.  They are computed up front
  // because they are mangled into the name of the object.
  uint32_t OffsetInVBTable = 0;
  int32_t VBPtrOffset = -1;
  if (Class.VirtualRoot) {
    auto &VTableContext = CGM.getMicrosoftVTableContext();
    OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
    VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
  }

  SmallString<256> MangledName;
  {
    llvm::raw_svector_ostream Out(MangledName);
    ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
        Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
        Class.Flags, Out);
  }

  // Check to see if we've already declared this object.
  if (auto BCD = Module.getNamedGlobal(MangledName))
    return BCD;

  // Forward-declare the base class descriptor.
  auto Type = ABI.getBaseClassDescriptorType();
  auto BCD =
      new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
                               /*Initializer=*/nullptr, MangledName);
  if (BCD->isWeakForLinker())
    BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));

  // Initialize the BaseClassDescriptor.
  llvm::Constant *Fields[] = {
      ABI.getImageRelativeConstant(
          ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
      llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
      llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
      llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
      llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
      llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
      ABI.getImageRelativeConstant(
          MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
  };
  BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
  return BCD;
}

llvm::GlobalVariable *
MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) {
  SmallString<256> MangledName;
  {
    llvm::raw_svector_ostream Out(MangledName);
    ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out);
  }

  // Check to see if we've already computed this complete object locator.
  if (auto COL = Module.getNamedGlobal(MangledName))
    return COL;

  // Compute the fields of the complete object locator.
  int OffsetToTop = Info.FullOffsetInMDC.getQuantity();
  int VFPtrOffset = 0;
  // The offset includes the vtordisp if one exists.
  if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr())
    if (Context.getASTRecordLayout(RD)
      .getVBaseOffsetsMap()
      .find(VBase)
      ->second.hasVtorDisp())
      VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4;

  // Forward-declare the complete object locator.
  llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
  auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
    /*Initializer=*/nullptr, MangledName);

  // Initialize the CompleteObjectLocator.
  llvm::Constant *Fields[] = {
      llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
      llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
      llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
      ABI.getImageRelativeConstant(
          CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
      ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
      ABI.getImageRelativeConstant(COL),
  };
  llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
  if (!ABI.isImageRelative())
    FieldsRef = FieldsRef.drop_back();
  COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
  if (COL->isWeakForLinker())
    COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
  return COL;
}

static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
                                   bool &IsConst, bool &IsVolatile,
                                   bool &IsUnaligned) {
  T = Context.getExceptionObjectType(T);

  // C++14 [except.handle]p3:
  //   A handler is a match for an exception object of type E if [...]
  //     - the handler is of type cv T or const T& where T is a pointer type and
  //       E is a pointer type that can be converted to T by [...]
  //         - a qualification conversion
  IsConst = false;
  IsVolatile = false;
  IsUnaligned = false;
  QualType PointeeType = T->getPointeeType();
  if (!PointeeType.isNull()) {
    IsConst = PointeeType.isConstQualified();
    IsVolatile = PointeeType.isVolatileQualified();
    IsUnaligned = PointeeType.getQualifiers().hasUnaligned();
  }

  // Member pointer types like "const int A::*" are represented by having RTTI
  // for "int A::*" and separately storing the const qualifier.
  if (const auto *MPTy = T->getAs<MemberPointerType>())
    T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
                                     MPTy->getClass());

  // Pointer types like "const int * const *" are represented by having RTTI
  // for "const int **" and separately storing the const qualifier.
  if (T->isPointerType())
    T = Context.getPointerType(PointeeType.getUnqualifiedType());

  return T;
}

CatchTypeInfo
MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
                                              QualType CatchHandlerType) {
  // TypeDescriptors for exceptions never have qualified pointer types,
  // qualifiers are stored separately in order to support qualification
  // conversions.
  bool IsConst, IsVolatile, IsUnaligned;
  Type =
      decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned);

  bool IsReference = CatchHandlerType->isReferenceType();

  uint32_t Flags = 0;
  if (IsConst)
    Flags |= 1;
  if (IsVolatile)
    Flags |= 2;
  if (IsUnaligned)
    Flags |= 4;
  if (IsReference)
    Flags |= 8;

  return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(),
                       Flags};
}

/// Gets a TypeDescriptor.  Returns a llvm::Constant * rather than a
/// llvm::GlobalVariable * because different type descriptors have different
/// types, and need to be abstracted.  They are abstracting by casting the
/// address to an Int8PtrTy.
llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
  SmallString<256> MangledName;
  {
    llvm::raw_svector_ostream Out(MangledName);
    getMangleContext().mangleCXXRTTI(Type, Out);
  }

  // Check to see if we've already declared this TypeDescriptor.
  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
    return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);

  // Note for the future: If we would ever like to do deferred emission of
  // RTTI, check if emitting vtables opportunistically need any adjustment.

  // Compute the fields for the TypeDescriptor.
  SmallString<256> TypeInfoString;
  {
    llvm::raw_svector_ostream Out(TypeInfoString);
    getMangleContext().mangleCXXRTTIName(Type, Out);
  }

  // Declare and initialize the TypeDescriptor.
  llvm::Constant *Fields[] = {
    getTypeInfoVTable(CGM),                        // VFPtr
    llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
    llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
  llvm::StructType *TypeDescriptorType =
      getTypeDescriptorType(TypeInfoString);
  auto *Var = new llvm::GlobalVariable(
      CGM.getModule(), TypeDescriptorType, /*isConstant=*/false,
      getLinkageForRTTI(Type),
      llvm::ConstantStruct::get(TypeDescriptorType, Fields),
      MangledName);
  if (Var->isWeakForLinker())
    Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
  return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy);
}

/// Gets or a creates a Microsoft CompleteObjectLocator.
llvm::GlobalVariable *
MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
                                            const VPtrInfo &Info) {
  return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
}

void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) {
  if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) {
    // There are no constructor variants, always emit the complete destructor.
    llvm::Function *Fn =
        CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete));
    CGM.maybeSetTrivialComdat(*ctor, *Fn);
    return;
  }

  auto *dtor = cast<CXXDestructorDecl>(GD.getDecl());

  // Emit the base destructor if the base and complete (vbase) destructors are
  // equivalent. This effectively implements -mconstructor-aliases as part of
  // the ABI.
  if (GD.getDtorType() == Dtor_Complete &&
      dtor->getParent()->getNumVBases() == 0)
    GD = GD.getWithDtorType(Dtor_Base);

  // The base destructor is equivalent to the base destructor of its
  // base class if there is exactly one non-virtual base class with a
  // non-trivial destructor, there are no fields with a non-trivial
  // destructor, and the body of the destructor is trivial.
  if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
    return;

  llvm::Function *Fn = CGM.codegenCXXStructor(GD);
  if (Fn->isWeakForLinker())
    Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
}

llvm::Function *
MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
                                         CXXCtorType CT) {
  assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);

  // Calculate the mangled name.
  SmallString<256> ThunkName;
  llvm::raw_svector_ostream Out(ThunkName);
  getMangleContext().mangleCXXCtor(CD, CT, Out);

  // If the thunk has been generated previously, just return it.
  if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
    return cast<llvm::Function>(GV);

  // Create the llvm::Function.
  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
  llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
  const CXXRecordDecl *RD = CD->getParent();
  QualType RecordTy = getContext().getRecordType(RD);
  llvm::Function *ThunkFn = llvm::Function::Create(
      ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
  ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
      FnInfo.getEffectiveCallingConvention()));
  if (ThunkFn->isWeakForLinker())
    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
  bool IsCopy = CT == Ctor_CopyingClosure;

  // Start codegen.
  CodeGenFunction CGF(CGM);
  CGF.CurGD = GlobalDecl(CD, Ctor_Complete);

  // Build FunctionArgs.
  FunctionArgList FunctionArgs;

  // A constructor always starts with a 'this' pointer as its first argument.
  buildThisParam(CGF, FunctionArgs);

  // Following the 'this' pointer is a reference to the source object that we
  // are copying from.
  ImplicitParamDecl SrcParam(
      getContext(), /*DC=*/nullptr, SourceLocation(),
      &getContext().Idents.get("src"),
      getContext().getLValueReferenceType(RecordTy,
                                          /*SpelledAsLValue=*/true),
      ImplicitParamDecl::Other);
  if (IsCopy)
    FunctionArgs.push_back(&SrcParam);

  // Constructors for classes which utilize virtual bases have an additional
  // parameter which indicates whether or not it is being delegated to by a more
  // derived constructor.
  ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr,
                                  SourceLocation(),
                                  &getContext().Idents.get("is_most_derived"),
                                  getContext().IntTy, ImplicitParamDecl::Other);
  // Only add the parameter to the list if the class has virtual bases.
  if (RD->getNumVBases() > 0)
    FunctionArgs.push_back(&IsMostDerived);

  // Start defining the function.
  auto NL = ApplyDebugLocation::CreateEmpty(CGF);
  CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
                    FunctionArgs, CD->getLocation(), SourceLocation());
  // Create a scope with an artificial location for the body of this function.
  auto AL = ApplyDebugLocation::CreateArtificial(CGF);
  setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
  llvm::Value *This = getThisValue(CGF);

  llvm::Value *SrcVal =
      IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
             : nullptr;

  CallArgList Args;

  // Push the this ptr.
  Args.add(RValue::get(This), CD->getThisType());

  // Push the src ptr.
  if (SrcVal)
    Args.add(RValue::get(SrcVal), SrcParam.getType());

  // Add the rest of the default arguments.
  SmallVector<const Stmt *, 4> ArgVec;
  ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0);
  for (const ParmVarDecl *PD : params) {
    assert(PD->hasDefaultArg() && "ctor closure lacks default args");
    ArgVec.push_back(PD->getDefaultArg());
  }

  CodeGenFunction::RunCleanupsScope Cleanups(CGF);

  const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
  CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0);

  // Insert any ABI-specific implicit constructor arguments.
  AddedStructorArgs ExtraArgs =
      addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
                                 /*ForVirtualBase=*/false,
                                 /*Delegating=*/false, Args);
  // Call the destructor with our arguments.
  llvm::Constant *CalleePtr =
      CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
  CGCallee Callee =
      CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete));
  const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
      Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix);
  CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args);

  Cleanups.ForceCleanup();

  // Emit the ret instruction, remove any temporary instructions created for the
  // aid of CodeGen.
  CGF.FinishFunction(SourceLocation());

  return ThunkFn;
}

llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
                                                  uint32_t NVOffset,
                                                  int32_t VBPtrOffset,
                                                  uint32_t VBIndex) {
  assert(!T->isReferenceType());

  CXXRecordDecl *RD = T->getAsCXXRecordDecl();
  const CXXConstructorDecl *CD =
      RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
  CXXCtorType CT = Ctor_Complete;
  if (CD)
    if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
      CT = Ctor_CopyingClosure;

  uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
  SmallString<256> MangledName;
  {
    llvm::raw_svector_ostream Out(MangledName);
    getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
                                              VBPtrOffset, VBIndex, Out);
  }
  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
    return getImageRelativeConstant(GV);

  // The TypeDescriptor is used by the runtime to determine if a catch handler
  // is appropriate for the exception object.
  llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));

  // The runtime is responsible for calling the copy constructor if the
  // exception is caught by value.
  llvm::Constant *CopyCtor;
  if (CD) {
    if (CT == Ctor_CopyingClosure)
      CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
    else
      CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));

    CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy);
  } else {
    CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
  }
  CopyCtor = getImageRelativeConstant(CopyCtor);

  bool IsScalar = !RD;
  bool HasVirtualBases = false;
  bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
  QualType PointeeType = T;
  if (T->isPointerType())
    PointeeType = T->getPointeeType();
  if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
    HasVirtualBases = RD->getNumVBases() > 0;
    if (IdentifierInfo *II = RD->getIdentifier())
      IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
  }

  // Encode the relevant CatchableType properties into the Flags bitfield.
  // FIXME: Figure out how bits 2 or 8 can get set.
  uint32_t Flags = 0;
  if (IsScalar)
    Flags |= 1;
  if (HasVirtualBases)
    Flags |= 4;
  if (IsStdBadAlloc)
    Flags |= 16;

  llvm::Constant *Fields[] = {
      llvm::ConstantInt::get(CGM.IntTy, Flags),       // Flags
      TD,                                             // TypeDescriptor
      llvm::ConstantInt::get(CGM.IntTy, NVOffset),    // NonVirtualAdjustment
      llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
      llvm::ConstantInt::get(CGM.IntTy, VBIndex),     // VBTableIndex
      llvm::ConstantInt::get(CGM.IntTy, Size),        // Size
      CopyCtor                                        // CopyCtor
  };
  llvm::StructType *CTType = getCatchableTypeType();
  auto *GV = new llvm::GlobalVariable(
      CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T),
      llvm::ConstantStruct::get(CTType, Fields), MangledName);
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  GV->setSection(".xdata");
  if (GV->isWeakForLinker())
    GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
  return getImageRelativeConstant(GV);
}

llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
  assert(!T->isReferenceType());

  // See if we've already generated a CatchableTypeArray for this type before.
  llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
  if (CTA)
    return CTA;

  // Ensure that we don't have duplicate entries in our CatchableTypeArray by
  // using a SmallSetVector.  Duplicates may arise due to virtual bases
  // occurring more than once in the hierarchy.
  llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;

  // C++14 [except.handle]p3:
  //   A handler is a match for an exception object of type E if [...]
  //     - the handler is of type cv T or cv T& and T is an unambiguous public
  //       base class of E, or
  //     - the handler is of type cv T or const T& where T is a pointer type and
  //       E is a pointer type that can be converted to T by [...]
  //         - a standard pointer conversion (4.10) not involving conversions to
  //           pointers to private or protected or ambiguous classes
  const CXXRecordDecl *MostDerivedClass = nullptr;
  bool IsPointer = T->isPointerType();
  if (IsPointer)
    MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
  else
    MostDerivedClass = T->getAsCXXRecordDecl();

  // Collect all the unambiguous public bases of the MostDerivedClass.
  if (MostDerivedClass) {
    const ASTContext &Context = getContext();
    const ASTRecordLayout &MostDerivedLayout =
        Context.getASTRecordLayout(MostDerivedClass);
    MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
    SmallVector<MSRTTIClass, 8> Classes;
    serializeClassHierarchy(Classes, MostDerivedClass);
    Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
    detectAmbiguousBases(Classes);
    for (const MSRTTIClass &Class : Classes) {
      // Skip any ambiguous or private bases.
      if (Class.Flags &
          (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
        continue;
      // Write down how to convert from a derived pointer to a base pointer.
      uint32_t OffsetInVBTable = 0;
      int32_t VBPtrOffset = -1;
      if (Class.VirtualRoot) {
        OffsetInVBTable =
          VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
        VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
      }

      // Turn our record back into a pointer if the exception object is a
      // pointer.
      QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
      if (IsPointer)
        RTTITy = Context.getPointerType(RTTITy);
      CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
                                             VBPtrOffset, OffsetInVBTable));
    }
  }

  // C++14 [except.handle]p3:
  //   A handler is a match for an exception object of type E if
  //     - The handler is of type cv T or cv T& and E and T are the same type
  //       (ignoring the top-level cv-qualifiers)
  CatchableTypes.insert(getCatchableType(T));

  // C++14 [except.handle]p3:
  //   A handler is a match for an exception object of type E if
  //     - the handler is of type cv T or const T& where T is a pointer type and
  //       E is a pointer type that can be converted to T by [...]
  //         - a standard pointer conversion (4.10) not involving conversions to
  //           pointers to private or protected or ambiguous classes
  //
  // C++14 [conv.ptr]p2:
  //   A prvalue of type "pointer to cv T," where T is an object type, can be
  //   converted to a prvalue of type "pointer to cv void".
  if (IsPointer && T->getPointeeType()->isObjectType())
    CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));

  // C++14 [except.handle]p3:
  //   A handler is a match for an exception object of type E if [...]
  //     - the handler is of type cv T or const T& where T is a pointer or
  //       pointer to member type and E is std::nullptr_t.
  //
  // We cannot possibly list all possible pointer types here, making this
  // implementation incompatible with the standard.  However, MSVC includes an
  // entry for pointer-to-void in this case.  Let's do the same.
  if (T->isNullPtrType())
    CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));

  uint32_t NumEntries = CatchableTypes.size();
  llvm::Type *CTType =
      getImageRelativeType(getCatchableTypeType()->getPointerTo());
  llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
  llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
  llvm::Constant *Fields[] = {
      llvm::ConstantInt::get(CGM.IntTy, NumEntries),    // NumEntries
      llvm::ConstantArray::get(
          AT, llvm::makeArrayRef(CatchableTypes.begin(),
                                 CatchableTypes.end())) // CatchableTypes
  };
  SmallString<256> MangledName;
  {
    llvm::raw_svector_ostream Out(MangledName);
    getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
  }
  CTA = new llvm::GlobalVariable(
      CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T),
      llvm::ConstantStruct::get(CTAType, Fields), MangledName);
  CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  CTA->setSection(".xdata");
  if (CTA->isWeakForLinker())
    CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
  return CTA;
}

llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
  bool IsConst, IsVolatile, IsUnaligned;
  T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned);

  // The CatchableTypeArray enumerates the various (CV-unqualified) types that
  // the exception object may be caught as.
  llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
  // The first field in a CatchableTypeArray is the number of CatchableTypes.
  // This is used as a component of the mangled name which means that we need to
  // know what it is in order to see if we have previously generated the
  // ThrowInfo.
  uint32_t NumEntries =
      cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
          ->getLimitedValue();

  SmallString<256> MangledName;
  {
    llvm::raw_svector_ostream Out(MangledName);
    getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned,
                                          NumEntries, Out);
  }

  // Reuse a previously generated ThrowInfo if we have generated an appropriate
  // one before.
  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
    return GV;

  // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
  // be at least as CV qualified.  Encode this requirement into the Flags
  // bitfield.
  uint32_t Flags = 0;
  if (IsConst)
    Flags |= 1;
  if (IsVolatile)
    Flags |= 2;
  if (IsUnaligned)
    Flags |= 4;

  // The cleanup-function (a destructor) must be called when the exception
  // object's lifetime ends.
  llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
    if (CXXDestructorDecl *DtorD = RD->getDestructor())
      if (!DtorD->isTrivial())
        CleanupFn = llvm::ConstantExpr::getBitCast(
            CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)),
            CGM.Int8PtrTy);
  // This is unused as far as we can tell, initialize it to null.
  llvm::Constant *ForwardCompat =
      getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
  llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(
      llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy));
  llvm::StructType *TIType = getThrowInfoType();
  llvm::Constant *Fields[] = {
      llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
      getImageRelativeConstant(CleanupFn),      // CleanupFn
      ForwardCompat,                            // ForwardCompat
      PointerToCatchableTypes                   // CatchableTypeArray
  };
  auto *GV = new llvm::GlobalVariable(
      CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T),
      llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName));
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  GV->setSection(".xdata");
  if (GV->isWeakForLinker())
    GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
  return GV;
}

void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
  const Expr *SubExpr = E->getSubExpr();
  QualType ThrowType = SubExpr->getType();
  // The exception object lives on the stack and it's address is passed to the
  // runtime function.
  Address AI = CGF.CreateMemTemp(ThrowType);
  CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
                       /*IsInit=*/true);

  // The so-called ThrowInfo is used to describe how the exception object may be
  // caught.
  llvm::GlobalVariable *TI = getThrowInfo(ThrowType);

  // Call into the runtime to throw the exception.
  llvm::Value *Args[] = {
    CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy),
    TI
  };
  CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
}

std::pair<llvm::Value *, const CXXRecordDecl *>
MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This,
                               const CXXRecordDecl *RD) {
  std::tie(This, std::ignore, RD) =
      performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0));
  return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD};
}