TargetInfo.cpp 364 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068
//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These classes wrap the information about a call or function
// definition used to handle ABI compliancy.
//
//===----------------------------------------------------------------------===//

#include "TargetInfo.h"
#include "ABIInfo.h"
#include "CGBlocks.h"
#include "CGCXXABI.h"
#include "CGValue.h"
#include "CodeGenFunction.h"
#include "clang/AST/Attr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "clang/CodeGen/SwiftCallingConv.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm> // std::sort

using namespace clang;
using namespace CodeGen;

// Helper for coercing an aggregate argument or return value into an integer
// array of the same size (including padding) and alignment.  This alternate
// coercion happens only for the RenderScript ABI and can be removed after
// runtimes that rely on it are no longer supported.
//
// RenderScript assumes that the size of the argument / return value in the IR
// is the same as the size of the corresponding qualified type. This helper
// coerces the aggregate type into an array of the same size (including
// padding).  This coercion is used in lieu of expansion of struct members or
// other canonical coercions that return a coerced-type of larger size.
//
// Ty          - The argument / return value type
// Context     - The associated ASTContext
// LLVMContext - The associated LLVMContext
static ABIArgInfo coerceToIntArray(QualType Ty,
                                   ASTContext &Context,
                                   llvm::LLVMContext &LLVMContext) {
  // Alignment and Size are measured in bits.
  const uint64_t Size = Context.getTypeSize(Ty);
  const uint64_t Alignment = Context.getTypeAlign(Ty);
  llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
  const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
  return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
}

static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
                               llvm::Value *Array,
                               llvm::Value *Value,
                               unsigned FirstIndex,
                               unsigned LastIndex) {
  // Alternatively, we could emit this as a loop in the source.
  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
    llvm::Value *Cell =
        Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
    Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
  }
}

static bool isAggregateTypeForABI(QualType T) {
  return !CodeGenFunction::hasScalarEvaluationKind(T) ||
         T->isMemberFunctionPointerType();
}

ABIArgInfo
ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
                                 llvm::Type *Padding) const {
  return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
                                 ByRef, Realign, Padding);
}

ABIArgInfo
ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
  return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
                                      /*ByRef*/ false, Realign);
}

Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
                             QualType Ty) const {
  return Address::invalid();
}

ABIInfo::~ABIInfo() {}

/// Does the given lowering require more than the given number of
/// registers when expanded?
///
/// This is intended to be the basis of a reasonable basic implementation
/// of should{Pass,Return}IndirectlyForSwift.
///
/// For most targets, a limit of four total registers is reasonable; this
/// limits the amount of code required in order to move around the value
/// in case it wasn't produced immediately prior to the call by the caller
/// (or wasn't produced in exactly the right registers) or isn't used
/// immediately within the callee.  But some targets may need to further
/// limit the register count due to an inability to support that many
/// return registers.
static bool occupiesMoreThan(CodeGenTypes &cgt,
                             ArrayRef<llvm::Type*> scalarTypes,
                             unsigned maxAllRegisters) {
  unsigned intCount = 0, fpCount = 0;
  for (llvm::Type *type : scalarTypes) {
    if (type->isPointerTy()) {
      intCount++;
    } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
      auto ptrWidth = cgt.getTarget().getPointerWidth(0);
      intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
    } else {
      assert(type->isVectorTy() || type->isFloatingPointTy());
      fpCount++;
    }
  }

  return (intCount + fpCount > maxAllRegisters);
}

bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
                                             llvm::Type *eltTy,
                                             unsigned numElts) const {
  // The default implementation of this assumes that the target guarantees
  // 128-bit SIMD support but nothing more.
  return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
}

static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
                                              CGCXXABI &CXXABI) {
  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
  if (!RD) {
    if (!RT->getDecl()->canPassInRegisters())
      return CGCXXABI::RAA_Indirect;
    return CGCXXABI::RAA_Default;
  }
  return CXXABI.getRecordArgABI(RD);
}

static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
                                              CGCXXABI &CXXABI) {
  const RecordType *RT = T->getAs<RecordType>();
  if (!RT)
    return CGCXXABI::RAA_Default;
  return getRecordArgABI(RT, CXXABI);
}

static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
                               const ABIInfo &Info) {
  QualType Ty = FI.getReturnType();

  if (const auto *RT = Ty->getAs<RecordType>())
    if (!isa<CXXRecordDecl>(RT->getDecl()) &&
        !RT->getDecl()->canPassInRegisters()) {
      FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
      return true;
    }

  return CXXABI.classifyReturnType(FI);
}

/// Pass transparent unions as if they were the type of the first element. Sema
/// should ensure that all elements of the union have the same "machine type".
static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
  if (const RecordType *UT = Ty->getAsUnionType()) {
    const RecordDecl *UD = UT->getDecl();
    if (UD->hasAttr<TransparentUnionAttr>()) {
      assert(!UD->field_empty() && "sema created an empty transparent union");
      return UD->field_begin()->getType();
    }
  }
  return Ty;
}

CGCXXABI &ABIInfo::getCXXABI() const {
  return CGT.getCXXABI();
}

ASTContext &ABIInfo::getContext() const {
  return CGT.getContext();
}

llvm::LLVMContext &ABIInfo::getVMContext() const {
  return CGT.getLLVMContext();
}

const llvm::DataLayout &ABIInfo::getDataLayout() const {
  return CGT.getDataLayout();
}

const TargetInfo &ABIInfo::getTarget() const {
  return CGT.getTarget();
}

const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
  return CGT.getCodeGenOpts();
}

bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }

bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
  return false;
}

bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
                                                uint64_t Members) const {
  return false;
}

LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
  raw_ostream &OS = llvm::errs();
  OS << "(ABIArgInfo Kind=";
  switch (TheKind) {
  case Direct:
    OS << "Direct Type=";
    if (llvm::Type *Ty = getCoerceToType())
      Ty->print(OS);
    else
      OS << "null";
    break;
  case Extend:
    OS << "Extend";
    break;
  case Ignore:
    OS << "Ignore";
    break;
  case InAlloca:
    OS << "InAlloca Offset=" << getInAllocaFieldIndex();
    break;
  case Indirect:
    OS << "Indirect Align=" << getIndirectAlign().getQuantity()
       << " ByVal=" << getIndirectByVal()
       << " Realign=" << getIndirectRealign();
    break;
  case Expand:
    OS << "Expand";
    break;
  case CoerceAndExpand:
    OS << "CoerceAndExpand Type=";
    getCoerceAndExpandType()->print(OS);
    break;
  }
  OS << ")\n";
}

// Dynamically round a pointer up to a multiple of the given alignment.
static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
                                                  llvm::Value *Ptr,
                                                  CharUnits Align) {
  llvm::Value *PtrAsInt = Ptr;
  // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
  PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
  PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
        llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
  PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
           llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
  PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
                                        Ptr->getType(),
                                        Ptr->getName() + ".aligned");
  return PtrAsInt;
}

/// Emit va_arg for a platform using the common void* representation,
/// where arguments are simply emitted in an array of slots on the stack.
///
/// This version implements the core direct-value passing rules.
///
/// \param SlotSize - The size and alignment of a stack slot.
///   Each argument will be allocated to a multiple of this number of
///   slots, and all the slots will be aligned to this value.
/// \param AllowHigherAlign - The slot alignment is not a cap;
///   an argument type with an alignment greater than the slot size
///   will be emitted on a higher-alignment address, potentially
///   leaving one or more empty slots behind as padding.  If this
///   is false, the returned address might be less-aligned than
///   DirectAlign.
static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
                                      Address VAListAddr,
                                      llvm::Type *DirectTy,
                                      CharUnits DirectSize,
                                      CharUnits DirectAlign,
                                      CharUnits SlotSize,
                                      bool AllowHigherAlign) {
  // Cast the element type to i8* if necessary.  Some platforms define
  // va_list as a struct containing an i8* instead of just an i8*.
  if (VAListAddr.getElementType() != CGF.Int8PtrTy)
    VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);

  llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");

  // If the CC aligns values higher than the slot size, do so if needed.
  Address Addr = Address::invalid();
  if (AllowHigherAlign && DirectAlign > SlotSize) {
    Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
                                                 DirectAlign);
  } else {
    Addr = Address(Ptr, SlotSize);
  }

  // Advance the pointer past the argument, then store that back.
  CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
  Address NextPtr =
      CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
  CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);

  // If the argument is smaller than a slot, and this is a big-endian
  // target, the argument will be right-adjusted in its slot.
  if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
      !DirectTy->isStructTy()) {
    Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
  }

  Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
  return Addr;
}

/// Emit va_arg for a platform using the common void* representation,
/// where arguments are simply emitted in an array of slots on the stack.
///
/// \param IsIndirect - Values of this type are passed indirectly.
/// \param ValueInfo - The size and alignment of this type, generally
///   computed with getContext().getTypeInfoInChars(ValueTy).
/// \param SlotSizeAndAlign - The size and alignment of a stack slot.
///   Each argument will be allocated to a multiple of this number of
///   slots, and all the slots will be aligned to this value.
/// \param AllowHigherAlign - The slot alignment is not a cap;
///   an argument type with an alignment greater than the slot size
///   will be emitted on a higher-alignment address, potentially
///   leaving one or more empty slots behind as padding.
static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                QualType ValueTy, bool IsIndirect,
                                std::pair<CharUnits, CharUnits> ValueInfo,
                                CharUnits SlotSizeAndAlign,
                                bool AllowHigherAlign) {
  // The size and alignment of the value that was passed directly.
  CharUnits DirectSize, DirectAlign;
  if (IsIndirect) {
    DirectSize = CGF.getPointerSize();
    DirectAlign = CGF.getPointerAlign();
  } else {
    DirectSize = ValueInfo.first;
    DirectAlign = ValueInfo.second;
  }

  // Cast the address we've calculated to the right type.
  llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
  if (IsIndirect)
    DirectTy = DirectTy->getPointerTo(0);

  Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
                                        DirectSize, DirectAlign,
                                        SlotSizeAndAlign,
                                        AllowHigherAlign);

  if (IsIndirect) {
    Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
  }

  return Addr;

}

static Address emitMergePHI(CodeGenFunction &CGF,
                            Address Addr1, llvm::BasicBlock *Block1,
                            Address Addr2, llvm::BasicBlock *Block2,
                            const llvm::Twine &Name = "") {
  assert(Addr1.getType() == Addr2.getType());
  llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
  PHI->addIncoming(Addr1.getPointer(), Block1);
  PHI->addIncoming(Addr2.getPointer(), Block2);
  CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
  return Address(PHI, Align);
}

TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }

// If someone can figure out a general rule for this, that would be great.
// It's probably just doomed to be platform-dependent, though.
unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
  // Verified for:
  //   x86-64     FreeBSD, Linux, Darwin
  //   x86-32     FreeBSD, Linux, Darwin
  //   PowerPC    Linux, Darwin
  //   ARM        Darwin (*not* EABI)
  //   AArch64    Linux
  return 32;
}

bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
                                     const FunctionNoProtoType *fnType) const {
  // The following conventions are known to require this to be false:
  //   x86_stdcall
  //   MIPS
  // For everything else, we just prefer false unless we opt out.
  return false;
}

void
TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
                                             llvm::SmallString<24> &Opt) const {
  // This assumes the user is passing a library name like "rt" instead of a
  // filename like "librt.a/so", and that they don't care whether it's static or
  // dynamic.
  Opt = "-l";
  Opt += Lib;
}

unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
  // OpenCL kernels are called via an explicit runtime API with arguments
  // set with clSetKernelArg(), not as normal sub-functions.
  // Return SPIR_KERNEL by default as the kernel calling convention to
  // ensure the fingerprint is fixed such way that each OpenCL argument
  // gets one matching argument in the produced kernel function argument
  // list to enable feasible implementation of clSetKernelArg() with
  // aggregates etc. In case we would use the default C calling conv here,
  // clSetKernelArg() might break depending on the target-specific
  // conventions; different targets might split structs passed as values
  // to multiple function arguments etc.
  return llvm::CallingConv::SPIR_KERNEL;
}

llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
    llvm::PointerType *T, QualType QT) const {
  return llvm::ConstantPointerNull::get(T);
}

LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
                                                   const VarDecl *D) const {
  assert(!CGM.getLangOpts().OpenCL &&
         !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
         "Address space agnostic languages only");
  return D ? D->getType().getAddressSpace() : LangAS::Default;
}

llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
    CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
    LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
  // Since target may map different address spaces in AST to the same address
  // space, an address space conversion may end up as a bitcast.
  if (auto *C = dyn_cast<llvm::Constant>(Src))
    return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
  // Try to preserve the source's name to make IR more readable.
  return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
      Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
}

llvm::Constant *
TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
                                        LangAS SrcAddr, LangAS DestAddr,
                                        llvm::Type *DestTy) const {
  // Since target may map different address spaces in AST to the same address
  // space, an address space conversion may end up as a bitcast.
  return llvm::ConstantExpr::getPointerCast(Src, DestTy);
}

llvm::SyncScope::ID
TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
                                      SyncScope Scope,
                                      llvm::AtomicOrdering Ordering,
                                      llvm::LLVMContext &Ctx) const {
  return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
}

static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);

/// isEmptyField - Return true iff a the field is "empty", that is it
/// is an unnamed bit-field or an (array of) empty record(s).
static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
                         bool AllowArrays) {
  if (FD->isUnnamedBitfield())
    return true;

  QualType FT = FD->getType();

  // Constant arrays of empty records count as empty, strip them off.
  // Constant arrays of zero length always count as empty.
  if (AllowArrays)
    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
      if (AT->getSize() == 0)
        return true;
      FT = AT->getElementType();
    }

  const RecordType *RT = FT->getAs<RecordType>();
  if (!RT)
    return false;

  // C++ record fields are never empty, at least in the Itanium ABI.
  //
  // FIXME: We should use a predicate for whether this behavior is true in the
  // current ABI.
  if (isa<CXXRecordDecl>(RT->getDecl()))
    return false;

  return isEmptyRecord(Context, FT, AllowArrays);
}

/// isEmptyRecord - Return true iff a structure contains only empty
/// fields. Note that a structure with a flexible array member is not
/// considered empty.
static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
  const RecordType *RT = T->getAs<RecordType>();
  if (!RT)
    return false;
  const RecordDecl *RD = RT->getDecl();
  if (RD->hasFlexibleArrayMember())
    return false;

  // If this is a C++ record, check the bases first.
  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
    for (const auto &I : CXXRD->bases())
      if (!isEmptyRecord(Context, I.getType(), true))
        return false;

  for (const auto *I : RD->fields())
    if (!isEmptyField(Context, I, AllowArrays))
      return false;
  return true;
}

/// isSingleElementStruct - Determine if a structure is a "single
/// element struct", i.e. it has exactly one non-empty field or
/// exactly one field which is itself a single element
/// struct. Structures with flexible array members are never
/// considered single element structs.
///
/// \return The field declaration for the single non-empty field, if
/// it exists.
static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
  const RecordType *RT = T->getAs<RecordType>();
  if (!RT)
    return nullptr;

  const RecordDecl *RD = RT->getDecl();
  if (RD->hasFlexibleArrayMember())
    return nullptr;

  const Type *Found = nullptr;

  // If this is a C++ record, check the bases first.
  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
    for (const auto &I : CXXRD->bases()) {
      // Ignore empty records.
      if (isEmptyRecord(Context, I.getType(), true))
        continue;

      // If we already found an element then this isn't a single-element struct.
      if (Found)
        return nullptr;

      // If this is non-empty and not a single element struct, the composite
      // cannot be a single element struct.
      Found = isSingleElementStruct(I.getType(), Context);
      if (!Found)
        return nullptr;
    }
  }

  // Check for single element.
  for (const auto *FD : RD->fields()) {
    QualType FT = FD->getType();

    // Ignore empty fields.
    if (isEmptyField(Context, FD, true))
      continue;

    // If we already found an element then this isn't a single-element
    // struct.
    if (Found)
      return nullptr;

    // Treat single element arrays as the element.
    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
      if (AT->getSize().getZExtValue() != 1)
        break;
      FT = AT->getElementType();
    }

    if (!isAggregateTypeForABI(FT)) {
      Found = FT.getTypePtr();
    } else {
      Found = isSingleElementStruct(FT, Context);
      if (!Found)
        return nullptr;
    }
  }

  // We don't consider a struct a single-element struct if it has
  // padding beyond the element type.
  if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
    return nullptr;

  return Found;
}

namespace {
Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
                       const ABIArgInfo &AI) {
  // This default implementation defers to the llvm backend's va_arg
  // instruction. It can handle only passing arguments directly
  // (typically only handled in the backend for primitive types), or
  // aggregates passed indirectly by pointer (NOTE: if the "byval"
  // flag has ABI impact in the callee, this implementation cannot
  // work.)

  // Only a few cases are covered here at the moment -- those needed
  // by the default abi.
  llvm::Value *Val;

  if (AI.isIndirect()) {
    assert(!AI.getPaddingType() &&
           "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
    assert(
        !AI.getIndirectRealign() &&
        "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");

    auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
    CharUnits TyAlignForABI = TyInfo.second;

    llvm::Type *BaseTy =
        llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
    llvm::Value *Addr =
        CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
    return Address(Addr, TyAlignForABI);
  } else {
    assert((AI.isDirect() || AI.isExtend()) &&
           "Unexpected ArgInfo Kind in generic VAArg emitter!");

    assert(!AI.getInReg() &&
           "Unexpected InReg seen in arginfo in generic VAArg emitter!");
    assert(!AI.getPaddingType() &&
           "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
    assert(!AI.getDirectOffset() &&
           "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
    assert(!AI.getCoerceToType() &&
           "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");

    Address Temp = CGF.CreateMemTemp(Ty, "varet");
    Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
    CGF.Builder.CreateStore(Val, Temp);
    return Temp;
  }
}

/// DefaultABIInfo - The default implementation for ABI specific
/// details. This implementation provides information which results in
/// self-consistent and sensible LLVM IR generation, but does not
/// conform to any particular ABI.
class DefaultABIInfo : public ABIInfo {
public:
  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}

  ABIArgInfo classifyReturnType(QualType RetTy) const;
  ABIArgInfo classifyArgumentType(QualType RetTy) const;

  void computeInfo(CGFunctionInfo &FI) const override {
    if (!getCXXABI().classifyReturnType(FI))
      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    for (auto &I : FI.arguments())
      I.info = classifyArgumentType(I.type);
  }

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override {
    return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
  }
};

class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
public:
  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
};

ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
  Ty = useFirstFieldIfTransparentUnion(Ty);

  if (isAggregateTypeForABI(Ty)) {
    // Records with non-trivial destructors/copy-constructors should not be
    // passed by value.
    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);

    return getNaturalAlignIndirect(Ty);
  }

  // Treat an enum type as its underlying type.
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    Ty = EnumTy->getDecl()->getIntegerType();

  return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
                                        : ABIArgInfo::getDirect());
}

ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
  if (RetTy->isVoidType())
    return ABIArgInfo::getIgnore();

  if (isAggregateTypeForABI(RetTy))
    return getNaturalAlignIndirect(RetTy);

  // Treat an enum type as its underlying type.
  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    RetTy = EnumTy->getDecl()->getIntegerType();

  return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
                                           : ABIArgInfo::getDirect());
}

//===----------------------------------------------------------------------===//
// WebAssembly ABI Implementation
//
// This is a very simple ABI that relies a lot on DefaultABIInfo.
//===----------------------------------------------------------------------===//

class WebAssemblyABIInfo final : public SwiftABIInfo {
  DefaultABIInfo defaultInfo;

public:
  explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT)
      : SwiftABIInfo(CGT), defaultInfo(CGT) {}

private:
  ABIArgInfo classifyReturnType(QualType RetTy) const;
  ABIArgInfo classifyArgumentType(QualType Ty) const;

  // DefaultABIInfo's classifyReturnType and classifyArgumentType are
  // non-virtual, but computeInfo and EmitVAArg are virtual, so we
  // overload them.
  void computeInfo(CGFunctionInfo &FI) const override {
    if (!getCXXABI().classifyReturnType(FI))
      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    for (auto &Arg : FI.arguments())
      Arg.info = classifyArgumentType(Arg.type);
  }

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;

  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
                                    bool asReturnValue) const override {
    return occupiesMoreThan(CGT, scalars, /*total*/ 4);
  }

  bool isSwiftErrorInRegister() const override {
    return false;
  }
};

class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
public:
  explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
      : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {}

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override {
    TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
    if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
      if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
        llvm::Function *Fn = cast<llvm::Function>(GV);
        llvm::AttrBuilder B;
        B.addAttribute("wasm-import-module", Attr->getImportModule());
        Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
      }
      if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
        llvm::Function *Fn = cast<llvm::Function>(GV);
        llvm::AttrBuilder B;
        B.addAttribute("wasm-import-name", Attr->getImportName());
        Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
      }
      if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
        llvm::Function *Fn = cast<llvm::Function>(GV);
        llvm::AttrBuilder B;
        B.addAttribute("wasm-export-name", Attr->getExportName());
        Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
      }
    }

    if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
      llvm::Function *Fn = cast<llvm::Function>(GV);
      if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
        Fn->addFnAttr("no-prototype");
    }
  }
};

/// Classify argument of given type \p Ty.
ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
  Ty = useFirstFieldIfTransparentUnion(Ty);

  if (isAggregateTypeForABI(Ty)) {
    // Records with non-trivial destructors/copy-constructors should not be
    // passed by value.
    if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
    // Ignore empty structs/unions.
    if (isEmptyRecord(getContext(), Ty, true))
      return ABIArgInfo::getIgnore();
    // Lower single-element structs to just pass a regular value. TODO: We
    // could do reasonable-size multiple-element structs too, using getExpand(),
    // though watch out for things like bitfields.
    if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
      return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
  }

  // Otherwise just do the default thing.
  return defaultInfo.classifyArgumentType(Ty);
}

ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
  if (isAggregateTypeForABI(RetTy)) {
    // Records with non-trivial destructors/copy-constructors should not be
    // returned by value.
    if (!getRecordArgABI(RetTy, getCXXABI())) {
      // Ignore empty structs/unions.
      if (isEmptyRecord(getContext(), RetTy, true))
        return ABIArgInfo::getIgnore();
      // Lower single-element structs to just return a regular value. TODO: We
      // could do reasonable-size multiple-element structs too, using
      // ABIArgInfo::getDirect().
      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
        return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
    }
  }

  // Otherwise just do the default thing.
  return defaultInfo.classifyReturnType(RetTy);
}

Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                      QualType Ty) const {
  bool IsIndirect = isAggregateTypeForABI(Ty) &&
                    !isEmptyRecord(getContext(), Ty, true) &&
                    !isSingleElementStruct(Ty, getContext());
  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
                          getContext().getTypeInfoInChars(Ty),
                          CharUnits::fromQuantity(4),
                          /*AllowHigherAlign=*/true);
}

//===----------------------------------------------------------------------===//
// le32/PNaCl bitcode ABI Implementation
//
// This is a simplified version of the x86_32 ABI.  Arguments and return values
// are always passed on the stack.
//===----------------------------------------------------------------------===//

class PNaClABIInfo : public ABIInfo {
 public:
  PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}

  ABIArgInfo classifyReturnType(QualType RetTy) const;
  ABIArgInfo classifyArgumentType(QualType RetTy) const;

  void computeInfo(CGFunctionInfo &FI) const override;
  Address EmitVAArg(CodeGenFunction &CGF,
                    Address VAListAddr, QualType Ty) const override;
};

class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
 public:
  PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
};

void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
  if (!getCXXABI().classifyReturnType(FI))
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());

  for (auto &I : FI.arguments())
    I.info = classifyArgumentType(I.type);
}

Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                QualType Ty) const {
  // The PNaCL ABI is a bit odd, in that varargs don't use normal
  // function classification. Structs get passed directly for varargs
  // functions, through a rewriting transform in
  // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
  // this target to actually support a va_arg instructions with an
  // aggregate type, unlike other targets.
  return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
}

/// Classify argument of given type \p Ty.
ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
  if (isAggregateTypeForABI(Ty)) {
    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
    return getNaturalAlignIndirect(Ty);
  } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
    // Treat an enum type as its underlying type.
    Ty = EnumTy->getDecl()->getIntegerType();
  } else if (Ty->isFloatingType()) {
    // Floating-point types don't go inreg.
    return ABIArgInfo::getDirect();
  }

  return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
                                        : ABIArgInfo::getDirect());
}

ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
  if (RetTy->isVoidType())
    return ABIArgInfo::getIgnore();

  // In the PNaCl ABI we always return records/structures on the stack.
  if (isAggregateTypeForABI(RetTy))
    return getNaturalAlignIndirect(RetTy);

  // Treat an enum type as its underlying type.
  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    RetTy = EnumTy->getDecl()->getIntegerType();

  return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
                                           : ABIArgInfo::getDirect());
}

/// IsX86_MMXType - Return true if this is an MMX type.
bool IsX86_MMXType(llvm::Type *IRType) {
  // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
    IRType->getScalarSizeInBits() != 64;
}

static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
                                          StringRef Constraint,
                                          llvm::Type* Ty) {
  bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
                     .Cases("y", "&y", "^Ym", true)
                     .Default(false);
  if (IsMMXCons && Ty->isVectorTy()) {
    if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
      // Invalid MMX constraint
      return nullptr;
    }

    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
  }

  // No operation needed
  return Ty;
}

/// Returns true if this type can be passed in SSE registers with the
/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
    if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
      if (BT->getKind() == BuiltinType::LongDouble) {
        if (&Context.getTargetInfo().getLongDoubleFormat() ==
            &llvm::APFloat::x87DoubleExtended())
          return false;
      }
      return true;
    }
  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
    // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
    // registers specially.
    unsigned VecSize = Context.getTypeSize(VT);
    if (VecSize == 128 || VecSize == 256 || VecSize == 512)
      return true;
  }
  return false;
}

/// Returns true if this aggregate is small enough to be passed in SSE registers
/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
  return NumMembers <= 4;
}

/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
  auto AI = ABIArgInfo::getDirect(T);
  AI.setInReg(true);
  AI.setCanBeFlattened(false);
  return AI;
}

//===----------------------------------------------------------------------===//
// X86-32 ABI Implementation
//===----------------------------------------------------------------------===//

/// Similar to llvm::CCState, but for Clang.
struct CCState {
  CCState(CGFunctionInfo &FI)
      : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}

  llvm::SmallBitVector IsPreassigned;
  unsigned CC = CallingConv::CC_C;
  unsigned FreeRegs = 0;
  unsigned FreeSSERegs = 0;
};

enum {
  // Vectorcall only allows the first 6 parameters to be passed in registers.
  VectorcallMaxParamNumAsReg = 6
};

/// X86_32ABIInfo - The X86-32 ABI information.
class X86_32ABIInfo : public SwiftABIInfo {
  enum Class {
    Integer,
    Float
  };

  static const unsigned MinABIStackAlignInBytes = 4;

  bool IsDarwinVectorABI;
  bool IsRetSmallStructInRegABI;
  bool IsWin32StructABI;
  bool IsSoftFloatABI;
  bool IsMCUABI;
  unsigned DefaultNumRegisterParameters;

  static bool isRegisterSize(unsigned Size) {
    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
  }

  bool isHomogeneousAggregateBaseType(QualType Ty) const override {
    // FIXME: Assumes vectorcall is in use.
    return isX86VectorTypeForVectorCall(getContext(), Ty);
  }

  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
                                         uint64_t NumMembers) const override {
    // FIXME: Assumes vectorcall is in use.
    return isX86VectorCallAggregateSmallEnough(NumMembers);
  }

  bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;

  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
  /// such that the argument will be passed in memory.
  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;

  ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;

  /// Return the alignment to use for the given type on the stack.
  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;

  Class classify(QualType Ty) const;
  ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
  ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;

  /// Updates the number of available free registers, returns
  /// true if any registers were allocated.
  bool updateFreeRegs(QualType Ty, CCState &State) const;

  bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
                                bool &NeedsPadding) const;
  bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;

  bool canExpandIndirectArgument(QualType Ty) const;

  /// Rewrite the function info so that all memory arguments use
  /// inalloca.
  void rewriteWithInAlloca(CGFunctionInfo &FI) const;

  void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
                           CharUnits &StackOffset, ABIArgInfo &Info,
                           QualType Type) const;
  void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;

public:

  void computeInfo(CGFunctionInfo &FI) const override;
  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;

  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
                bool RetSmallStructInRegABI, bool Win32StructABI,
                unsigned NumRegisterParameters, bool SoftFloatABI)
    : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
      IsRetSmallStructInRegABI(RetSmallStructInRegABI),
      IsWin32StructABI(Win32StructABI),
      IsSoftFloatABI(SoftFloatABI),
      IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
      DefaultNumRegisterParameters(NumRegisterParameters) {}

  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
                                    bool asReturnValue) const override {
    // LLVM's x86-32 lowering currently only assigns up to three
    // integer registers and three fp registers.  Oddly, it'll use up to
    // four vector registers for vectors, but those can overlap with the
    // scalar registers.
    return occupiesMoreThan(CGT, scalars, /*total*/ 3);
  }

  bool isSwiftErrorInRegister() const override {
    // x86-32 lowering does not support passing swifterror in a register.
    return false;
  }
};

class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
public:
  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
                          bool RetSmallStructInRegABI, bool Win32StructABI,
                          unsigned NumRegisterParameters, bool SoftFloatABI)
      : TargetCodeGenInfo(new X86_32ABIInfo(
            CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
            NumRegisterParameters, SoftFloatABI)) {}

  static bool isStructReturnInRegABI(
      const llvm::Triple &Triple, const CodeGenOptions &Opts);

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override;

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
    // Darwin uses different dwarf register numbers for EH.
    if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
    return 4;
  }

  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                               llvm::Value *Address) const override;

  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
                                  StringRef Constraint,
                                  llvm::Type* Ty) const override {
    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
  }

  void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
                                std::string &Constraints,
                                std::vector<llvm::Type *> &ResultRegTypes,
                                std::vector<llvm::Type *> &ResultTruncRegTypes,
                                std::vector<LValue> &ResultRegDests,
                                std::string &AsmString,
                                unsigned NumOutputs) const override;

  llvm::Constant *
  getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
    unsigned Sig = (0xeb << 0) |  // jmp rel8
                   (0x06 << 8) |  //           .+0x08
                   ('v' << 16) |
                   ('2' << 24);
    return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
  }

  StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
    return "movl\t%ebp, %ebp"
           "\t\t// marker for objc_retainAutoreleaseReturnValue";
  }
};

}

/// Rewrite input constraint references after adding some output constraints.
/// In the case where there is one output and one input and we add one output,
/// we need to replace all operand references greater than or equal to 1:
///     mov $0, $1
///     mov eax, $1
/// The result will be:
///     mov $0, $2
///     mov eax, $2
static void rewriteInputConstraintReferences(unsigned FirstIn,
                                             unsigned NumNewOuts,
                                             std::string &AsmString) {
  std::string Buf;
  llvm::raw_string_ostream OS(Buf);
  size_t Pos = 0;
  while (Pos < AsmString.size()) {
    size_t DollarStart = AsmString.find('$', Pos);
    if (DollarStart == std::string::npos)
      DollarStart = AsmString.size();
    size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
    if (DollarEnd == std::string::npos)
      DollarEnd = AsmString.size();
    OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
    Pos = DollarEnd;
    size_t NumDollars = DollarEnd - DollarStart;
    if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
      // We have an operand reference.
      size_t DigitStart = Pos;
      if (AsmString[DigitStart] == '{') {
        OS << '{';
        ++DigitStart;
      }
      size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
      if (DigitEnd == std::string::npos)
        DigitEnd = AsmString.size();
      StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
      unsigned OperandIndex;
      if (!OperandStr.getAsInteger(10, OperandIndex)) {
        if (OperandIndex >= FirstIn)
          OperandIndex += NumNewOuts;
        OS << OperandIndex;
      } else {
        OS << OperandStr;
      }
      Pos = DigitEnd;
    }
  }
  AsmString = std::move(OS.str());
}

/// Add output constraints for EAX:EDX because they are return registers.
void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
    CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
    std::vector<llvm::Type *> &ResultRegTypes,
    std::vector<llvm::Type *> &ResultTruncRegTypes,
    std::vector<LValue> &ResultRegDests, std::string &AsmString,
    unsigned NumOutputs) const {
  uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());

  // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
  // larger.
  if (!Constraints.empty())
    Constraints += ',';
  if (RetWidth <= 32) {
    Constraints += "={eax}";
    ResultRegTypes.push_back(CGF.Int32Ty);
  } else {
    // Use the 'A' constraint for EAX:EDX.
    Constraints += "=A";
    ResultRegTypes.push_back(CGF.Int64Ty);
  }

  // Truncate EAX or EAX:EDX to an integer of the appropriate size.
  llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
  ResultTruncRegTypes.push_back(CoerceTy);

  // Coerce the integer by bitcasting the return slot pointer.
  ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
                                                  CoerceTy->getPointerTo()));
  ResultRegDests.push_back(ReturnSlot);

  rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
}

/// shouldReturnTypeInRegister - Determine if the given type should be
/// returned in a register (for the Darwin and MCU ABI).
bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
                                               ASTContext &Context) const {
  uint64_t Size = Context.getTypeSize(Ty);

  // For i386, type must be register sized.
  // For the MCU ABI, it only needs to be <= 8-byte
  if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
   return false;

  if (Ty->isVectorType()) {
    // 64- and 128- bit vectors inside structures are not returned in
    // registers.
    if (Size == 64 || Size == 128)
      return false;

    return true;
  }

  // If this is a builtin, pointer, enum, complex type, member pointer, or
  // member function pointer it is ok.
  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
      Ty->isBlockPointerType() || Ty->isMemberPointerType())
    return true;

  // Arrays are treated like records.
  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
    return shouldReturnTypeInRegister(AT->getElementType(), Context);

  // Otherwise, it must be a record type.
  const RecordType *RT = Ty->getAs<RecordType>();
  if (!RT) return false;

  // FIXME: Traverse bases here too.

  // Structure types are passed in register if all fields would be
  // passed in a register.
  for (const auto *FD : RT->getDecl()->fields()) {
    // Empty fields are ignored.
    if (isEmptyField(Context, FD, true))
      continue;

    // Check fields recursively.
    if (!shouldReturnTypeInRegister(FD->getType(), Context))
      return false;
  }
  return true;
}

static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
  // Treat complex types as the element type.
  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
    Ty = CTy->getElementType();

  // Check for a type which we know has a simple scalar argument-passing
  // convention without any padding.  (We're specifically looking for 32
  // and 64-bit integer and integer-equivalents, float, and double.)
  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
      !Ty->isEnumeralType() && !Ty->isBlockPointerType())
    return false;

  uint64_t Size = Context.getTypeSize(Ty);
  return Size == 32 || Size == 64;
}

static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
                          uint64_t &Size) {
  for (const auto *FD : RD->fields()) {
    // Scalar arguments on the stack get 4 byte alignment on x86. If the
    // argument is smaller than 32-bits, expanding the struct will create
    // alignment padding.
    if (!is32Or64BitBasicType(FD->getType(), Context))
      return false;

    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
    // how to expand them yet, and the predicate for telling if a bitfield still
    // counts as "basic" is more complicated than what we were doing previously.
    if (FD->isBitField())
      return false;

    Size += Context.getTypeSize(FD->getType());
  }
  return true;
}

static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
                                 uint64_t &Size) {
  // Don't do this if there are any non-empty bases.
  for (const CXXBaseSpecifier &Base : RD->bases()) {
    if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
                              Size))
      return false;
  }
  if (!addFieldSizes(Context, RD, Size))
    return false;
  return true;
}

/// Test whether an argument type which is to be passed indirectly (on the
/// stack) would have the equivalent layout if it was expanded into separate
/// arguments. If so, we prefer to do the latter to avoid inhibiting
/// optimizations.
bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
  // We can only expand structure types.
  const RecordType *RT = Ty->getAs<RecordType>();
  if (!RT)
    return false;
  const RecordDecl *RD = RT->getDecl();
  uint64_t Size = 0;
  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
    if (!IsWin32StructABI) {
      // On non-Windows, we have to conservatively match our old bitcode
      // prototypes in order to be ABI-compatible at the bitcode level.
      if (!CXXRD->isCLike())
        return false;
    } else {
      // Don't do this for dynamic classes.
      if (CXXRD->isDynamicClass())
        return false;
    }
    if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
      return false;
  } else {
    if (!addFieldSizes(getContext(), RD, Size))
      return false;
  }

  // We can do this if there was no alignment padding.
  return Size == getContext().getTypeSize(Ty);
}

ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
  // If the return value is indirect, then the hidden argument is consuming one
  // integer register.
  if (State.FreeRegs) {
    --State.FreeRegs;
    if (!IsMCUABI)
      return getNaturalAlignIndirectInReg(RetTy);
  }
  return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
}

ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
                                             CCState &State) const {
  if (RetTy->isVoidType())
    return ABIArgInfo::getIgnore();

  const Type *Base = nullptr;
  uint64_t NumElts = 0;
  if ((State.CC == llvm::CallingConv::X86_VectorCall ||
       State.CC == llvm::CallingConv::X86_RegCall) &&
      isHomogeneousAggregate(RetTy, Base, NumElts)) {
    // The LLVM struct type for such an aggregate should lower properly.
    return ABIArgInfo::getDirect();
  }

  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
    // On Darwin, some vectors are returned in registers.
    if (IsDarwinVectorABI) {
      uint64_t Size = getContext().getTypeSize(RetTy);

      // 128-bit vectors are a special case; they are returned in
      // registers and we need to make sure to pick a type the LLVM
      // backend will like.
      if (Size == 128)
        return ABIArgInfo::getDirect(llvm::VectorType::get(
                  llvm::Type::getInt64Ty(getVMContext()), 2));

      // Always return in register if it fits in a general purpose
      // register, or if it is 64 bits and has a single element.
      if ((Size == 8 || Size == 16 || Size == 32) ||
          (Size == 64 && VT->getNumElements() == 1))
        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
                                                            Size));

      return getIndirectReturnResult(RetTy, State);
    }

    return ABIArgInfo::getDirect();
  }

  if (isAggregateTypeForABI(RetTy)) {
    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
      // Structures with flexible arrays are always indirect.
      if (RT->getDecl()->hasFlexibleArrayMember())
        return getIndirectReturnResult(RetTy, State);
    }

    // If specified, structs and unions are always indirect.
    if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
      return getIndirectReturnResult(RetTy, State);

    // Ignore empty structs/unions.
    if (isEmptyRecord(getContext(), RetTy, true))
      return ABIArgInfo::getIgnore();

    // Small structures which are register sized are generally returned
    // in a register.
    if (shouldReturnTypeInRegister(RetTy, getContext())) {
      uint64_t Size = getContext().getTypeSize(RetTy);

      // As a special-case, if the struct is a "single-element" struct, and
      // the field is of type "float" or "double", return it in a
      // floating-point register. (MSVC does not apply this special case.)
      // We apply a similar transformation for pointer types to improve the
      // quality of the generated IR.
      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
        if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
            || SeltTy->hasPointerRepresentation())
          return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));

      // FIXME: We should be able to narrow this integer in cases with dead
      // padding.
      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
    }

    return getIndirectReturnResult(RetTy, State);
  }

  // Treat an enum type as its underlying type.
  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    RetTy = EnumTy->getDecl()->getIntegerType();

  return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
                                           : ABIArgInfo::getDirect());
}

static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
  return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
}

static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
  const RecordType *RT = Ty->getAs<RecordType>();
  if (!RT)
    return 0;
  const RecordDecl *RD = RT->getDecl();

  // If this is a C++ record, check the bases first.
  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
    for (const auto &I : CXXRD->bases())
      if (!isRecordWithSSEVectorType(Context, I.getType()))
        return false;

  for (const auto *i : RD->fields()) {
    QualType FT = i->getType();

    if (isSSEVectorType(Context, FT))
      return true;

    if (isRecordWithSSEVectorType(Context, FT))
      return true;
  }

  return false;
}

unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
                                                 unsigned Align) const {
  // Otherwise, if the alignment is less than or equal to the minimum ABI
  // alignment, just use the default; the backend will handle this.
  if (Align <= MinABIStackAlignInBytes)
    return 0; // Use default alignment.

  // On non-Darwin, the stack type alignment is always 4.
  if (!IsDarwinVectorABI) {
    // Set explicit alignment, since we may need to realign the top.
    return MinABIStackAlignInBytes;
  }

  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
  if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
                      isRecordWithSSEVectorType(getContext(), Ty)))
    return 16;

  return MinABIStackAlignInBytes;
}

ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
                                            CCState &State) const {
  if (!ByVal) {
    if (State.FreeRegs) {
      --State.FreeRegs; // Non-byval indirects just use one pointer.
      if (!IsMCUABI)
        return getNaturalAlignIndirectInReg(Ty);
    }
    return getNaturalAlignIndirect(Ty, false);
  }

  // Compute the byval alignment.
  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
  if (StackAlign == 0)
    return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);

  // If the stack alignment is less than the type alignment, realign the
  // argument.
  bool Realign = TypeAlign > StackAlign;
  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
                                 /*ByVal=*/true, Realign);
}

X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
  const Type *T = isSingleElementStruct(Ty, getContext());
  if (!T)
    T = Ty.getTypePtr();

  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
    BuiltinType::Kind K = BT->getKind();
    if (K == BuiltinType::Float || K == BuiltinType::Double)
      return Float;
  }
  return Integer;
}

bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
  if (!IsSoftFloatABI) {
    Class C = classify(Ty);
    if (C == Float)
      return false;
  }

  unsigned Size = getContext().getTypeSize(Ty);
  unsigned SizeInRegs = (Size + 31) / 32;

  if (SizeInRegs == 0)
    return false;

  if (!IsMCUABI) {
    if (SizeInRegs > State.FreeRegs) {
      State.FreeRegs = 0;
      return false;
    }
  } else {
    // The MCU psABI allows passing parameters in-reg even if there are
    // earlier parameters that are passed on the stack. Also,
    // it does not allow passing >8-byte structs in-register,
    // even if there are 3 free registers available.
    if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
      return false;
  }

  State.FreeRegs -= SizeInRegs;
  return true;
}

bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
                                             bool &InReg,
                                             bool &NeedsPadding) const {
  // On Windows, aggregates other than HFAs are never passed in registers, and
  // they do not consume register slots. Homogenous floating-point aggregates
  // (HFAs) have already been dealt with at this point.
  if (IsWin32StructABI && isAggregateTypeForABI(Ty))
    return false;

  NeedsPadding = false;
  InReg = !IsMCUABI;

  if (!updateFreeRegs(Ty, State))
    return false;

  if (IsMCUABI)
    return true;

  if (State.CC == llvm::CallingConv::X86_FastCall ||
      State.CC == llvm::CallingConv::X86_VectorCall ||
      State.CC == llvm::CallingConv::X86_RegCall) {
    if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
      NeedsPadding = true;

    return false;
  }

  return true;
}

bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
  if (!updateFreeRegs(Ty, State))
    return false;

  if (IsMCUABI)
    return false;

  if (State.CC == llvm::CallingConv::X86_FastCall ||
      State.CC == llvm::CallingConv::X86_VectorCall ||
      State.CC == llvm::CallingConv::X86_RegCall) {
    if (getContext().getTypeSize(Ty) > 32)
      return false;

    return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
        Ty->isReferenceType());
  }

  return true;
}

void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
  // Vectorcall x86 works subtly different than in x64, so the format is
  // a bit different than the x64 version.  First, all vector types (not HVAs)
  // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
  // This differs from the x64 implementation, where the first 6 by INDEX get
  // registers.
  // In the second pass over the arguments, HVAs are passed in the remaining
  // vector registers if possible, or indirectly by address. The address will be
  // passed in ECX/EDX if available. Any other arguments are passed according to
  // the usual fastcall rules.
  MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
  for (int I = 0, E = Args.size(); I < E; ++I) {
    const Type *Base = nullptr;
    uint64_t NumElts = 0;
    const QualType &Ty = Args[I].type;
    if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
        isHomogeneousAggregate(Ty, Base, NumElts)) {
      if (State.FreeSSERegs >= NumElts) {
        State.FreeSSERegs -= NumElts;
        Args[I].info = ABIArgInfo::getDirect();
        State.IsPreassigned.set(I);
      }
    }
  }
}

ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
                                               CCState &State) const {
  // FIXME: Set alignment on indirect arguments.
  bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
  bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
  bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;

  Ty = useFirstFieldIfTransparentUnion(Ty);

  // Check with the C++ ABI first.
  const RecordType *RT = Ty->getAs<RecordType>();
  if (RT) {
    CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
    if (RAA == CGCXXABI::RAA_Indirect) {
      return getIndirectResult(Ty, false, State);
    } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
      // The field index doesn't matter, we'll fix it up later.
      return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
    }
  }

  // Regcall uses the concept of a homogenous vector aggregate, similar
  // to other targets.
  const Type *Base = nullptr;
  uint64_t NumElts = 0;
  if ((IsRegCall || IsVectorCall) &&
      isHomogeneousAggregate(Ty, Base, NumElts)) {
    if (State.FreeSSERegs >= NumElts) {
      State.FreeSSERegs -= NumElts;

      // Vectorcall passes HVAs directly and does not flatten them, but regcall
      // does.
      if (IsVectorCall)
        return getDirectX86Hva();

      if (Ty->isBuiltinType() || Ty->isVectorType())
        return ABIArgInfo::getDirect();
      return ABIArgInfo::getExpand();
    }
    return getIndirectResult(Ty, /*ByVal=*/false, State);
  }

  if (isAggregateTypeForABI(Ty)) {
    // Structures with flexible arrays are always indirect.
    // FIXME: This should not be byval!
    if (RT && RT->getDecl()->hasFlexibleArrayMember())
      return getIndirectResult(Ty, true, State);

    // Ignore empty structs/unions on non-Windows.
    if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
      return ABIArgInfo::getIgnore();

    llvm::LLVMContext &LLVMContext = getVMContext();
    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
    bool NeedsPadding = false;
    bool InReg;
    if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
      unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
      SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
      if (InReg)
        return ABIArgInfo::getDirectInReg(Result);
      else
        return ABIArgInfo::getDirect(Result);
    }
    llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;

    // Expand small (<= 128-bit) record types when we know that the stack layout
    // of those arguments will match the struct. This is important because the
    // LLVM backend isn't smart enough to remove byval, which inhibits many
    // optimizations.
    // Don't do this for the MCU if there are still free integer registers
    // (see X86_64 ABI for full explanation).
    if (getContext().getTypeSize(Ty) <= 4 * 32 &&
        (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty))
      return ABIArgInfo::getExpandWithPadding(
          IsFastCall || IsVectorCall || IsRegCall, PaddingType);

    return getIndirectResult(Ty, true, State);
  }

  if (const VectorType *VT = Ty->getAs<VectorType>()) {
    // On Darwin, some vectors are passed in memory, we handle this by passing
    // it as an i8/i16/i32/i64.
    if (IsDarwinVectorABI) {
      uint64_t Size = getContext().getTypeSize(Ty);
      if ((Size == 8 || Size == 16 || Size == 32) ||
          (Size == 64 && VT->getNumElements() == 1))
        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
                                                            Size));
    }

    if (IsX86_MMXType(CGT.ConvertType(Ty)))
      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));

    return ABIArgInfo::getDirect();
  }


  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    Ty = EnumTy->getDecl()->getIntegerType();

  bool InReg = shouldPrimitiveUseInReg(Ty, State);

  if (Ty->isPromotableIntegerType()) {
    if (InReg)
      return ABIArgInfo::getExtendInReg(Ty);
    return ABIArgInfo::getExtend(Ty);
  }

  if (InReg)
    return ABIArgInfo::getDirectInReg();
  return ABIArgInfo::getDirect();
}

void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
  CCState State(FI);
  if (IsMCUABI)
    State.FreeRegs = 3;
  else if (State.CC == llvm::CallingConv::X86_FastCall)
    State.FreeRegs = 2;
  else if (State.CC == llvm::CallingConv::X86_VectorCall) {
    State.FreeRegs = 2;
    State.FreeSSERegs = 6;
  } else if (FI.getHasRegParm())
    State.FreeRegs = FI.getRegParm();
  else if (State.CC == llvm::CallingConv::X86_RegCall) {
    State.FreeRegs = 5;
    State.FreeSSERegs = 8;
  } else
    State.FreeRegs = DefaultNumRegisterParameters;

  if (!::classifyReturnType(getCXXABI(), FI, *this)) {
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
  } else if (FI.getReturnInfo().isIndirect()) {
    // The C++ ABI is not aware of register usage, so we have to check if the
    // return value was sret and put it in a register ourselves if appropriate.
    if (State.FreeRegs) {
      --State.FreeRegs;  // The sret parameter consumes a register.
      if (!IsMCUABI)
        FI.getReturnInfo().setInReg(true);
    }
  }

  // The chain argument effectively gives us another free register.
  if (FI.isChainCall())
    ++State.FreeRegs;

  // For vectorcall, do a first pass over the arguments, assigning FP and vector
  // arguments to XMM registers as available.
  if (State.CC == llvm::CallingConv::X86_VectorCall)
    runVectorCallFirstPass(FI, State);

  bool UsedInAlloca = false;
  MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
  for (int I = 0, E = Args.size(); I < E; ++I) {
    // Skip arguments that have already been assigned.
    if (State.IsPreassigned.test(I))
      continue;

    Args[I].info = classifyArgumentType(Args[I].type, State);
    UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
  }

  // If we needed to use inalloca for any argument, do a second pass and rewrite
  // all the memory arguments to use inalloca.
  if (UsedInAlloca)
    rewriteWithInAlloca(FI);
}

void
X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
                                   CharUnits &StackOffset, ABIArgInfo &Info,
                                   QualType Type) const {
  // Arguments are always 4-byte-aligned.
  CharUnits FieldAlign = CharUnits::fromQuantity(4);

  assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct");
  Info = ABIArgInfo::getInAlloca(FrameFields.size());
  FrameFields.push_back(CGT.ConvertTypeForMem(Type));
  StackOffset += getContext().getTypeSizeInChars(Type);

  // Insert padding bytes to respect alignment.
  CharUnits FieldEnd = StackOffset;
  StackOffset = FieldEnd.alignTo(FieldAlign);
  if (StackOffset != FieldEnd) {
    CharUnits NumBytes = StackOffset - FieldEnd;
    llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
    Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
    FrameFields.push_back(Ty);
  }
}

static bool isArgInAlloca(const ABIArgInfo &Info) {
  // Leave ignored and inreg arguments alone.
  switch (Info.getKind()) {
  case ABIArgInfo::InAlloca:
    return true;
  case ABIArgInfo::Indirect:
    assert(Info.getIndirectByVal());
    return true;
  case ABIArgInfo::Ignore:
    return false;
  case ABIArgInfo::Direct:
  case ABIArgInfo::Extend:
    if (Info.getInReg())
      return false;
    return true;
  case ABIArgInfo::Expand:
  case ABIArgInfo::CoerceAndExpand:
    // These are aggregate types which are never passed in registers when
    // inalloca is involved.
    return true;
  }
  llvm_unreachable("invalid enum");
}

void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
  assert(IsWin32StructABI && "inalloca only supported on win32");

  // Build a packed struct type for all of the arguments in memory.
  SmallVector<llvm::Type *, 6> FrameFields;

  // The stack alignment is always 4.
  CharUnits StackAlign = CharUnits::fromQuantity(4);

  CharUnits StackOffset;
  CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();

  // Put 'this' into the struct before 'sret', if necessary.
  bool IsThisCall =
      FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
  ABIArgInfo &Ret = FI.getReturnInfo();
  if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
      isArgInAlloca(I->info)) {
    addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
    ++I;
  }

  // Put the sret parameter into the inalloca struct if it's in memory.
  if (Ret.isIndirect() && !Ret.getInReg()) {
    CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
    addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
    // On Windows, the hidden sret parameter is always returned in eax.
    Ret.setInAllocaSRet(IsWin32StructABI);
  }

  // Skip the 'this' parameter in ecx.
  if (IsThisCall)
    ++I;

  // Put arguments passed in memory into the struct.
  for (; I != E; ++I) {
    if (isArgInAlloca(I->info))
      addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
  }

  FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
                                        /*isPacked=*/true),
                  StackAlign);
}

Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
                                 Address VAListAddr, QualType Ty) const {

  auto TypeInfo = getContext().getTypeInfoInChars(Ty);

  // x86-32 changes the alignment of certain arguments on the stack.
  //
  // Just messing with TypeInfo like this works because we never pass
  // anything indirectly.
  TypeInfo.second = CharUnits::fromQuantity(
                getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));

  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
                          TypeInfo, CharUnits::fromQuantity(4),
                          /*AllowHigherAlign*/ true);
}

bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
    const llvm::Triple &Triple, const CodeGenOptions &Opts) {
  assert(Triple.getArch() == llvm::Triple::x86);

  switch (Opts.getStructReturnConvention()) {
  case CodeGenOptions::SRCK_Default:
    break;
  case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
    return false;
  case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
    return true;
  }

  if (Triple.isOSDarwin() || Triple.isOSIAMCU())
    return true;

  switch (Triple.getOS()) {
  case llvm::Triple::DragonFly:
  case llvm::Triple::FreeBSD:
  case llvm::Triple::OpenBSD:
  case llvm::Triple::Win32:
    return true;
  default:
    return false;
  }
}

void X86_32TargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
  if (GV->isDeclaration())
    return;
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
      llvm::Function *Fn = cast<llvm::Function>(GV);
      Fn->addFnAttr("stackrealign");
    }
    if (FD->hasAttr<AnyX86InterruptAttr>()) {
      llvm::Function *Fn = cast<llvm::Function>(GV);
      Fn->setCallingConv(llvm::CallingConv::X86_INTR);
    }
  }
}

bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
                                               CodeGen::CodeGenFunction &CGF,
                                               llvm::Value *Address) const {
  CodeGen::CGBuilderTy &Builder = CGF.Builder;

  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);

  // 0-7 are the eight integer registers;  the order is different
  //   on Darwin (for EH), but the range is the same.
  // 8 is %eip.
  AssignToArrayRange(Builder, Address, Four8, 0, 8);

  if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
    // 12-16 are st(0..4).  Not sure why we stop at 4.
    // These have size 16, which is sizeof(long double) on
    // platforms with 8-byte alignment for that type.
    llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);

  } else {
    // 9 is %eflags, which doesn't get a size on Darwin for some
    // reason.
    Builder.CreateAlignedStore(
        Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
                               CharUnits::One());

    // 11-16 are st(0..5).  Not sure why we stop at 5.
    // These have size 12, which is sizeof(long double) on
    // platforms with 4-byte alignment for that type.
    llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
  }

  return false;
}

//===----------------------------------------------------------------------===//
// X86-64 ABI Implementation
//===----------------------------------------------------------------------===//


namespace {
/// The AVX ABI level for X86 targets.
enum class X86AVXABILevel {
  None,
  AVX,
  AVX512
};

/// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
  switch (AVXLevel) {
  case X86AVXABILevel::AVX512:
    return 512;
  case X86AVXABILevel::AVX:
    return 256;
  case X86AVXABILevel::None:
    return 128;
  }
  llvm_unreachable("Unknown AVXLevel");
}

/// X86_64ABIInfo - The X86_64 ABI information.
class X86_64ABIInfo : public SwiftABIInfo {
  enum Class {
    Integer = 0,
    SSE,
    SSEUp,
    X87,
    X87Up,
    ComplexX87,
    NoClass,
    Memory
  };

  /// merge - Implement the X86_64 ABI merging algorithm.
  ///
  /// Merge an accumulating classification \arg Accum with a field
  /// classification \arg Field.
  ///
  /// \param Accum - The accumulating classification. This should
  /// always be either NoClass or the result of a previous merge
  /// call. In addition, this should never be Memory (the caller
  /// should just return Memory for the aggregate).
  static Class merge(Class Accum, Class Field);

  /// postMerge - Implement the X86_64 ABI post merging algorithm.
  ///
  /// Post merger cleanup, reduces a malformed Hi and Lo pair to
  /// final MEMORY or SSE classes when necessary.
  ///
  /// \param AggregateSize - The size of the current aggregate in
  /// the classification process.
  ///
  /// \param Lo - The classification for the parts of the type
  /// residing in the low word of the containing object.
  ///
  /// \param Hi - The classification for the parts of the type
  /// residing in the higher words of the containing object.
  ///
  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;

  /// classify - Determine the x86_64 register classes in which the
  /// given type T should be passed.
  ///
  /// \param Lo - The classification for the parts of the type
  /// residing in the low word of the containing object.
  ///
  /// \param Hi - The classification for the parts of the type
  /// residing in the high word of the containing object.
  ///
  /// \param OffsetBase - The bit offset of this type in the
  /// containing object.  Some parameters are classified different
  /// depending on whether they straddle an eightbyte boundary.
  ///
  /// \param isNamedArg - Whether the argument in question is a "named"
  /// argument, as used in AMD64-ABI 3.5.7.
  ///
  /// If a word is unused its result will be NoClass; if a type should
  /// be passed in Memory then at least the classification of \arg Lo
  /// will be Memory.
  ///
  /// The \arg Lo class will be NoClass iff the argument is ignored.
  ///
  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
  /// also be ComplexX87.
  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
                bool isNamedArg) const;

  llvm::Type *GetByteVectorType(QualType Ty) const;
  llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
                                 unsigned IROffset, QualType SourceTy,
                                 unsigned SourceOffset) const;
  llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
                                     unsigned IROffset, QualType SourceTy,
                                     unsigned SourceOffset) const;

  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
  /// such that the argument will be returned in memory.
  ABIArgInfo getIndirectReturnResult(QualType Ty) const;

  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
  /// such that the argument will be passed in memory.
  ///
  /// \param freeIntRegs - The number of free integer registers remaining
  /// available.
  ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;

  ABIArgInfo classifyReturnType(QualType RetTy) const;

  ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
                                  unsigned &neededInt, unsigned &neededSSE,
                                  bool isNamedArg) const;

  ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
                                       unsigned &NeededSSE) const;

  ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
                                           unsigned &NeededSSE) const;

  bool IsIllegalVectorType(QualType Ty) const;

  /// The 0.98 ABI revision clarified a lot of ambiguities,
  /// unfortunately in ways that were not always consistent with
  /// certain previous compilers.  In particular, platforms which
  /// required strict binary compatibility with older versions of GCC
  /// may need to exempt themselves.
  bool honorsRevision0_98() const {
    return !getTarget().getTriple().isOSDarwin();
  }

  /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
  /// classify it as INTEGER (for compatibility with older clang compilers).
  bool classifyIntegerMMXAsSSE() const {
    // Clang <= 3.8 did not do this.
    if (getContext().getLangOpts().getClangABICompat() <=
        LangOptions::ClangABI::Ver3_8)
      return false;

    const llvm::Triple &Triple = getTarget().getTriple();
    if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
      return false;
    if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
      return false;
    return true;
  }

  // GCC classifies vectors of __int128 as memory.
  bool passInt128VectorsInMem() const {
    // Clang <= 9.0 did not do this.
    if (getContext().getLangOpts().getClangABICompat() <=
        LangOptions::ClangABI::Ver9)
      return false;

    const llvm::Triple &T = getTarget().getTriple();
    return T.isOSLinux() || T.isOSNetBSD();
  }

  X86AVXABILevel AVXLevel;
  // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
  // 64-bit hardware.
  bool Has64BitPointers;

public:
  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
      SwiftABIInfo(CGT), AVXLevel(AVXLevel),
      Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
  }

  bool isPassedUsingAVXType(QualType type) const {
    unsigned neededInt, neededSSE;
    // The freeIntRegs argument doesn't matter here.
    ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
                                           /*isNamedArg*/true);
    if (info.isDirect()) {
      llvm::Type *ty = info.getCoerceToType();
      if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
        return (vectorTy->getBitWidth() > 128);
    }
    return false;
  }

  void computeInfo(CGFunctionInfo &FI) const override;

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;
  Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
                      QualType Ty) const override;

  bool has64BitPointers() const {
    return Has64BitPointers;
  }

  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
                                    bool asReturnValue) const override {
    return occupiesMoreThan(CGT, scalars, /*total*/ 4);
  }
  bool isSwiftErrorInRegister() const override {
    return true;
  }
};

/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
class WinX86_64ABIInfo : public SwiftABIInfo {
public:
  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
      : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
        IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}

  void computeInfo(CGFunctionInfo &FI) const override;

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;

  bool isHomogeneousAggregateBaseType(QualType Ty) const override {
    // FIXME: Assumes vectorcall is in use.
    return isX86VectorTypeForVectorCall(getContext(), Ty);
  }

  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
                                         uint64_t NumMembers) const override {
    // FIXME: Assumes vectorcall is in use.
    return isX86VectorCallAggregateSmallEnough(NumMembers);
  }

  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
                                    bool asReturnValue) const override {
    return occupiesMoreThan(CGT, scalars, /*total*/ 4);
  }

  bool isSwiftErrorInRegister() const override {
    return true;
  }

private:
  ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
                      bool IsVectorCall, bool IsRegCall) const;
  ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
                                      const ABIArgInfo &current) const;
  void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
                             bool IsVectorCall, bool IsRegCall) const;

  X86AVXABILevel AVXLevel;

  bool IsMingw64;
};

class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
public:
  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
      : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {}

  const X86_64ABIInfo &getABIInfo() const {
    return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
  }

  /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
  /// the autoreleaseRV/retainRV optimization.
  bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
    return true;
  }

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
    return 7;
  }

  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                               llvm::Value *Address) const override {
    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);

    // 0-15 are the 16 integer registers.
    // 16 is %rip.
    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
    return false;
  }

  llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
                                  StringRef Constraint,
                                  llvm::Type* Ty) const override {
    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
  }

  bool isNoProtoCallVariadic(const CallArgList &args,
                             const FunctionNoProtoType *fnType) const override {
    // The default CC on x86-64 sets %al to the number of SSA
    // registers used, and GCC sets this when calling an unprototyped
    // function, so we override the default behavior.  However, don't do
    // that when AVX types are involved: the ABI explicitly states it is
    // undefined, and it doesn't work in practice because of how the ABI
    // defines varargs anyway.
    if (fnType->getCallConv() == CC_C) {
      bool HasAVXType = false;
      for (CallArgList::const_iterator
             it = args.begin(), ie = args.end(); it != ie; ++it) {
        if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
          HasAVXType = true;
          break;
        }
      }

      if (!HasAVXType)
        return true;
    }

    return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
  }

  llvm::Constant *
  getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
    unsigned Sig = (0xeb << 0) | // jmp rel8
                   (0x06 << 8) | //           .+0x08
                   ('v' << 16) |
                   ('2' << 24);
    return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
  }

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override {
    if (GV->isDeclaration())
      return;
    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
      if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
        llvm::Function *Fn = cast<llvm::Function>(GV);
        Fn->addFnAttr("stackrealign");
      }
      if (FD->hasAttr<AnyX86InterruptAttr>()) {
        llvm::Function *Fn = cast<llvm::Function>(GV);
        Fn->setCallingConv(llvm::CallingConv::X86_INTR);
      }
    }
  }
};

static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
  // If the argument does not end in .lib, automatically add the suffix.
  // If the argument contains a space, enclose it in quotes.
  // This matches the behavior of MSVC.
  bool Quote = (Lib.find(" ") != StringRef::npos);
  std::string ArgStr = Quote ? "\"" : "";
  ArgStr += Lib;
  if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
    ArgStr += ".lib";
  ArgStr += Quote ? "\"" : "";
  return ArgStr;
}

class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
public:
  WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
        bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
        unsigned NumRegisterParameters)
    : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
        Win32StructABI, NumRegisterParameters, false) {}

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override;

  void getDependentLibraryOption(llvm::StringRef Lib,
                                 llvm::SmallString<24> &Opt) const override {
    Opt = "/DEFAULTLIB:";
    Opt += qualifyWindowsLibrary(Lib);
  }

  void getDetectMismatchOption(llvm::StringRef Name,
                               llvm::StringRef Value,
                               llvm::SmallString<32> &Opt) const override {
    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
  }
};

static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                                          CodeGen::CodeGenModule &CGM) {
  if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {

    if (CGM.getCodeGenOpts().StackProbeSize != 4096)
      Fn->addFnAttr("stack-probe-size",
                    llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
    if (CGM.getCodeGenOpts().NoStackArgProbe)
      Fn->addFnAttr("no-stack-arg-probe");
  }
}

void WinX86_32TargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
  X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
  if (GV->isDeclaration())
    return;
  addStackProbeTargetAttributes(D, GV, CGM);
}

class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
public:
  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
                             X86AVXABILevel AVXLevel)
      : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {}

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override;

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
    return 7;
  }

  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                               llvm::Value *Address) const override {
    llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);

    // 0-15 are the 16 integer registers.
    // 16 is %rip.
    AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
    return false;
  }

  void getDependentLibraryOption(llvm::StringRef Lib,
                                 llvm::SmallString<24> &Opt) const override {
    Opt = "/DEFAULTLIB:";
    Opt += qualifyWindowsLibrary(Lib);
  }

  void getDetectMismatchOption(llvm::StringRef Name,
                               llvm::StringRef Value,
                               llvm::SmallString<32> &Opt) const override {
    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
  }
};

void WinX86_64TargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
  TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
  if (GV->isDeclaration())
    return;
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
      llvm::Function *Fn = cast<llvm::Function>(GV);
      Fn->addFnAttr("stackrealign");
    }
    if (FD->hasAttr<AnyX86InterruptAttr>()) {
      llvm::Function *Fn = cast<llvm::Function>(GV);
      Fn->setCallingConv(llvm::CallingConv::X86_INTR);
    }
  }

  addStackProbeTargetAttributes(D, GV, CGM);
}
}

void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
                              Class &Hi) const {
  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
  //
  // (a) If one of the classes is Memory, the whole argument is passed in
  //     memory.
  //
  // (b) If X87UP is not preceded by X87, the whole argument is passed in
  //     memory.
  //
  // (c) If the size of the aggregate exceeds two eightbytes and the first
  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
  //     argument is passed in memory. NOTE: This is necessary to keep the
  //     ABI working for processors that don't support the __m256 type.
  //
  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
  //
  // Some of these are enforced by the merging logic.  Others can arise
  // only with unions; for example:
  //   union { _Complex double; unsigned; }
  //
  // Note that clauses (b) and (c) were added in 0.98.
  //
  if (Hi == Memory)
    Lo = Memory;
  if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
    Lo = Memory;
  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
    Lo = Memory;
  if (Hi == SSEUp && Lo != SSE)
    Hi = SSE;
}

X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
  // classified recursively so that always two fields are
  // considered. The resulting class is calculated according to
  // the classes of the fields in the eightbyte:
  //
  // (a) If both classes are equal, this is the resulting class.
  //
  // (b) If one of the classes is NO_CLASS, the resulting class is
  // the other class.
  //
  // (c) If one of the classes is MEMORY, the result is the MEMORY
  // class.
  //
  // (d) If one of the classes is INTEGER, the result is the
  // INTEGER.
  //
  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
  // MEMORY is used as class.
  //
  // (f) Otherwise class SSE is used.

  // Accum should never be memory (we should have returned) or
  // ComplexX87 (because this cannot be passed in a structure).
  assert((Accum != Memory && Accum != ComplexX87) &&
         "Invalid accumulated classification during merge.");
  if (Accum == Field || Field == NoClass)
    return Accum;
  if (Field == Memory)
    return Memory;
  if (Accum == NoClass)
    return Field;
  if (Accum == Integer || Field == Integer)
    return Integer;
  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
      Accum == X87 || Accum == X87Up)
    return Memory;
  return SSE;
}

void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
                             Class &Lo, Class &Hi, bool isNamedArg) const {
  // FIXME: This code can be simplified by introducing a simple value class for
  // Class pairs with appropriate constructor methods for the various
  // situations.

  // FIXME: Some of the split computations are wrong; unaligned vectors
  // shouldn't be passed in registers for example, so there is no chance they
  // can straddle an eightbyte. Verify & simplify.

  Lo = Hi = NoClass;

  Class &Current = OffsetBase < 64 ? Lo : Hi;
  Current = Memory;

  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
    BuiltinType::Kind k = BT->getKind();

    if (k == BuiltinType::Void) {
      Current = NoClass;
    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
      Lo = Integer;
      Hi = Integer;
    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
      Current = Integer;
    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
      Current = SSE;
    } else if (k == BuiltinType::LongDouble) {
      const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
      if (LDF == &llvm::APFloat::IEEEquad()) {
        Lo = SSE;
        Hi = SSEUp;
      } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
        Lo = X87;
        Hi = X87Up;
      } else if (LDF == &llvm::APFloat::IEEEdouble()) {
        Current = SSE;
      } else
        llvm_unreachable("unexpected long double representation!");
    }
    // FIXME: _Decimal32 and _Decimal64 are SSE.
    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
    return;
  }

  if (const EnumType *ET = Ty->getAs<EnumType>()) {
    // Classify the underlying integer type.
    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
    return;
  }

  if (Ty->hasPointerRepresentation()) {
    Current = Integer;
    return;
  }

  if (Ty->isMemberPointerType()) {
    if (Ty->isMemberFunctionPointerType()) {
      if (Has64BitPointers) {
        // If Has64BitPointers, this is an {i64, i64}, so classify both
        // Lo and Hi now.
        Lo = Hi = Integer;
      } else {
        // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
        // straddles an eightbyte boundary, Hi should be classified as well.
        uint64_t EB_FuncPtr = (OffsetBase) / 64;
        uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
        if (EB_FuncPtr != EB_ThisAdj) {
          Lo = Hi = Integer;
        } else {
          Current = Integer;
        }
      }
    } else {
      Current = Integer;
    }
    return;
  }

  if (const VectorType *VT = Ty->getAs<VectorType>()) {
    uint64_t Size = getContext().getTypeSize(VT);
    if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
      // gcc passes the following as integer:
      // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
      // 2 bytes - <2 x char>, <1 x short>
      // 1 byte  - <1 x char>
      Current = Integer;

      // If this type crosses an eightbyte boundary, it should be
      // split.
      uint64_t EB_Lo = (OffsetBase) / 64;
      uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
      if (EB_Lo != EB_Hi)
        Hi = Lo;
    } else if (Size == 64) {
      QualType ElementType = VT->getElementType();

      // gcc passes <1 x double> in memory. :(
      if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
        return;

      // gcc passes <1 x long long> as SSE but clang used to unconditionally
      // pass them as integer.  For platforms where clang is the de facto
      // platform compiler, we must continue to use integer.
      if (!classifyIntegerMMXAsSSE() &&
          (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
           ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
           ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
           ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
        Current = Integer;
      else
        Current = SSE;

      // If this type crosses an eightbyte boundary, it should be
      // split.
      if (OffsetBase && OffsetBase != 64)
        Hi = Lo;
    } else if (Size == 128 ||
               (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
      QualType ElementType = VT->getElementType();

      // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
      if (passInt128VectorsInMem() && Size != 128 &&
          (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
           ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
        return;

      // Arguments of 256-bits are split into four eightbyte chunks. The
      // least significant one belongs to class SSE and all the others to class
      // SSEUP. The original Lo and Hi design considers that types can't be
      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
      // This design isn't correct for 256-bits, but since there're no cases
      // where the upper parts would need to be inspected, avoid adding
      // complexity and just consider Hi to match the 64-256 part.
      //
      // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
      // registers if they are "named", i.e. not part of the "..." of a
      // variadic function.
      //
      // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
      // split into eight eightbyte chunks, one SSE and seven SSEUP.
      Lo = SSE;
      Hi = SSEUp;
    }
    return;
  }

  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
    QualType ET = getContext().getCanonicalType(CT->getElementType());

    uint64_t Size = getContext().getTypeSize(Ty);
    if (ET->isIntegralOrEnumerationType()) {
      if (Size <= 64)
        Current = Integer;
      else if (Size <= 128)
        Lo = Hi = Integer;
    } else if (ET == getContext().FloatTy) {
      Current = SSE;
    } else if (ET == getContext().DoubleTy) {
      Lo = Hi = SSE;
    } else if (ET == getContext().LongDoubleTy) {
      const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
      if (LDF == &llvm::APFloat::IEEEquad())
        Current = Memory;
      else if (LDF == &llvm::APFloat::x87DoubleExtended())
        Current = ComplexX87;
      else if (LDF == &llvm::APFloat::IEEEdouble())
        Lo = Hi = SSE;
      else
        llvm_unreachable("unexpected long double representation!");
    }

    // If this complex type crosses an eightbyte boundary then it
    // should be split.
    uint64_t EB_Real = (OffsetBase) / 64;
    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
    if (Hi == NoClass && EB_Real != EB_Imag)
      Hi = Lo;

    return;
  }

  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
    // Arrays are treated like structures.

    uint64_t Size = getContext().getTypeSize(Ty);

    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
    // than eight eightbytes, ..., it has class MEMORY.
    if (Size > 512)
      return;

    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
    // fields, it has class MEMORY.
    //
    // Only need to check alignment of array base.
    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
      return;

    // Otherwise implement simplified merge. We could be smarter about
    // this, but it isn't worth it and would be harder to verify.
    Current = NoClass;
    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
    uint64_t ArraySize = AT->getSize().getZExtValue();

    // The only case a 256-bit wide vector could be used is when the array
    // contains a single 256-bit element. Since Lo and Hi logic isn't extended
    // to work for sizes wider than 128, early check and fallback to memory.
    //
    if (Size > 128 &&
        (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
      return;

    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
      Class FieldLo, FieldHi;
      classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
      Lo = merge(Lo, FieldLo);
      Hi = merge(Hi, FieldHi);
      if (Lo == Memory || Hi == Memory)
        break;
    }

    postMerge(Size, Lo, Hi);
    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
    return;
  }

  if (const RecordType *RT = Ty->getAs<RecordType>()) {
    uint64_t Size = getContext().getTypeSize(Ty);

    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
    // than eight eightbytes, ..., it has class MEMORY.
    if (Size > 512)
      return;

    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
    // copy constructor or a non-trivial destructor, it is passed by invisible
    // reference.
    if (getRecordArgABI(RT, getCXXABI()))
      return;

    const RecordDecl *RD = RT->getDecl();

    // Assume variable sized types are passed in memory.
    if (RD->hasFlexibleArrayMember())
      return;

    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);

    // Reset Lo class, this will be recomputed.
    Current = NoClass;

    // If this is a C++ record, classify the bases first.
    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
      for (const auto &I : CXXRD->bases()) {
        assert(!I.isVirtual() && !I.getType()->isDependentType() &&
               "Unexpected base class!");
        const auto *Base =
            cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());

        // Classify this field.
        //
        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
        // single eightbyte, each is classified separately. Each eightbyte gets
        // initialized to class NO_CLASS.
        Class FieldLo, FieldHi;
        uint64_t Offset =
          OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
        classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
        Lo = merge(Lo, FieldLo);
        Hi = merge(Hi, FieldHi);
        if (Lo == Memory || Hi == Memory) {
          postMerge(Size, Lo, Hi);
          return;
        }
      }
    }

    // Classify the fields one at a time, merging the results.
    unsigned idx = 0;
    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
           i != e; ++i, ++idx) {
      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
      bool BitField = i->isBitField();

      // Ignore padding bit-fields.
      if (BitField && i->isUnnamedBitfield())
        continue;

      // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
      // four eightbytes, or it contains unaligned fields, it has class MEMORY.
      //
      // The only case a 256-bit wide vector could be used is when the struct
      // contains a single 256-bit element. Since Lo and Hi logic isn't extended
      // to work for sizes wider than 128, early check and fallback to memory.
      //
      if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
                         Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
        Lo = Memory;
        postMerge(Size, Lo, Hi);
        return;
      }
      // Note, skip this test for bit-fields, see below.
      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
        Lo = Memory;
        postMerge(Size, Lo, Hi);
        return;
      }

      // Classify this field.
      //
      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
      // exceeds a single eightbyte, each is classified
      // separately. Each eightbyte gets initialized to class
      // NO_CLASS.
      Class FieldLo, FieldHi;

      // Bit-fields require special handling, they do not force the
      // structure to be passed in memory even if unaligned, and
      // therefore they can straddle an eightbyte.
      if (BitField) {
        assert(!i->isUnnamedBitfield());
        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
        uint64_t Size = i->getBitWidthValue(getContext());

        uint64_t EB_Lo = Offset / 64;
        uint64_t EB_Hi = (Offset + Size - 1) / 64;

        if (EB_Lo) {
          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
          FieldLo = NoClass;
          FieldHi = Integer;
        } else {
          FieldLo = Integer;
          FieldHi = EB_Hi ? Integer : NoClass;
        }
      } else
        classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
      Lo = merge(Lo, FieldLo);
      Hi = merge(Hi, FieldHi);
      if (Lo == Memory || Hi == Memory)
        break;
    }

    postMerge(Size, Lo, Hi);
  }
}

ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
  // If this is a scalar LLVM value then assume LLVM will pass it in the right
  // place naturally.
  if (!isAggregateTypeForABI(Ty)) {
    // Treat an enum type as its underlying type.
    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
      Ty = EnumTy->getDecl()->getIntegerType();

    return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
                                          : ABIArgInfo::getDirect());
  }

  return getNaturalAlignIndirect(Ty);
}

bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
  if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
    uint64_t Size = getContext().getTypeSize(VecTy);
    unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
    if (Size <= 64 || Size > LargestVector)
      return true;
    QualType EltTy = VecTy->getElementType();
    if (passInt128VectorsInMem() &&
        (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
         EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
      return true;
  }

  return false;
}

ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
                                            unsigned freeIntRegs) const {
  // If this is a scalar LLVM value then assume LLVM will pass it in the right
  // place naturally.
  //
  // This assumption is optimistic, as there could be free registers available
  // when we need to pass this argument in memory, and LLVM could try to pass
  // the argument in the free register. This does not seem to happen currently,
  // but this code would be much safer if we could mark the argument with
  // 'onstack'. See PR12193.
  if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
    // Treat an enum type as its underlying type.
    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
      Ty = EnumTy->getDecl()->getIntegerType();

    return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
                                          : ABIArgInfo::getDirect());
  }

  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);

  // Compute the byval alignment. We specify the alignment of the byval in all
  // cases so that the mid-level optimizer knows the alignment of the byval.
  unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);

  // Attempt to avoid passing indirect results using byval when possible. This
  // is important for good codegen.
  //
  // We do this by coercing the value into a scalar type which the backend can
  // handle naturally (i.e., without using byval).
  //
  // For simplicity, we currently only do this when we have exhausted all of the
  // free integer registers. Doing this when there are free integer registers
  // would require more care, as we would have to ensure that the coerced value
  // did not claim the unused register. That would require either reording the
  // arguments to the function (so that any subsequent inreg values came first),
  // or only doing this optimization when there were no following arguments that
  // might be inreg.
  //
  // We currently expect it to be rare (particularly in well written code) for
  // arguments to be passed on the stack when there are still free integer
  // registers available (this would typically imply large structs being passed
  // by value), so this seems like a fair tradeoff for now.
  //
  // We can revisit this if the backend grows support for 'onstack' parameter
  // attributes. See PR12193.
  if (freeIntRegs == 0) {
    uint64_t Size = getContext().getTypeSize(Ty);

    // If this type fits in an eightbyte, coerce it into the matching integral
    // type, which will end up on the stack (with alignment 8).
    if (Align == 8 && Size <= 64)
      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
                                                          Size));
  }

  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
}

/// The ABI specifies that a value should be passed in a full vector XMM/YMM
/// register. Pick an LLVM IR type that will be passed as a vector register.
llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
  // Wrapper structs/arrays that only contain vectors are passed just like
  // vectors; strip them off if present.
  if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
    Ty = QualType(InnerTy, 0);

  llvm::Type *IRType = CGT.ConvertType(Ty);
  if (isa<llvm::VectorType>(IRType)) {
    // Don't pass vXi128 vectors in their native type, the backend can't
    // legalize them.
    if (passInt128VectorsInMem() &&
        IRType->getVectorElementType()->isIntegerTy(128)) {
      // Use a vXi64 vector.
      uint64_t Size = getContext().getTypeSize(Ty);
      return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()),
                                   Size / 64);
    }

    return IRType;
  }

  if (IRType->getTypeID() == llvm::Type::FP128TyID)
    return IRType;

  // We couldn't find the preferred IR vector type for 'Ty'.
  uint64_t Size = getContext().getTypeSize(Ty);
  assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");


  // Return a LLVM IR vector type based on the size of 'Ty'.
  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()),
                               Size / 64);
}

/// BitsContainNoUserData - Return true if the specified [start,end) bit range
/// is known to either be off the end of the specified type or being in
/// alignment padding.  The user type specified is known to be at most 128 bits
/// in size, and have passed through X86_64ABIInfo::classify with a successful
/// classification that put one of the two halves in the INTEGER class.
///
/// It is conservatively correct to return false.
static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
                                  unsigned EndBit, ASTContext &Context) {
  // If the bytes being queried are off the end of the type, there is no user
  // data hiding here.  This handles analysis of builtins, vectors and other
  // types that don't contain interesting padding.
  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
  if (TySize <= StartBit)
    return true;

  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();

    // Check each element to see if the element overlaps with the queried range.
    for (unsigned i = 0; i != NumElts; ++i) {
      // If the element is after the span we care about, then we're done..
      unsigned EltOffset = i*EltSize;
      if (EltOffset >= EndBit) break;

      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
                                 EndBit-EltOffset, Context))
        return false;
    }
    // If it overlaps no elements, then it is safe to process as padding.
    return true;
  }

  if (const RecordType *RT = Ty->getAs<RecordType>()) {
    const RecordDecl *RD = RT->getDecl();
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

    // If this is a C++ record, check the bases first.
    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
      for (const auto &I : CXXRD->bases()) {
        assert(!I.isVirtual() && !I.getType()->isDependentType() &&
               "Unexpected base class!");
        const auto *Base =
            cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());

        // If the base is after the span we care about, ignore it.
        unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
        if (BaseOffset >= EndBit) continue;

        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
        if (!BitsContainNoUserData(I.getType(), BaseStart,
                                   EndBit-BaseOffset, Context))
          return false;
      }
    }

    // Verify that no field has data that overlaps the region of interest.  Yes
    // this could be sped up a lot by being smarter about queried fields,
    // however we're only looking at structs up to 16 bytes, so we don't care
    // much.
    unsigned idx = 0;
    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
         i != e; ++i, ++idx) {
      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);

      // If we found a field after the region we care about, then we're done.
      if (FieldOffset >= EndBit) break;

      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
                                 Context))
        return false;
    }

    // If nothing in this record overlapped the area of interest, then we're
    // clean.
    return true;
  }

  return false;
}

/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
/// float member at the specified offset.  For example, {int,{float}} has a
/// float at offset 4.  It is conservatively correct for this routine to return
/// false.
static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
                                  const llvm::DataLayout &TD) {
  // Base case if we find a float.
  if (IROffset == 0 && IRType->isFloatTy())
    return true;

  // If this is a struct, recurse into the field at the specified offset.
  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
    const llvm::StructLayout *SL = TD.getStructLayout(STy);
    unsigned Elt = SL->getElementContainingOffset(IROffset);
    IROffset -= SL->getElementOffset(Elt);
    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
  }

  // If this is an array, recurse into the field at the specified offset.
  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
    llvm::Type *EltTy = ATy->getElementType();
    unsigned EltSize = TD.getTypeAllocSize(EltTy);
    IROffset -= IROffset/EltSize*EltSize;
    return ContainsFloatAtOffset(EltTy, IROffset, TD);
  }

  return false;
}


/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
/// low 8 bytes of an XMM register, corresponding to the SSE class.
llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
                   QualType SourceTy, unsigned SourceOffset) const {
  // The only three choices we have are either double, <2 x float>, or float. We
  // pass as float if the last 4 bytes is just padding.  This happens for
  // structs that contain 3 floats.
  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
                            SourceOffset*8+64, getContext()))
    return llvm::Type::getFloatTy(getVMContext());

  // We want to pass as <2 x float> if the LLVM IR type contains a float at
  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
  // case.
  if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
      ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);

  return llvm::Type::getDoubleTy(getVMContext());
}


/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
/// an 8-byte GPR.  This means that we either have a scalar or we are talking
/// about the high or low part of an up-to-16-byte struct.  This routine picks
/// the best LLVM IR type to represent this, which may be i64 or may be anything
/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
/// etc).
///
/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
/// the 8-byte value references.  PrefType may be null.
///
/// SourceTy is the source-level type for the entire argument.  SourceOffset is
/// an offset into this that we're processing (which is always either 0 or 8).
///
llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
                       QualType SourceTy, unsigned SourceOffset) const {
  // If we're dealing with an un-offset LLVM IR type, then it means that we're
  // returning an 8-byte unit starting with it.  See if we can safely use it.
  if (IROffset == 0) {
    // Pointers and int64's always fill the 8-byte unit.
    if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
        IRType->isIntegerTy(64))
      return IRType;

    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
    // goodness in the source type is just tail padding.  This is allowed to
    // kick in for struct {double,int} on the int, but not on
    // struct{double,int,int} because we wouldn't return the second int.  We
    // have to do this analysis on the source type because we can't depend on
    // unions being lowered a specific way etc.
    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
        IRType->isIntegerTy(32) ||
        (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
      unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
          cast<llvm::IntegerType>(IRType)->getBitWidth();

      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
                                SourceOffset*8+64, getContext()))
        return IRType;
    }
  }

  if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
    // If this is a struct, recurse into the field at the specified offset.
    const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
    if (IROffset < SL->getSizeInBytes()) {
      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
      IROffset -= SL->getElementOffset(FieldIdx);

      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
                                    SourceTy, SourceOffset);
    }
  }

  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
    llvm::Type *EltTy = ATy->getElementType();
    unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
    unsigned EltOffset = IROffset/EltSize*EltSize;
    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
                                  SourceOffset);
  }

  // Okay, we don't have any better idea of what to pass, so we pass this in an
  // integer register that isn't too big to fit the rest of the struct.
  unsigned TySizeInBytes =
    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();

  assert(TySizeInBytes != SourceOffset && "Empty field?");

  // It is always safe to classify this as an integer type up to i64 that
  // isn't larger than the structure.
  return llvm::IntegerType::get(getVMContext(),
                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
}


/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
/// be used as elements of a two register pair to pass or return, return a
/// first class aggregate to represent them.  For example, if the low part of
/// a by-value argument should be passed as i32* and the high part as float,
/// return {i32*, float}.
static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
                           const llvm::DataLayout &TD) {
  // In order to correctly satisfy the ABI, we need to the high part to start
  // at offset 8.  If the high and low parts we inferred are both 4-byte types
  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
  // the second element at offset 8.  Check for this:
  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
  unsigned HiAlign = TD.getABITypeAlignment(Hi);
  unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");

  // To handle this, we have to increase the size of the low part so that the
  // second element will start at an 8 byte offset.  We can't increase the size
  // of the second element because it might make us access off the end of the
  // struct.
  if (HiStart != 8) {
    // There are usually two sorts of types the ABI generation code can produce
    // for the low part of a pair that aren't 8 bytes in size: float or
    // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
    // NaCl).
    // Promote these to a larger type.
    if (Lo->isFloatTy())
      Lo = llvm::Type::getDoubleTy(Lo->getContext());
    else {
      assert((Lo->isIntegerTy() || Lo->isPointerTy())
             && "Invalid/unknown lo type");
      Lo = llvm::Type::getInt64Ty(Lo->getContext());
    }
  }

  llvm::StructType *Result = llvm::StructType::get(Lo, Hi);

  // Verify that the second element is at an 8-byte offset.
  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
         "Invalid x86-64 argument pair!");
  return Result;
}

ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const {
  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
  // classification algorithm.
  X86_64ABIInfo::Class Lo, Hi;
  classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);

  // Check some invariants.
  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");

  llvm::Type *ResType = nullptr;
  switch (Lo) {
  case NoClass:
    if (Hi == NoClass)
      return ABIArgInfo::getIgnore();
    // If the low part is just padding, it takes no register, leave ResType
    // null.
    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
           "Unknown missing lo part");
    break;

  case SSEUp:
  case X87Up:
    llvm_unreachable("Invalid classification for lo word.");

    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
    // hidden argument.
  case Memory:
    return getIndirectReturnResult(RetTy);

    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
    // available register of the sequence %rax, %rdx is used.
  case Integer:
    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);

    // If we have a sign or zero extended integer, make sure to return Extend
    // so that the parameter gets the right LLVM IR attributes.
    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
      // Treat an enum type as its underlying type.
      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
        RetTy = EnumTy->getDecl()->getIntegerType();

      if (RetTy->isIntegralOrEnumerationType() &&
          RetTy->isPromotableIntegerType())
        return ABIArgInfo::getExtend(RetTy);
    }
    break;

    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
    // available SSE register of the sequence %xmm0, %xmm1 is used.
  case SSE:
    ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
    break;

    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
    // returned on the X87 stack in %st0 as 80-bit x87 number.
  case X87:
    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
    break;

    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
    // part of the value is returned in %st0 and the imaginary part in
    // %st1.
  case ComplexX87:
    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
    ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
                                    llvm::Type::getX86_FP80Ty(getVMContext()));
    break;
  }

  llvm::Type *HighPart = nullptr;
  switch (Hi) {
    // Memory was handled previously and X87 should
    // never occur as a hi class.
  case Memory:
  case X87:
    llvm_unreachable("Invalid classification for hi word.");

  case ComplexX87: // Previously handled.
  case NoClass:
    break;

  case Integer:
    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
      return ABIArgInfo::getDirect(HighPart, 8);
    break;
  case SSE:
    HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
      return ABIArgInfo::getDirect(HighPart, 8);
    break;

    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
    // is passed in the next available eightbyte chunk if the last used
    // vector register.
    //
    // SSEUP should always be preceded by SSE, just widen.
  case SSEUp:
    assert(Lo == SSE && "Unexpected SSEUp classification.");
    ResType = GetByteVectorType(RetTy);
    break;

    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
    // returned together with the previous X87 value in %st0.
  case X87Up:
    // If X87Up is preceded by X87, we don't need to do
    // anything. However, in some cases with unions it may not be
    // preceded by X87. In such situations we follow gcc and pass the
    // extra bits in an SSE reg.
    if (Lo != X87) {
      HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
        return ABIArgInfo::getDirect(HighPart, 8);
    }
    break;
  }

  // If a high part was specified, merge it together with the low part.  It is
  // known to pass in the high eightbyte of the result.  We do this by forming a
  // first class struct aggregate with the high and low part: {low, high}
  if (HighPart)
    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());

  return ABIArgInfo::getDirect(ResType);
}

ABIArgInfo X86_64ABIInfo::classifyArgumentType(
  QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
  bool isNamedArg)
  const
{
  Ty = useFirstFieldIfTransparentUnion(Ty);

  X86_64ABIInfo::Class Lo, Hi;
  classify(Ty, 0, Lo, Hi, isNamedArg);

  // Check some invariants.
  // FIXME: Enforce these by construction.
  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");

  neededInt = 0;
  neededSSE = 0;
  llvm::Type *ResType = nullptr;
  switch (Lo) {
  case NoClass:
    if (Hi == NoClass)
      return ABIArgInfo::getIgnore();
    // If the low part is just padding, it takes no register, leave ResType
    // null.
    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
           "Unknown missing lo part");
    break;

    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
    // on the stack.
  case Memory:

    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
    // COMPLEX_X87, it is passed in memory.
  case X87:
  case ComplexX87:
    if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
      ++neededInt;
    return getIndirectResult(Ty, freeIntRegs);

  case SSEUp:
  case X87Up:
    llvm_unreachable("Invalid classification for lo word.");

    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
    // and %r9 is used.
  case Integer:
    ++neededInt;

    // Pick an 8-byte type based on the preferred type.
    ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);

    // If we have a sign or zero extended integer, make sure to return Extend
    // so that the parameter gets the right LLVM IR attributes.
    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
      // Treat an enum type as its underlying type.
      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
        Ty = EnumTy->getDecl()->getIntegerType();

      if (Ty->isIntegralOrEnumerationType() &&
          Ty->isPromotableIntegerType())
        return ABIArgInfo::getExtend(Ty);
    }

    break;

    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
    // available SSE register is used, the registers are taken in the
    // order from %xmm0 to %xmm7.
  case SSE: {
    llvm::Type *IRType = CGT.ConvertType(Ty);
    ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
    ++neededSSE;
    break;
  }
  }

  llvm::Type *HighPart = nullptr;
  switch (Hi) {
    // Memory was handled previously, ComplexX87 and X87 should
    // never occur as hi classes, and X87Up must be preceded by X87,
    // which is passed in memory.
  case Memory:
  case X87:
  case ComplexX87:
    llvm_unreachable("Invalid classification for hi word.");

  case NoClass: break;

  case Integer:
    ++neededInt;
    // Pick an 8-byte type based on the preferred type.
    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);

    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
      return ABIArgInfo::getDirect(HighPart, 8);
    break;

    // X87Up generally doesn't occur here (long double is passed in
    // memory), except in situations involving unions.
  case X87Up:
  case SSE:
    HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);

    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
      return ABIArgInfo::getDirect(HighPart, 8);

    ++neededSSE;
    break;

    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
    // eightbyte is passed in the upper half of the last used SSE
    // register.  This only happens when 128-bit vectors are passed.
  case SSEUp:
    assert(Lo == SSE && "Unexpected SSEUp classification");
    ResType = GetByteVectorType(Ty);
    break;
  }

  // If a high part was specified, merge it together with the low part.  It is
  // known to pass in the high eightbyte of the result.  We do this by forming a
  // first class struct aggregate with the high and low part: {low, high}
  if (HighPart)
    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());

  return ABIArgInfo::getDirect(ResType);
}

ABIArgInfo
X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
                                             unsigned &NeededSSE) const {
  auto RT = Ty->getAs<RecordType>();
  assert(RT && "classifyRegCallStructType only valid with struct types");

  if (RT->getDecl()->hasFlexibleArrayMember())
    return getIndirectReturnResult(Ty);

  // Sum up bases
  if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
    if (CXXRD->isDynamicClass()) {
      NeededInt = NeededSSE = 0;
      return getIndirectReturnResult(Ty);
    }

    for (const auto &I : CXXRD->bases())
      if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
              .isIndirect()) {
        NeededInt = NeededSSE = 0;
        return getIndirectReturnResult(Ty);
      }
  }

  // Sum up members
  for (const auto *FD : RT->getDecl()->fields()) {
    if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
      if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
              .isIndirect()) {
        NeededInt = NeededSSE = 0;
        return getIndirectReturnResult(Ty);
      }
    } else {
      unsigned LocalNeededInt, LocalNeededSSE;
      if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
                               LocalNeededSSE, true)
              .isIndirect()) {
        NeededInt = NeededSSE = 0;
        return getIndirectReturnResult(Ty);
      }
      NeededInt += LocalNeededInt;
      NeededSSE += LocalNeededSSE;
    }
  }

  return ABIArgInfo::getDirect();
}

ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
                                                    unsigned &NeededInt,
                                                    unsigned &NeededSSE) const {

  NeededInt = 0;
  NeededSSE = 0;

  return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
}

void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {

  const unsigned CallingConv = FI.getCallingConvention();
  // It is possible to force Win64 calling convention on any x86_64 target by
  // using __attribute__((ms_abi)). In such case to correctly emit Win64
  // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
  if (CallingConv == llvm::CallingConv::Win64) {
    WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
    Win64ABIInfo.computeInfo(FI);
    return;
  }

  bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;

  // Keep track of the number of assigned registers.
  unsigned FreeIntRegs = IsRegCall ? 11 : 6;
  unsigned FreeSSERegs = IsRegCall ? 16 : 8;
  unsigned NeededInt, NeededSSE;

  if (!::classifyReturnType(getCXXABI(), FI, *this)) {
    if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
        !FI.getReturnType()->getTypePtr()->isUnionType()) {
      FI.getReturnInfo() =
          classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
      if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
        FreeIntRegs -= NeededInt;
        FreeSSERegs -= NeededSSE;
      } else {
        FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
      }
    } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) {
      // Complex Long Double Type is passed in Memory when Regcall
      // calling convention is used.
      const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>();
      if (getContext().getCanonicalType(CT->getElementType()) ==
          getContext().LongDoubleTy)
        FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
    } else
      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
  }

  // If the return value is indirect, then the hidden argument is consuming one
  // integer register.
  if (FI.getReturnInfo().isIndirect())
    --FreeIntRegs;

  // The chain argument effectively gives us another free register.
  if (FI.isChainCall())
    ++FreeIntRegs;

  unsigned NumRequiredArgs = FI.getNumRequiredArgs();
  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
  // get assigned (in left-to-right order) for passing as follows...
  unsigned ArgNo = 0;
  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
       it != ie; ++it, ++ArgNo) {
    bool IsNamedArg = ArgNo < NumRequiredArgs;

    if (IsRegCall && it->type->isStructureOrClassType())
      it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
    else
      it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
                                      NeededSSE, IsNamedArg);

    // AMD64-ABI 3.2.3p3: If there are no registers available for any
    // eightbyte of an argument, the whole argument is passed on the
    // stack. If registers have already been assigned for some
    // eightbytes of such an argument, the assignments get reverted.
    if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
      FreeIntRegs -= NeededInt;
      FreeSSERegs -= NeededSSE;
    } else {
      it->info = getIndirectResult(it->type, FreeIntRegs);
    }
  }
}

static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
                                         Address VAListAddr, QualType Ty) {
  Address overflow_arg_area_p =
      CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
  llvm::Value *overflow_arg_area =
    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");

  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
  // byte boundary if alignment needed by type exceeds 8 byte boundary.
  // It isn't stated explicitly in the standard, but in practice we use
  // alignment greater than 16 where necessary.
  CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
  if (Align > CharUnits::fromQuantity(8)) {
    overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
                                                      Align);
  }

  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
  llvm::Value *Res =
    CGF.Builder.CreateBitCast(overflow_arg_area,
                              llvm::PointerType::getUnqual(LTy));

  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
  // l->overflow_arg_area + sizeof(type).
  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
  // an 8 byte boundary.

  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
  llvm::Value *Offset =
      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
                                            "overflow_arg_area.next");
  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);

  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
  return Address(Res, Align);
}

Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                 QualType Ty) const {
  // Assume that va_list type is correct; should be pointer to LLVM type:
  // struct {
  //   i32 gp_offset;
  //   i32 fp_offset;
  //   i8* overflow_arg_area;
  //   i8* reg_save_area;
  // };
  unsigned neededInt, neededSSE;

  Ty = getContext().getCanonicalType(Ty);
  ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
                                       /*isNamedArg*/false);

  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
  // in the registers. If not go to step 7.
  if (!neededInt && !neededSSE)
    return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);

  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
  // general purpose registers needed to pass type and num_fp to hold
  // the number of floating point registers needed.

  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
  // l->fp_offset > 304 - num_fp * 16 go to step 7.
  //
  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
  // register save space).

  llvm::Value *InRegs = nullptr;
  Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
  llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
  if (neededInt) {
    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
  }

  if (neededSSE) {
    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
    llvm::Value *FitsInFP =
      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
  }

  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);

  // Emit code to load the value if it was passed in registers.

  CGF.EmitBlock(InRegBlock);

  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
  // an offset of l->gp_offset and/or l->fp_offset. This may require
  // copying to a temporary location in case the parameter is passed
  // in different register classes or requires an alignment greater
  // than 8 for general purpose registers and 16 for XMM registers.
  //
  // FIXME: This really results in shameful code when we end up needing to
  // collect arguments from different places; often what should result in a
  // simple assembling of a structure from scattered addresses has many more
  // loads than necessary. Can we clean this up?
  llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
  llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
      CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");

  Address RegAddr = Address::invalid();
  if (neededInt && neededSSE) {
    // FIXME: Cleanup.
    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
    llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
    Address Tmp = CGF.CreateMemTemp(Ty);
    Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
    llvm::Type *TyLo = ST->getElementType(0);
    llvm::Type *TyHi = ST->getElementType(1);
    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
           "Unexpected ABI info for mixed regs");
    llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
    llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
    llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
    llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;

    // Copy the first element.
    // FIXME: Our choice of alignment here and below is probably pessimistic.
    llvm::Value *V = CGF.Builder.CreateAlignedLoad(
        TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
        CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));

    // Copy the second element.
    V = CGF.Builder.CreateAlignedLoad(
        TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
        CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));

    RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
  } else if (neededInt) {
    RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
                      CharUnits::fromQuantity(8));
    RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);

    // Copy to a temporary if necessary to ensure the appropriate alignment.
    std::pair<CharUnits, CharUnits> SizeAlign =
        getContext().getTypeInfoInChars(Ty);
    uint64_t TySize = SizeAlign.first.getQuantity();
    CharUnits TyAlign = SizeAlign.second;

    // Copy into a temporary if the type is more aligned than the
    // register save area.
    if (TyAlign.getQuantity() > 8) {
      Address Tmp = CGF.CreateMemTemp(Ty);
      CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
      RegAddr = Tmp;
    }

  } else if (neededSSE == 1) {
    RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
                      CharUnits::fromQuantity(16));
    RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
  } else {
    assert(neededSSE == 2 && "Invalid number of needed registers!");
    // SSE registers are spaced 16 bytes apart in the register save
    // area, we need to collect the two eightbytes together.
    // The ABI isn't explicit about this, but it seems reasonable
    // to assume that the slots are 16-byte aligned, since the stack is
    // naturally 16-byte aligned and the prologue is expected to store
    // all the SSE registers to the RSA.
    Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
                                CharUnits::fromQuantity(16));
    Address RegAddrHi =
      CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
                                             CharUnits::fromQuantity(16));
    llvm::Type *ST = AI.canHaveCoerceToType()
                         ? AI.getCoerceToType()
                         : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
    llvm::Value *V;
    Address Tmp = CGF.CreateMemTemp(Ty);
    Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
    V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
        RegAddrLo, ST->getStructElementType(0)));
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
    V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
        RegAddrHi, ST->getStructElementType(1)));
    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));

    RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
  }

  // AMD64-ABI 3.5.7p5: Step 5. Set:
  // l->gp_offset = l->gp_offset + num_gp * 8
  // l->fp_offset = l->fp_offset + num_fp * 16.
  if (neededInt) {
    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
                            gp_offset_p);
  }
  if (neededSSE) {
    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
                            fp_offset_p);
  }
  CGF.EmitBranch(ContBlock);

  // Emit code to load the value if it was passed in memory.

  CGF.EmitBlock(InMemBlock);
  Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);

  // Return the appropriate result.

  CGF.EmitBlock(ContBlock);
  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
                                 "vaarg.addr");
  return ResAddr;
}

Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                   QualType Ty) const {
  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
                          CGF.getContext().getTypeInfoInChars(Ty),
                          CharUnits::fromQuantity(8),
                          /*allowHigherAlign*/ false);
}

ABIArgInfo
WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
                                    const ABIArgInfo &current) const {
  // Assumes vectorCall calling convention.
  const Type *Base = nullptr;
  uint64_t NumElts = 0;

  if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
      isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
    FreeSSERegs -= NumElts;
    return getDirectX86Hva();
  }
  return current;
}

ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
                                      bool IsReturnType, bool IsVectorCall,
                                      bool IsRegCall) const {

  if (Ty->isVoidType())
    return ABIArgInfo::getIgnore();

  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    Ty = EnumTy->getDecl()->getIntegerType();

  TypeInfo Info = getContext().getTypeInfo(Ty);
  uint64_t Width = Info.Width;
  CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);

  const RecordType *RT = Ty->getAs<RecordType>();
  if (RT) {
    if (!IsReturnType) {
      if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
        return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
    }

    if (RT->getDecl()->hasFlexibleArrayMember())
      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);

  }

  const Type *Base = nullptr;
  uint64_t NumElts = 0;
  // vectorcall adds the concept of a homogenous vector aggregate, similar to
  // other targets.
  if ((IsVectorCall || IsRegCall) &&
      isHomogeneousAggregate(Ty, Base, NumElts)) {
    if (IsRegCall) {
      if (FreeSSERegs >= NumElts) {
        FreeSSERegs -= NumElts;
        if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
          return ABIArgInfo::getDirect();
        return ABIArgInfo::getExpand();
      }
      return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
    } else if (IsVectorCall) {
      if (FreeSSERegs >= NumElts &&
          (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
        FreeSSERegs -= NumElts;
        return ABIArgInfo::getDirect();
      } else if (IsReturnType) {
        return ABIArgInfo::getExpand();
      } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
        // HVAs are delayed and reclassified in the 2nd step.
        return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
      }
    }
  }

  if (Ty->isMemberPointerType()) {
    // If the member pointer is represented by an LLVM int or ptr, pass it
    // directly.
    llvm::Type *LLTy = CGT.ConvertType(Ty);
    if (LLTy->isPointerTy() || LLTy->isIntegerTy())
      return ABIArgInfo::getDirect();
  }

  if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
    // not 1, 2, 4, or 8 bytes, must be passed by reference."
    if (Width > 64 || !llvm::isPowerOf2_64(Width))
      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);

    // Otherwise, coerce it to a small integer.
    return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
  }

  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
    switch (BT->getKind()) {
    case BuiltinType::Bool:
      // Bool type is always extended to the ABI, other builtin types are not
      // extended.
      return ABIArgInfo::getExtend(Ty);

    case BuiltinType::LongDouble:
      // Mingw64 GCC uses the old 80 bit extended precision floating point
      // unit. It passes them indirectly through memory.
      if (IsMingw64) {
        const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
        if (LDF == &llvm::APFloat::x87DoubleExtended())
          return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
      }
      break;

    case BuiltinType::Int128:
    case BuiltinType::UInt128:
      // If it's a parameter type, the normal ABI rule is that arguments larger
      // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
      // even though it isn't particularly efficient.
      if (!IsReturnType)
        return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);

      // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
      // Clang matches them for compatibility.
      return ABIArgInfo::getDirect(
          llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2));

    default:
      break;
    }
  }

  return ABIArgInfo::getDirect();
}

void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
                                             unsigned FreeSSERegs,
                                             bool IsVectorCall,
                                             bool IsRegCall) const {
  unsigned Count = 0;
  for (auto &I : FI.arguments()) {
    // Vectorcall in x64 only permits the first 6 arguments to be passed
    // as XMM/YMM registers.
    if (Count < VectorcallMaxParamNumAsReg)
      I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
    else {
      // Since these cannot be passed in registers, pretend no registers
      // are left.
      unsigned ZeroSSERegsAvail = 0;
      I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
                        IsVectorCall, IsRegCall);
    }
    ++Count;
  }

  for (auto &I : FI.arguments()) {
    I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
  }
}

void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
  const unsigned CC = FI.getCallingConvention();
  bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
  bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;

  // If __attribute__((sysv_abi)) is in use, use the SysV argument
  // classification rules.
  if (CC == llvm::CallingConv::X86_64_SysV) {
    X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
    SysVABIInfo.computeInfo(FI);
    return;
  }

  unsigned FreeSSERegs = 0;
  if (IsVectorCall) {
    // We can use up to 4 SSE return registers with vectorcall.
    FreeSSERegs = 4;
  } else if (IsRegCall) {
    // RegCall gives us 16 SSE registers.
    FreeSSERegs = 16;
  }

  if (!getCXXABI().classifyReturnType(FI))
    FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
                                  IsVectorCall, IsRegCall);

  if (IsVectorCall) {
    // We can use up to 6 SSE register parameters with vectorcall.
    FreeSSERegs = 6;
  } else if (IsRegCall) {
    // RegCall gives us 16 SSE registers, we can reuse the return registers.
    FreeSSERegs = 16;
  }

  if (IsVectorCall) {
    computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
  } else {
    for (auto &I : FI.arguments())
      I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
  }

}

Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                    QualType Ty) const {

  bool IsIndirect = false;

  // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
  // not 1, 2, 4, or 8 bytes, must be passed by reference."
  if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
    uint64_t Width = getContext().getTypeSize(Ty);
    IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
  }

  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
                          CGF.getContext().getTypeInfoInChars(Ty),
                          CharUnits::fromQuantity(8),
                          /*allowHigherAlign*/ false);
}

// PowerPC-32
namespace {
/// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
  bool IsSoftFloatABI;

  CharUnits getParamTypeAlignment(QualType Ty) const;

public:
  PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI)
      : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {}

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;
};

class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
public:
  PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI)
      : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {}

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
    // This is recovered from gcc output.
    return 1; // r1 is the dedicated stack pointer
  }

  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                               llvm::Value *Address) const override;
};
}

CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
  // Complex types are passed just like their elements
  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
    Ty = CTy->getElementType();

  if (Ty->isVectorType())
    return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
                                                                       : 4);

  // For single-element float/vector structs, we consider the whole type
  // to have the same alignment requirements as its single element.
  const Type *AlignTy = nullptr;
  if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
    const BuiltinType *BT = EltType->getAs<BuiltinType>();
    if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
        (BT && BT->isFloatingPoint()))
      AlignTy = EltType;
  }

  if (AlignTy)
    return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
  return CharUnits::fromQuantity(4);
}

// TODO: this implementation is now likely redundant with
// DefaultABIInfo::EmitVAArg.
Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
                                      QualType Ty) const {
  if (getTarget().getTriple().isOSDarwin()) {
    auto TI = getContext().getTypeInfoInChars(Ty);
    TI.second = getParamTypeAlignment(Ty);

    CharUnits SlotSize = CharUnits::fromQuantity(4);
    return emitVoidPtrVAArg(CGF, VAList, Ty,
                            classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
                            /*AllowHigherAlign=*/true);
  }

  const unsigned OverflowLimit = 8;
  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
    // TODO: Implement this. For now ignore.
    (void)CTy;
    return Address::invalid(); // FIXME?
  }

  // struct __va_list_tag {
  //   unsigned char gpr;
  //   unsigned char fpr;
  //   unsigned short reserved;
  //   void *overflow_arg_area;
  //   void *reg_save_area;
  // };

  bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
  bool isInt =
      Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
  bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;

  // All aggregates are passed indirectly?  That doesn't seem consistent
  // with the argument-lowering code.
  bool isIndirect = Ty->isAggregateType();

  CGBuilderTy &Builder = CGF.Builder;

  // The calling convention either uses 1-2 GPRs or 1 FPR.
  Address NumRegsAddr = Address::invalid();
  if (isInt || IsSoftFloatABI) {
    NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
  } else {
    NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
  }

  llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");

  // "Align" the register count when TY is i64.
  if (isI64 || (isF64 && IsSoftFloatABI)) {
    NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
    NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
  }

  llvm::Value *CC =
      Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");

  llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
  llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
  llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");

  Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);

  llvm::Type *DirectTy = CGF.ConvertType(Ty);
  if (isIndirect) DirectTy = DirectTy->getPointerTo(0);

  // Case 1: consume registers.
  Address RegAddr = Address::invalid();
  {
    CGF.EmitBlock(UsingRegs);

    Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
    RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
                      CharUnits::fromQuantity(8));
    assert(RegAddr.getElementType() == CGF.Int8Ty);

    // Floating-point registers start after the general-purpose registers.
    if (!(isInt || IsSoftFloatABI)) {
      RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
                                                   CharUnits::fromQuantity(32));
    }

    // Get the address of the saved value by scaling the number of
    // registers we've used by the number of
    CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
    llvm::Value *RegOffset =
      Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
    RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
                                            RegAddr.getPointer(), RegOffset),
                      RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
    RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);

    // Increase the used-register count.
    NumRegs =
      Builder.CreateAdd(NumRegs,
                        Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
    Builder.CreateStore(NumRegs, NumRegsAddr);

    CGF.EmitBranch(Cont);
  }

  // Case 2: consume space in the overflow area.
  Address MemAddr = Address::invalid();
  {
    CGF.EmitBlock(UsingOverflow);

    Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);

    // Everything in the overflow area is rounded up to a size of at least 4.
    CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);

    CharUnits Size;
    if (!isIndirect) {
      auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
      Size = TypeInfo.first.alignTo(OverflowAreaAlign);
    } else {
      Size = CGF.getPointerSize();
    }

    Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
    Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
                         OverflowAreaAlign);
    // Round up address of argument to alignment
    CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
    if (Align > OverflowAreaAlign) {
      llvm::Value *Ptr = OverflowArea.getPointer();
      OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
                                                           Align);
    }

    MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);

    // Increase the overflow area.
    OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
    Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
    CGF.EmitBranch(Cont);
  }

  CGF.EmitBlock(Cont);

  // Merge the cases with a phi.
  Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
                                "vaarg.addr");

  // Load the pointer if the argument was passed indirectly.
  if (isIndirect) {
    Result = Address(Builder.CreateLoad(Result, "aggr"),
                     getContext().getTypeAlignInChars(Ty));
  }

  return Result;
}

bool
PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                                                llvm::Value *Address) const {
  // This is calculated from the LLVM and GCC tables and verified
  // against gcc output.  AFAIK all ABIs use the same encoding.

  CodeGen::CGBuilderTy &Builder = CGF.Builder;

  llvm::IntegerType *i8 = CGF.Int8Ty;
  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);

  // 0-31: r0-31, the 4-byte general-purpose registers
  AssignToArrayRange(Builder, Address, Four8, 0, 31);

  // 32-63: fp0-31, the 8-byte floating-point registers
  AssignToArrayRange(Builder, Address, Eight8, 32, 63);

  // 64-76 are various 4-byte special-purpose registers:
  // 64: mq
  // 65: lr
  // 66: ctr
  // 67: ap
  // 68-75 cr0-7
  // 76: xer
  AssignToArrayRange(Builder, Address, Four8, 64, 76);

  // 77-108: v0-31, the 16-byte vector registers
  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);

  // 109: vrsave
  // 110: vscr
  // 111: spe_acc
  // 112: spefscr
  // 113: sfp
  AssignToArrayRange(Builder, Address, Four8, 109, 113);

  return false;
}

// PowerPC-64

namespace {
/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
public:
  enum ABIKind {
    ELFv1 = 0,
    ELFv2
  };

private:
  static const unsigned GPRBits = 64;
  ABIKind Kind;
  bool HasQPX;
  bool IsSoftFloatABI;

  // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
  // will be passed in a QPX register.
  bool IsQPXVectorTy(const Type *Ty) const {
    if (!HasQPX)
      return false;

    if (const VectorType *VT = Ty->getAs<VectorType>()) {
      unsigned NumElements = VT->getNumElements();
      if (NumElements == 1)
        return false;

      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
        if (getContext().getTypeSize(Ty) <= 256)
          return true;
      } else if (VT->getElementType()->
                   isSpecificBuiltinType(BuiltinType::Float)) {
        if (getContext().getTypeSize(Ty) <= 128)
          return true;
      }
    }

    return false;
  }

  bool IsQPXVectorTy(QualType Ty) const {
    return IsQPXVectorTy(Ty.getTypePtr());
  }

public:
  PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
                     bool SoftFloatABI)
      : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
        IsSoftFloatABI(SoftFloatABI) {}

  bool isPromotableTypeForABI(QualType Ty) const;
  CharUnits getParamTypeAlignment(QualType Ty) const;

  ABIArgInfo classifyReturnType(QualType RetTy) const;
  ABIArgInfo classifyArgumentType(QualType Ty) const;

  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
                                         uint64_t Members) const override;

  // TODO: We can add more logic to computeInfo to improve performance.
  // Example: For aggregate arguments that fit in a register, we could
  // use getDirectInReg (as is done below for structs containing a single
  // floating-point value) to avoid pushing them to memory on function
  // entry.  This would require changing the logic in PPCISelLowering
  // when lowering the parameters in the caller and args in the callee.
  void computeInfo(CGFunctionInfo &FI) const override {
    if (!getCXXABI().classifyReturnType(FI))
      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    for (auto &I : FI.arguments()) {
      // We rely on the default argument classification for the most part.
      // One exception:  An aggregate containing a single floating-point
      // or vector item must be passed in a register if one is available.
      const Type *T = isSingleElementStruct(I.type, getContext());
      if (T) {
        const BuiltinType *BT = T->getAs<BuiltinType>();
        if (IsQPXVectorTy(T) ||
            (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
            (BT && BT->isFloatingPoint())) {
          QualType QT(T, 0);
          I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
          continue;
        }
      }
      I.info = classifyArgumentType(I.type);
    }
  }

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;

  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
                                    bool asReturnValue) const override {
    return occupiesMoreThan(CGT, scalars, /*total*/ 4);
  }

  bool isSwiftErrorInRegister() const override {
    return false;
  }
};

class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {

public:
  PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
                               PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
                               bool SoftFloatABI)
      : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX,
                                                 SoftFloatABI)) {}

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
    // This is recovered from gcc output.
    return 1; // r1 is the dedicated stack pointer
  }

  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                               llvm::Value *Address) const override;
};

class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
public:
  PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
    // This is recovered from gcc output.
    return 1; // r1 is the dedicated stack pointer
  }

  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                               llvm::Value *Address) const override;
};

}

// Return true if the ABI requires Ty to be passed sign- or zero-
// extended to 64 bits.
bool
PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
  // Treat an enum type as its underlying type.
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    Ty = EnumTy->getDecl()->getIntegerType();

  // Promotable integer types are required to be promoted by the ABI.
  if (Ty->isPromotableIntegerType())
    return true;

  // In addition to the usual promotable integer types, we also need to
  // extend all 32-bit types, since the ABI requires promotion to 64 bits.
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
    switch (BT->getKind()) {
    case BuiltinType::Int:
    case BuiltinType::UInt:
      return true;
    default:
      break;
    }

  return false;
}

/// isAlignedParamType - Determine whether a type requires 16-byte or
/// higher alignment in the parameter area.  Always returns at least 8.
CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
  // Complex types are passed just like their elements.
  if (const ComplexType *CTy = Ty->getAs<ComplexType>())
    Ty = CTy->getElementType();

  // Only vector types of size 16 bytes need alignment (larger types are
  // passed via reference, smaller types are not aligned).
  if (IsQPXVectorTy(Ty)) {
    if (getContext().getTypeSize(Ty) > 128)
      return CharUnits::fromQuantity(32);

    return CharUnits::fromQuantity(16);
  } else if (Ty->isVectorType()) {
    return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
  }

  // For single-element float/vector structs, we consider the whole type
  // to have the same alignment requirements as its single element.
  const Type *AlignAsType = nullptr;
  const Type *EltType = isSingleElementStruct(Ty, getContext());
  if (EltType) {
    const BuiltinType *BT = EltType->getAs<BuiltinType>();
    if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
         getContext().getTypeSize(EltType) == 128) ||
        (BT && BT->isFloatingPoint()))
      AlignAsType = EltType;
  }

  // Likewise for ELFv2 homogeneous aggregates.
  const Type *Base = nullptr;
  uint64_t Members = 0;
  if (!AlignAsType && Kind == ELFv2 &&
      isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
    AlignAsType = Base;

  // With special case aggregates, only vector base types need alignment.
  if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
    if (getContext().getTypeSize(AlignAsType) > 128)
      return CharUnits::fromQuantity(32);

    return CharUnits::fromQuantity(16);
  } else if (AlignAsType) {
    return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
  }

  // Otherwise, we only need alignment for any aggregate type that
  // has an alignment requirement of >= 16 bytes.
  if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
    if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
      return CharUnits::fromQuantity(32);
    return CharUnits::fromQuantity(16);
  }

  return CharUnits::fromQuantity(8);
}

/// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
/// aggregate.  Base is set to the base element type, and Members is set
/// to the number of base elements.
bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
                                     uint64_t &Members) const {
  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
    uint64_t NElements = AT->getSize().getZExtValue();
    if (NElements == 0)
      return false;
    if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
      return false;
    Members *= NElements;
  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
    const RecordDecl *RD = RT->getDecl();
    if (RD->hasFlexibleArrayMember())
      return false;

    Members = 0;

    // If this is a C++ record, check the bases first.
    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
      for (const auto &I : CXXRD->bases()) {
        // Ignore empty records.
        if (isEmptyRecord(getContext(), I.getType(), true))
          continue;

        uint64_t FldMembers;
        if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
          return false;

        Members += FldMembers;
      }
    }

    for (const auto *FD : RD->fields()) {
      // Ignore (non-zero arrays of) empty records.
      QualType FT = FD->getType();
      while (const ConstantArrayType *AT =
             getContext().getAsConstantArrayType(FT)) {
        if (AT->getSize().getZExtValue() == 0)
          return false;
        FT = AT->getElementType();
      }
      if (isEmptyRecord(getContext(), FT, true))
        continue;

      // For compatibility with GCC, ignore empty bitfields in C++ mode.
      if (getContext().getLangOpts().CPlusPlus &&
          FD->isZeroLengthBitField(getContext()))
        continue;

      uint64_t FldMembers;
      if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
        return false;

      Members = (RD->isUnion() ?
                 std::max(Members, FldMembers) : Members + FldMembers);
    }

    if (!Base)
      return false;

    // Ensure there is no padding.
    if (getContext().getTypeSize(Base) * Members !=
        getContext().getTypeSize(Ty))
      return false;
  } else {
    Members = 1;
    if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
      Members = 2;
      Ty = CT->getElementType();
    }

    // Most ABIs only support float, double, and some vector type widths.
    if (!isHomogeneousAggregateBaseType(Ty))
      return false;

    // The base type must be the same for all members.  Types that
    // agree in both total size and mode (float vs. vector) are
    // treated as being equivalent here.
    const Type *TyPtr = Ty.getTypePtr();
    if (!Base) {
      Base = TyPtr;
      // If it's a non-power-of-2 vector, its size is already a power-of-2,
      // so make sure to widen it explicitly.
      if (const VectorType *VT = Base->getAs<VectorType>()) {
        QualType EltTy = VT->getElementType();
        unsigned NumElements =
            getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
        Base = getContext()
                   .getVectorType(EltTy, NumElements, VT->getVectorKind())
                   .getTypePtr();
      }
    }

    if (Base->isVectorType() != TyPtr->isVectorType() ||
        getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
      return false;
  }
  return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
}

bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
  // Homogeneous aggregates for ELFv2 must have base types of float,
  // double, long double, or 128-bit vectors.
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
    if (BT->getKind() == BuiltinType::Float ||
        BT->getKind() == BuiltinType::Double ||
        BT->getKind() == BuiltinType::LongDouble ||
        (getContext().getTargetInfo().hasFloat128Type() &&
          (BT->getKind() == BuiltinType::Float128))) {
      if (IsSoftFloatABI)
        return false;
      return true;
    }
  }
  if (const VectorType *VT = Ty->getAs<VectorType>()) {
    if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
      return true;
  }
  return false;
}

bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
    const Type *Base, uint64_t Members) const {
  // Vector and fp128 types require one register, other floating point types
  // require one or two registers depending on their size.
  uint32_t NumRegs =
      ((getContext().getTargetInfo().hasFloat128Type() &&
          Base->isFloat128Type()) ||
        Base->isVectorType()) ? 1
                              : (getContext().getTypeSize(Base) + 63) / 64;

  // Homogeneous Aggregates may occupy at most 8 registers.
  return Members * NumRegs <= 8;
}

ABIArgInfo
PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
  Ty = useFirstFieldIfTransparentUnion(Ty);

  if (Ty->isAnyComplexType())
    return ABIArgInfo::getDirect();

  // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
  // or via reference (larger than 16 bytes).
  if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
    uint64_t Size = getContext().getTypeSize(Ty);
    if (Size > 128)
      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
    else if (Size < 128) {
      llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
      return ABIArgInfo::getDirect(CoerceTy);
    }
  }

  if (isAggregateTypeForABI(Ty)) {
    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);

    uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
    uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();

    // ELFv2 homogeneous aggregates are passed as array types.
    const Type *Base = nullptr;
    uint64_t Members = 0;
    if (Kind == ELFv2 &&
        isHomogeneousAggregate(Ty, Base, Members)) {
      llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
      llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
      return ABIArgInfo::getDirect(CoerceTy);
    }

    // If an aggregate may end up fully in registers, we do not
    // use the ByVal method, but pass the aggregate as array.
    // This is usually beneficial since we avoid forcing the
    // back-end to store the argument to memory.
    uint64_t Bits = getContext().getTypeSize(Ty);
    if (Bits > 0 && Bits <= 8 * GPRBits) {
      llvm::Type *CoerceTy;

      // Types up to 8 bytes are passed as integer type (which will be
      // properly aligned in the argument save area doubleword).
      if (Bits <= GPRBits)
        CoerceTy =
            llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
      // Larger types are passed as arrays, with the base type selected
      // according to the required alignment in the save area.
      else {
        uint64_t RegBits = ABIAlign * 8;
        uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
        llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
        CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
      }

      return ABIArgInfo::getDirect(CoerceTy);
    }

    // All other aggregates are passed ByVal.
    return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
                                   /*ByVal=*/true,
                                   /*Realign=*/TyAlign > ABIAlign);
  }

  return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
                                     : ABIArgInfo::getDirect());
}

ABIArgInfo
PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
  if (RetTy->isVoidType())
    return ABIArgInfo::getIgnore();

  if (RetTy->isAnyComplexType())
    return ABIArgInfo::getDirect();

  // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
  // or via reference (larger than 16 bytes).
  if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
    uint64_t Size = getContext().getTypeSize(RetTy);
    if (Size > 128)
      return getNaturalAlignIndirect(RetTy);
    else if (Size < 128) {
      llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
      return ABIArgInfo::getDirect(CoerceTy);
    }
  }

  if (isAggregateTypeForABI(RetTy)) {
    // ELFv2 homogeneous aggregates are returned as array types.
    const Type *Base = nullptr;
    uint64_t Members = 0;
    if (Kind == ELFv2 &&
        isHomogeneousAggregate(RetTy, Base, Members)) {
      llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
      llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
      return ABIArgInfo::getDirect(CoerceTy);
    }

    // ELFv2 small aggregates are returned in up to two registers.
    uint64_t Bits = getContext().getTypeSize(RetTy);
    if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
      if (Bits == 0)
        return ABIArgInfo::getIgnore();

      llvm::Type *CoerceTy;
      if (Bits > GPRBits) {
        CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
        CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
      } else
        CoerceTy =
            llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
      return ABIArgInfo::getDirect(CoerceTy);
    }

    // All other aggregates are returned indirectly.
    return getNaturalAlignIndirect(RetTy);
  }

  return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
                                        : ABIArgInfo::getDirect());
}

// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                      QualType Ty) const {
  auto TypeInfo = getContext().getTypeInfoInChars(Ty);
  TypeInfo.second = getParamTypeAlignment(Ty);

  CharUnits SlotSize = CharUnits::fromQuantity(8);

  // If we have a complex type and the base type is smaller than 8 bytes,
  // the ABI calls for the real and imaginary parts to be right-adjusted
  // in separate doublewords.  However, Clang expects us to produce a
  // pointer to a structure with the two parts packed tightly.  So generate
  // loads of the real and imaginary parts relative to the va_list pointer,
  // and store them to a temporary structure.
  if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
    CharUnits EltSize = TypeInfo.first / 2;
    if (EltSize < SlotSize) {
      Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
                                            SlotSize * 2, SlotSize,
                                            SlotSize, /*AllowHigher*/ true);

      Address RealAddr = Addr;
      Address ImagAddr = RealAddr;
      if (CGF.CGM.getDataLayout().isBigEndian()) {
        RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
                                                          SlotSize - EltSize);
        ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
                                                      2 * SlotSize - EltSize);
      } else {
        ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
      }

      llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
      RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
      ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
      llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
      llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");

      Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
      CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
                             /*init*/ true);
      return Temp;
    }
  }

  // Otherwise, just use the general rule.
  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
                          TypeInfo, SlotSize, /*AllowHigher*/ true);
}

static bool
PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                              llvm::Value *Address) {
  // This is calculated from the LLVM and GCC tables and verified
  // against gcc output.  AFAIK all ABIs use the same encoding.

  CodeGen::CGBuilderTy &Builder = CGF.Builder;

  llvm::IntegerType *i8 = CGF.Int8Ty;
  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);

  // 0-31: r0-31, the 8-byte general-purpose registers
  AssignToArrayRange(Builder, Address, Eight8, 0, 31);

  // 32-63: fp0-31, the 8-byte floating-point registers
  AssignToArrayRange(Builder, Address, Eight8, 32, 63);

  // 64-67 are various 8-byte special-purpose registers:
  // 64: mq
  // 65: lr
  // 66: ctr
  // 67: ap
  AssignToArrayRange(Builder, Address, Eight8, 64, 67);

  // 68-76 are various 4-byte special-purpose registers:
  // 68-75 cr0-7
  // 76: xer
  AssignToArrayRange(Builder, Address, Four8, 68, 76);

  // 77-108: v0-31, the 16-byte vector registers
  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);

  // 109: vrsave
  // 110: vscr
  // 111: spe_acc
  // 112: spefscr
  // 113: sfp
  // 114: tfhar
  // 115: tfiar
  // 116: texasr
  AssignToArrayRange(Builder, Address, Eight8, 109, 116);

  return false;
}

bool
PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
  CodeGen::CodeGenFunction &CGF,
  llvm::Value *Address) const {

  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
}

bool
PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                                                llvm::Value *Address) const {

  return PPC64_initDwarfEHRegSizeTable(CGF, Address);
}

//===----------------------------------------------------------------------===//
// AArch64 ABI Implementation
//===----------------------------------------------------------------------===//

namespace {

class AArch64ABIInfo : public SwiftABIInfo {
public:
  enum ABIKind {
    AAPCS = 0,
    DarwinPCS,
    Win64
  };

private:
  ABIKind Kind;

public:
  AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
    : SwiftABIInfo(CGT), Kind(Kind) {}

private:
  ABIKind getABIKind() const { return Kind; }
  bool isDarwinPCS() const { return Kind == DarwinPCS; }

  ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
  ABIArgInfo classifyArgumentType(QualType RetTy) const;
  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
                                         uint64_t Members) const override;

  bool isIllegalVectorType(QualType Ty) const;

  void computeInfo(CGFunctionInfo &FI) const override {
    if (!::classifyReturnType(getCXXABI(), FI, *this))
      FI.getReturnInfo() =
          classifyReturnType(FI.getReturnType(), FI.isVariadic());

    for (auto &it : FI.arguments())
      it.info = classifyArgumentType(it.type);
  }

  Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
                          CodeGenFunction &CGF) const;

  Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
                         CodeGenFunction &CGF) const;

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override {
    return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
                         : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
                                         : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
  }

  Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
                      QualType Ty) const override;

  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
                                    bool asReturnValue) const override {
    return occupiesMoreThan(CGT, scalars, /*total*/ 4);
  }
  bool isSwiftErrorInRegister() const override {
    return true;
  }

  bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
                                 unsigned elts) const override;
};

class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
public:
  AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
      : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}

  StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
    return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
  }

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
    return 31;
  }

  bool doesReturnSlotInterfereWithArgs() const override { return false; }

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override {
    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
    if (!FD)
      return;

    CodeGenOptions::SignReturnAddressScope Scope = CGM.getCodeGenOpts().getSignReturnAddress();
    CodeGenOptions::SignReturnAddressKeyValue Key = CGM.getCodeGenOpts().getSignReturnAddressKey();
    bool BranchTargetEnforcement = CGM.getCodeGenOpts().BranchTargetEnforcement;
    if (const auto *TA = FD->getAttr<TargetAttr>()) {
      ParsedTargetAttr Attr = TA->parse();
      if (!Attr.BranchProtection.empty()) {
        TargetInfo::BranchProtectionInfo BPI;
        StringRef Error;
        (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
                                                       BPI, Error);
        assert(Error.empty());
        Scope = BPI.SignReturnAddr;
        Key = BPI.SignKey;
        BranchTargetEnforcement = BPI.BranchTargetEnforcement;
      }
    }

    auto *Fn = cast<llvm::Function>(GV);
    if (Scope != CodeGenOptions::SignReturnAddressScope::None) {
      Fn->addFnAttr("sign-return-address",
                    Scope == CodeGenOptions::SignReturnAddressScope::All
                        ? "all"
                        : "non-leaf");

      Fn->addFnAttr("sign-return-address-key",
                    Key == CodeGenOptions::SignReturnAddressKeyValue::AKey
                        ? "a_key"
                        : "b_key");
    }

    if (BranchTargetEnforcement)
      Fn->addFnAttr("branch-target-enforcement");
  }
};

class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
public:
  WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
      : AArch64TargetCodeGenInfo(CGT, K) {}

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override;

  void getDependentLibraryOption(llvm::StringRef Lib,
                                 llvm::SmallString<24> &Opt) const override {
    Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
  }

  void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
                               llvm::SmallString<32> &Opt) const override {
    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
  }
};

void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
  AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
  if (GV->isDeclaration())
    return;
  addStackProbeTargetAttributes(D, GV, CGM);
}
}

ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
  Ty = useFirstFieldIfTransparentUnion(Ty);

  // Handle illegal vector types here.
  if (isIllegalVectorType(Ty)) {
    uint64_t Size = getContext().getTypeSize(Ty);
    // Android promotes <2 x i8> to i16, not i32
    if (isAndroid() && (Size <= 16)) {
      llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
      return ABIArgInfo::getDirect(ResType);
    }
    if (Size <= 32) {
      llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
      return ABIArgInfo::getDirect(ResType);
    }
    if (Size == 64) {
      llvm::Type *ResType =
          llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
      return ABIArgInfo::getDirect(ResType);
    }
    if (Size == 128) {
      llvm::Type *ResType =
          llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
      return ABIArgInfo::getDirect(ResType);
    }
    return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
  }

  if (!isAggregateTypeForABI(Ty)) {
    // Treat an enum type as its underlying type.
    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
      Ty = EnumTy->getDecl()->getIntegerType();

    return (Ty->isPromotableIntegerType() && isDarwinPCS()
                ? ABIArgInfo::getExtend(Ty)
                : ABIArgInfo::getDirect());
  }

  // Structures with either a non-trivial destructor or a non-trivial
  // copy constructor are always indirect.
  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
                                     CGCXXABI::RAA_DirectInMemory);
  }

  // Empty records are always ignored on Darwin, but actually passed in C++ mode
  // elsewhere for GNU compatibility.
  uint64_t Size = getContext().getTypeSize(Ty);
  bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
  if (IsEmpty || Size == 0) {
    if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
      return ABIArgInfo::getIgnore();

    // GNU C mode. The only argument that gets ignored is an empty one with size
    // 0.
    if (IsEmpty && Size == 0)
      return ABIArgInfo::getIgnore();
    return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
  }

  // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
  const Type *Base = nullptr;
  uint64_t Members = 0;
  if (isHomogeneousAggregate(Ty, Base, Members)) {
    return ABIArgInfo::getDirect(
        llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
  }

  // Aggregates <= 16 bytes are passed directly in registers or on the stack.
  if (Size <= 128) {
    // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
    // same size and alignment.
    if (getTarget().isRenderScriptTarget()) {
      return coerceToIntArray(Ty, getContext(), getVMContext());
    }
    unsigned Alignment;
    if (Kind == AArch64ABIInfo::AAPCS) {
      Alignment = getContext().getTypeUnadjustedAlign(Ty);
      Alignment = Alignment < 128 ? 64 : 128;
    } else {
      Alignment = std::max(getContext().getTypeAlign(Ty),
                           (unsigned)getTarget().getPointerWidth(0));
    }
    Size = llvm::alignTo(Size, Alignment);

    // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
    // For aggregates with 16-byte alignment, we use i128.
    llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
    return ABIArgInfo::getDirect(
        Size == Alignment ? BaseTy
                          : llvm::ArrayType::get(BaseTy, Size / Alignment));
  }

  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
}

ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
                                              bool IsVariadic) const {
  if (RetTy->isVoidType())
    return ABIArgInfo::getIgnore();

  // Large vector types should be returned via memory.
  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
    return getNaturalAlignIndirect(RetTy);

  if (!isAggregateTypeForABI(RetTy)) {
    // Treat an enum type as its underlying type.
    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
      RetTy = EnumTy->getDecl()->getIntegerType();

    return (RetTy->isPromotableIntegerType() && isDarwinPCS()
                ? ABIArgInfo::getExtend(RetTy)
                : ABIArgInfo::getDirect());
  }

  uint64_t Size = getContext().getTypeSize(RetTy);
  if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
    return ABIArgInfo::getIgnore();

  const Type *Base = nullptr;
  uint64_t Members = 0;
  if (isHomogeneousAggregate(RetTy, Base, Members) &&
      !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
        IsVariadic))
    // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
    return ABIArgInfo::getDirect();

  // Aggregates <= 16 bytes are returned directly in registers or on the stack.
  if (Size <= 128) {
    // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
    // same size and alignment.
    if (getTarget().isRenderScriptTarget()) {
      return coerceToIntArray(RetTy, getContext(), getVMContext());
    }
    unsigned Alignment = getContext().getTypeAlign(RetTy);
    Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes

    // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
    // For aggregates with 16-byte alignment, we use i128.
    if (Alignment < 128 && Size == 128) {
      llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
      return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
    }
    return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
  }

  return getNaturalAlignIndirect(RetTy);
}

/// isIllegalVectorType - check whether the vector type is legal for AArch64.
bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
  if (const VectorType *VT = Ty->getAs<VectorType>()) {
    // Check whether VT is legal.
    unsigned NumElements = VT->getNumElements();
    uint64_t Size = getContext().getTypeSize(VT);
    // NumElements should be power of 2.
    if (!llvm::isPowerOf2_32(NumElements))
      return true;

    // arm64_32 has to be compatible with the ARM logic here, which allows huge
    // vectors for some reason.
    llvm::Triple Triple = getTarget().getTriple();
    if (Triple.getArch() == llvm::Triple::aarch64_32 &&
        Triple.isOSBinFormatMachO())
      return Size <= 32;

    return Size != 64 && (Size != 128 || NumElements == 1);
  }
  return false;
}

bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
                                               llvm::Type *eltTy,
                                               unsigned elts) const {
  if (!llvm::isPowerOf2_32(elts))
    return false;
  if (totalSize.getQuantity() != 8 &&
      (totalSize.getQuantity() != 16 || elts == 1))
    return false;
  return true;
}

bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
  // Homogeneous aggregates for AAPCS64 must have base types of a floating
  // point type or a short-vector type. This is the same as the 32-bit ABI,
  // but with the difference that any floating-point type is allowed,
  // including __fp16.
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
    if (BT->isFloatingPoint())
      return true;
  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
    unsigned VecSize = getContext().getTypeSize(VT);
    if (VecSize == 64 || VecSize == 128)
      return true;
  }
  return false;
}

bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
                                                       uint64_t Members) const {
  return Members <= 4;
}

Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
                                            QualType Ty,
                                            CodeGenFunction &CGF) const {
  ABIArgInfo AI = classifyArgumentType(Ty);
  bool IsIndirect = AI.isIndirect();

  llvm::Type *BaseTy = CGF.ConvertType(Ty);
  if (IsIndirect)
    BaseTy = llvm::PointerType::getUnqual(BaseTy);
  else if (AI.getCoerceToType())
    BaseTy = AI.getCoerceToType();

  unsigned NumRegs = 1;
  if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
    BaseTy = ArrTy->getElementType();
    NumRegs = ArrTy->getNumElements();
  }
  bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();

  // The AArch64 va_list type and handling is specified in the Procedure Call
  // Standard, section B.4:
  //
  // struct {
  //   void *__stack;
  //   void *__gr_top;
  //   void *__vr_top;
  //   int __gr_offs;
  //   int __vr_offs;
  // };

  llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
  llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");

  CharUnits TySize = getContext().getTypeSizeInChars(Ty);
  CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);

  Address reg_offs_p = Address::invalid();
  llvm::Value *reg_offs = nullptr;
  int reg_top_index;
  int RegSize = IsIndirect ? 8 : TySize.getQuantity();
  if (!IsFPR) {
    // 3 is the field number of __gr_offs
    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
    reg_top_index = 1; // field number for __gr_top
    RegSize = llvm::alignTo(RegSize, 8);
  } else {
    // 4 is the field number of __vr_offs.
    reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
    reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
    reg_top_index = 2; // field number for __vr_top
    RegSize = 16 * NumRegs;
  }

  //=======================================
  // Find out where argument was passed
  //=======================================

  // If reg_offs >= 0 we're already using the stack for this type of
  // argument. We don't want to keep updating reg_offs (in case it overflows,
  // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
  // whatever they get).
  llvm::Value *UsingStack = nullptr;
  UsingStack = CGF.Builder.CreateICmpSGE(
      reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));

  CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);

  // Otherwise, at least some kind of argument could go in these registers, the
  // question is whether this particular type is too big.
  CGF.EmitBlock(MaybeRegBlock);

  // Integer arguments may need to correct register alignment (for example a
  // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
  // align __gr_offs to calculate the potential address.
  if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
    int Align = TyAlign.getQuantity();

    reg_offs = CGF.Builder.CreateAdd(
        reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
        "align_regoffs");
    reg_offs = CGF.Builder.CreateAnd(
        reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
        "aligned_regoffs");
  }

  // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
  // The fact that this is done unconditionally reflects the fact that
  // allocating an argument to the stack also uses up all the remaining
  // registers of the appropriate kind.
  llvm::Value *NewOffset = nullptr;
  NewOffset = CGF.Builder.CreateAdd(
      reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
  CGF.Builder.CreateStore(NewOffset, reg_offs_p);

  // Now we're in a position to decide whether this argument really was in
  // registers or not.
  llvm::Value *InRegs = nullptr;
  InRegs = CGF.Builder.CreateICmpSLE(
      NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");

  CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);

  //=======================================
  // Argument was in registers
  //=======================================

  // Now we emit the code for if the argument was originally passed in
  // registers. First start the appropriate block:
  CGF.EmitBlock(InRegBlock);

  llvm::Value *reg_top = nullptr;
  Address reg_top_p =
      CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
  reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
  Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
                   CharUnits::fromQuantity(IsFPR ? 16 : 8));
  Address RegAddr = Address::invalid();
  llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);

  if (IsIndirect) {
    // If it's been passed indirectly (actually a struct), whatever we find from
    // stored registers or on the stack will actually be a struct **.
    MemTy = llvm::PointerType::getUnqual(MemTy);
  }

  const Type *Base = nullptr;
  uint64_t NumMembers = 0;
  bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
  if (IsHFA && NumMembers > 1) {
    // Homogeneous aggregates passed in registers will have their elements split
    // and stored 16-bytes apart regardless of size (they're notionally in qN,
    // qN+1, ...). We reload and store into a temporary local variable
    // contiguously.
    assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
    auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
    llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
    llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
    Address Tmp = CGF.CreateTempAlloca(HFATy,
                                       std::max(TyAlign, BaseTyInfo.second));

    // On big-endian platforms, the value will be right-aligned in its slot.
    int Offset = 0;
    if (CGF.CGM.getDataLayout().isBigEndian() &&
        BaseTyInfo.first.getQuantity() < 16)
      Offset = 16 - BaseTyInfo.first.getQuantity();

    for (unsigned i = 0; i < NumMembers; ++i) {
      CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
      Address LoadAddr =
        CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
      LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);

      Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);

      llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
      CGF.Builder.CreateStore(Elem, StoreAddr);
    }

    RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
  } else {
    // Otherwise the object is contiguous in memory.

    // It might be right-aligned in its slot.
    CharUnits SlotSize = BaseAddr.getAlignment();
    if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
        (IsHFA || !isAggregateTypeForABI(Ty)) &&
        TySize < SlotSize) {
      CharUnits Offset = SlotSize - TySize;
      BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
    }

    RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
  }

  CGF.EmitBranch(ContBlock);

  //=======================================
  // Argument was on the stack
  //=======================================
  CGF.EmitBlock(OnStackBlock);

  Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
  llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");

  // Again, stack arguments may need realignment. In this case both integer and
  // floating-point ones might be affected.
  if (!IsIndirect && TyAlign.getQuantity() > 8) {
    int Align = TyAlign.getQuantity();

    OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);

    OnStackPtr = CGF.Builder.CreateAdd(
        OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
        "align_stack");
    OnStackPtr = CGF.Builder.CreateAnd(
        OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
        "align_stack");

    OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
  }
  Address OnStackAddr(OnStackPtr,
                      std::max(CharUnits::fromQuantity(8), TyAlign));

  // All stack slots are multiples of 8 bytes.
  CharUnits StackSlotSize = CharUnits::fromQuantity(8);
  CharUnits StackSize;
  if (IsIndirect)
    StackSize = StackSlotSize;
  else
    StackSize = TySize.alignTo(StackSlotSize);

  llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
  llvm::Value *NewStack =
      CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");

  // Write the new value of __stack for the next call to va_arg
  CGF.Builder.CreateStore(NewStack, stack_p);

  if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
      TySize < StackSlotSize) {
    CharUnits Offset = StackSlotSize - TySize;
    OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
  }

  OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);

  CGF.EmitBranch(ContBlock);

  //=======================================
  // Tidy up
  //=======================================
  CGF.EmitBlock(ContBlock);

  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
                                 OnStackAddr, OnStackBlock, "vaargs.addr");

  if (IsIndirect)
    return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
                   TyAlign);

  return ResAddr;
}

Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
                                        CodeGenFunction &CGF) const {
  // The backend's lowering doesn't support va_arg for aggregates or
  // illegal vector types.  Lower VAArg here for these cases and use
  // the LLVM va_arg instruction for everything else.
  if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
    return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());

  uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
  CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);

  // Empty records are ignored for parameter passing purposes.
  if (isEmptyRecord(getContext(), Ty, true)) {
    Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
    return Addr;
  }

  // The size of the actual thing passed, which might end up just
  // being a pointer for indirect types.
  auto TyInfo = getContext().getTypeInfoInChars(Ty);

  // Arguments bigger than 16 bytes which aren't homogeneous
  // aggregates should be passed indirectly.
  bool IsIndirect = false;
  if (TyInfo.first.getQuantity() > 16) {
    const Type *Base = nullptr;
    uint64_t Members = 0;
    IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
  }

  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
                          TyInfo, SlotSize, /*AllowHigherAlign*/ true);
}

Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                    QualType Ty) const {
  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
                          CGF.getContext().getTypeInfoInChars(Ty),
                          CharUnits::fromQuantity(8),
                          /*allowHigherAlign*/ false);
}

//===----------------------------------------------------------------------===//
// ARM ABI Implementation
//===----------------------------------------------------------------------===//

namespace {

class ARMABIInfo : public SwiftABIInfo {
public:
  enum ABIKind {
    APCS = 0,
    AAPCS = 1,
    AAPCS_VFP = 2,
    AAPCS16_VFP = 3,
  };

private:
  ABIKind Kind;

public:
  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
      : SwiftABIInfo(CGT), Kind(_Kind) {
    setCCs();
  }

  bool isEABI() const {
    switch (getTarget().getTriple().getEnvironment()) {
    case llvm::Triple::Android:
    case llvm::Triple::EABI:
    case llvm::Triple::EABIHF:
    case llvm::Triple::GNUEABI:
    case llvm::Triple::GNUEABIHF:
    case llvm::Triple::MuslEABI:
    case llvm::Triple::MuslEABIHF:
      return true;
    default:
      return false;
    }
  }

  bool isEABIHF() const {
    switch (getTarget().getTriple().getEnvironment()) {
    case llvm::Triple::EABIHF:
    case llvm::Triple::GNUEABIHF:
    case llvm::Triple::MuslEABIHF:
      return true;
    default:
      return false;
    }
  }

  ABIKind getABIKind() const { return Kind; }

private:
  ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
                                unsigned functionCallConv) const;
  ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
                                  unsigned functionCallConv) const;
  ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
                                          uint64_t Members) const;
  ABIArgInfo coerceIllegalVector(QualType Ty) const;
  bool isIllegalVectorType(QualType Ty) const;
  bool containsAnyFP16Vectors(QualType Ty) const;

  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
  bool isHomogeneousAggregateSmallEnough(const Type *Ty,
                                         uint64_t Members) const override;

  bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;

  void computeInfo(CGFunctionInfo &FI) const override;

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;

  llvm::CallingConv::ID getLLVMDefaultCC() const;
  llvm::CallingConv::ID getABIDefaultCC() const;
  void setCCs();

  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
                                    bool asReturnValue) const override {
    return occupiesMoreThan(CGT, scalars, /*total*/ 4);
  }
  bool isSwiftErrorInRegister() const override {
    return true;
  }
  bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
                                 unsigned elts) const override;
};

class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
public:
  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}

  const ARMABIInfo &getABIInfo() const {
    return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
  }

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
    return 13;
  }

  StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
    return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
  }

  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                               llvm::Value *Address) const override {
    llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);

    // 0-15 are the 16 integer registers.
    AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
    return false;
  }

  unsigned getSizeOfUnwindException() const override {
    if (getABIInfo().isEABI()) return 88;
    return TargetCodeGenInfo::getSizeOfUnwindException();
  }

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override {
    if (GV->isDeclaration())
      return;
    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
    if (!FD)
      return;

    const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
    if (!Attr)
      return;

    const char *Kind;
    switch (Attr->getInterrupt()) {
    case ARMInterruptAttr::Generic: Kind = ""; break;
    case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
    case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
    case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
    case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
    case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
    }

    llvm::Function *Fn = cast<llvm::Function>(GV);

    Fn->addFnAttr("interrupt", Kind);

    ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
    if (ABI == ARMABIInfo::APCS)
      return;

    // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
    // however this is not necessarily true on taking any interrupt. Instruct
    // the backend to perform a realignment as part of the function prologue.
    llvm::AttrBuilder B;
    B.addStackAlignmentAttr(8);
    Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
  }
};

class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
public:
  WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
      : ARMTargetCodeGenInfo(CGT, K) {}

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override;

  void getDependentLibraryOption(llvm::StringRef Lib,
                                 llvm::SmallString<24> &Opt) const override {
    Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
  }

  void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
                               llvm::SmallString<32> &Opt) const override {
    Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
  }
};

void WindowsARMTargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
  ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
  if (GV->isDeclaration())
    return;
  addStackProbeTargetAttributes(D, GV, CGM);
}
}

void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
  if (!::classifyReturnType(getCXXABI(), FI, *this))
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
                                            FI.getCallingConvention());

  for (auto &I : FI.arguments())
    I.info = classifyArgumentType(I.type, FI.isVariadic(),
                                  FI.getCallingConvention());


  // Always honor user-specified calling convention.
  if (FI.getCallingConvention() != llvm::CallingConv::C)
    return;

  llvm::CallingConv::ID cc = getRuntimeCC();
  if (cc != llvm::CallingConv::C)
    FI.setEffectiveCallingConvention(cc);
}

/// Return the default calling convention that LLVM will use.
llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
  // The default calling convention that LLVM will infer.
  if (isEABIHF() || getTarget().getTriple().isWatchABI())
    return llvm::CallingConv::ARM_AAPCS_VFP;
  else if (isEABI())
    return llvm::CallingConv::ARM_AAPCS;
  else
    return llvm::CallingConv::ARM_APCS;
}

/// Return the calling convention that our ABI would like us to use
/// as the C calling convention.
llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
  switch (getABIKind()) {
  case APCS: return llvm::CallingConv::ARM_APCS;
  case AAPCS: return llvm::CallingConv::ARM_AAPCS;
  case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
  case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
  }
  llvm_unreachable("bad ABI kind");
}

void ARMABIInfo::setCCs() {
  assert(getRuntimeCC() == llvm::CallingConv::C);

  // Don't muddy up the IR with a ton of explicit annotations if
  // they'd just match what LLVM will infer from the triple.
  llvm::CallingConv::ID abiCC = getABIDefaultCC();
  if (abiCC != getLLVMDefaultCC())
    RuntimeCC = abiCC;
}

ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
  uint64_t Size = getContext().getTypeSize(Ty);
  if (Size <= 32) {
    llvm::Type *ResType =
        llvm::Type::getInt32Ty(getVMContext());
    return ABIArgInfo::getDirect(ResType);
  }
  if (Size == 64 || Size == 128) {
    llvm::Type *ResType = llvm::VectorType::get(
        llvm::Type::getInt32Ty(getVMContext()), Size / 32);
    return ABIArgInfo::getDirect(ResType);
  }
  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
}

ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
                                                    const Type *Base,
                                                    uint64_t Members) const {
  assert(Base && "Base class should be set for homogeneous aggregate");
  // Base can be a floating-point or a vector.
  if (const VectorType *VT = Base->getAs<VectorType>()) {
    // FP16 vectors should be converted to integer vectors
    if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
      uint64_t Size = getContext().getTypeSize(VT);
      llvm::Type *NewVecTy = llvm::VectorType::get(
          llvm::Type::getInt32Ty(getVMContext()), Size / 32);
      llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
      return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
    }
  }
  return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
}

ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
                                            unsigned functionCallConv) const {
  // 6.1.2.1 The following argument types are VFP CPRCs:
  //   A single-precision floating-point type (including promoted
  //   half-precision types); A double-precision floating-point type;
  //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
  //   with a Base Type of a single- or double-precision floating-point type,
  //   64-bit containerized vectors or 128-bit containerized vectors with one
  //   to four Elements.
  // Variadic functions should always marshal to the base standard.
  bool IsAAPCS_VFP =
      !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);

  Ty = useFirstFieldIfTransparentUnion(Ty);

  // Handle illegal vector types here.
  if (isIllegalVectorType(Ty))
    return coerceIllegalVector(Ty);

  // _Float16 and __fp16 get passed as if it were an int or float, but with
  // the top 16 bits unspecified. This is not done for OpenCL as it handles the
  // half type natively, and does not need to interwork with AAPCS code.
  if ((Ty->isFloat16Type() || Ty->isHalfType()) &&
      !getContext().getLangOpts().NativeHalfArgsAndReturns) {
    llvm::Type *ResType = IsAAPCS_VFP ?
      llvm::Type::getFloatTy(getVMContext()) :
      llvm::Type::getInt32Ty(getVMContext());
    return ABIArgInfo::getDirect(ResType);
  }

  if (!isAggregateTypeForABI(Ty)) {
    // Treat an enum type as its underlying type.
    if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
      Ty = EnumTy->getDecl()->getIntegerType();
    }

    return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
                                          : ABIArgInfo::getDirect());
  }

  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
  }

  // Ignore empty records.
  if (isEmptyRecord(getContext(), Ty, true))
    return ABIArgInfo::getIgnore();

  if (IsAAPCS_VFP) {
    // Homogeneous Aggregates need to be expanded when we can fit the aggregate
    // into VFP registers.
    const Type *Base = nullptr;
    uint64_t Members = 0;
    if (isHomogeneousAggregate(Ty, Base, Members))
      return classifyHomogeneousAggregate(Ty, Base, Members);
  } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
    // WatchOS does have homogeneous aggregates. Note that we intentionally use
    // this convention even for a variadic function: the backend will use GPRs
    // if needed.
    const Type *Base = nullptr;
    uint64_t Members = 0;
    if (isHomogeneousAggregate(Ty, Base, Members)) {
      assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
      llvm::Type *Ty =
        llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
      return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
    }
  }

  if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
      getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
    // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
    // bigger than 128-bits, they get placed in space allocated by the caller,
    // and a pointer is passed.
    return ABIArgInfo::getIndirect(
        CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
  }

  // Support byval for ARM.
  // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
  // most 8-byte. We realign the indirect argument if type alignment is bigger
  // than ABI alignment.
  uint64_t ABIAlign = 4;
  uint64_t TyAlign;
  if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
      getABIKind() == ARMABIInfo::AAPCS) {
    TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
    ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
  } else {
    TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
  }
  if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
    assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
    return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
                                   /*ByVal=*/true,
                                   /*Realign=*/TyAlign > ABIAlign);
  }

  // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
  // same size and alignment.
  if (getTarget().isRenderScriptTarget()) {
    return coerceToIntArray(Ty, getContext(), getVMContext());
  }

  // Otherwise, pass by coercing to a structure of the appropriate size.
  llvm::Type* ElemTy;
  unsigned SizeRegs;
  // FIXME: Try to match the types of the arguments more accurately where
  // we can.
  if (TyAlign <= 4) {
    ElemTy = llvm::Type::getInt32Ty(getVMContext());
    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
  } else {
    ElemTy = llvm::Type::getInt64Ty(getVMContext());
    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
  }

  return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
}

static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
                              llvm::LLVMContext &VMContext) {
  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
  // is called integer-like if its size is less than or equal to one word, and
  // the offset of each of its addressable sub-fields is zero.

  uint64_t Size = Context.getTypeSize(Ty);

  // Check that the type fits in a word.
  if (Size > 32)
    return false;

  // FIXME: Handle vector types!
  if (Ty->isVectorType())
    return false;

  // Float types are never treated as "integer like".
  if (Ty->isRealFloatingType())
    return false;

  // If this is a builtin or pointer type then it is ok.
  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
    return true;

  // Small complex integer types are "integer like".
  if (const ComplexType *CT = Ty->getAs<ComplexType>())
    return isIntegerLikeType(CT->getElementType(), Context, VMContext);

  // Single element and zero sized arrays should be allowed, by the definition
  // above, but they are not.

  // Otherwise, it must be a record type.
  const RecordType *RT = Ty->getAs<RecordType>();
  if (!RT) return false;

  // Ignore records with flexible arrays.
  const RecordDecl *RD = RT->getDecl();
  if (RD->hasFlexibleArrayMember())
    return false;

  // Check that all sub-fields are at offset 0, and are themselves "integer
  // like".
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);

  bool HadField = false;
  unsigned idx = 0;
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
       i != e; ++i, ++idx) {
    const FieldDecl *FD = *i;

    // Bit-fields are not addressable, we only need to verify they are "integer
    // like". We still have to disallow a subsequent non-bitfield, for example:
    //   struct { int : 0; int x }
    // is non-integer like according to gcc.
    if (FD->isBitField()) {
      if (!RD->isUnion())
        HadField = true;

      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
        return false;

      continue;
    }

    // Check if this field is at offset 0.
    if (Layout.getFieldOffset(idx) != 0)
      return false;

    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
      return false;

    // Only allow at most one field in a structure. This doesn't match the
    // wording above, but follows gcc in situations with a field following an
    // empty structure.
    if (!RD->isUnion()) {
      if (HadField)
        return false;

      HadField = true;
    }
  }

  return true;
}

ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
                                          unsigned functionCallConv) const {

  // Variadic functions should always marshal to the base standard.
  bool IsAAPCS_VFP =
      !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);

  if (RetTy->isVoidType())
    return ABIArgInfo::getIgnore();

  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
    // Large vector types should be returned via memory.
    if (getContext().getTypeSize(RetTy) > 128)
      return getNaturalAlignIndirect(RetTy);
    // FP16 vectors should be converted to integer vectors
    if (!getTarget().hasLegalHalfType() &&
        (VT->getElementType()->isFloat16Type() ||
         VT->getElementType()->isHalfType()))
      return coerceIllegalVector(RetTy);
  }

  // _Float16 and __fp16 get returned as if it were an int or float, but with
  // the top 16 bits unspecified. This is not done for OpenCL as it handles the
  // half type natively, and does not need to interwork with AAPCS code.
  if ((RetTy->isFloat16Type() || RetTy->isHalfType()) &&
      !getContext().getLangOpts().NativeHalfArgsAndReturns) {
    llvm::Type *ResType = IsAAPCS_VFP ?
      llvm::Type::getFloatTy(getVMContext()) :
      llvm::Type::getInt32Ty(getVMContext());
    return ABIArgInfo::getDirect(ResType);
  }

  if (!isAggregateTypeForABI(RetTy)) {
    // Treat an enum type as its underlying type.
    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
      RetTy = EnumTy->getDecl()->getIntegerType();

    return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
                                            : ABIArgInfo::getDirect();
  }

  // Are we following APCS?
  if (getABIKind() == APCS) {
    if (isEmptyRecord(getContext(), RetTy, false))
      return ABIArgInfo::getIgnore();

    // Complex types are all returned as packed integers.
    //
    // FIXME: Consider using 2 x vector types if the back end handles them
    // correctly.
    if (RetTy->isAnyComplexType())
      return ABIArgInfo::getDirect(llvm::IntegerType::get(
          getVMContext(), getContext().getTypeSize(RetTy)));

    // Integer like structures are returned in r0.
    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
      // Return in the smallest viable integer type.
      uint64_t Size = getContext().getTypeSize(RetTy);
      if (Size <= 8)
        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
      if (Size <= 16)
        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
    }

    // Otherwise return in memory.
    return getNaturalAlignIndirect(RetTy);
  }

  // Otherwise this is an AAPCS variant.

  if (isEmptyRecord(getContext(), RetTy, true))
    return ABIArgInfo::getIgnore();

  // Check for homogeneous aggregates with AAPCS-VFP.
  if (IsAAPCS_VFP) {
    const Type *Base = nullptr;
    uint64_t Members = 0;
    if (isHomogeneousAggregate(RetTy, Base, Members))
      return classifyHomogeneousAggregate(RetTy, Base, Members);
  }

  // Aggregates <= 4 bytes are returned in r0; other aggregates
  // are returned indirectly.
  uint64_t Size = getContext().getTypeSize(RetTy);
  if (Size <= 32) {
    // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
    // same size and alignment.
    if (getTarget().isRenderScriptTarget()) {
      return coerceToIntArray(RetTy, getContext(), getVMContext());
    }
    if (getDataLayout().isBigEndian())
      // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));

    // Return in the smallest viable integer type.
    if (Size <= 8)
      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
    if (Size <= 16)
      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
  } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
    llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
    llvm::Type *CoerceTy =
        llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
    return ABIArgInfo::getDirect(CoerceTy);
  }

  return getNaturalAlignIndirect(RetTy);
}

/// isIllegalVector - check whether Ty is an illegal vector type.
bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
  if (const VectorType *VT = Ty->getAs<VectorType> ()) {
    // On targets that don't support FP16, FP16 is expanded into float, and we
    // don't want the ABI to depend on whether or not FP16 is supported in
    // hardware. Thus return false to coerce FP16 vectors into integer vectors.
    if (!getTarget().hasLegalHalfType() &&
        (VT->getElementType()->isFloat16Type() ||
         VT->getElementType()->isHalfType()))
      return true;
    if (isAndroid()) {
      // Android shipped using Clang 3.1, which supported a slightly different
      // vector ABI. The primary differences were that 3-element vector types
      // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
      // accepts that legacy behavior for Android only.
      // Check whether VT is legal.
      unsigned NumElements = VT->getNumElements();
      // NumElements should be power of 2 or equal to 3.
      if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
        return true;
    } else {
      // Check whether VT is legal.
      unsigned NumElements = VT->getNumElements();
      uint64_t Size = getContext().getTypeSize(VT);
      // NumElements should be power of 2.
      if (!llvm::isPowerOf2_32(NumElements))
        return true;
      // Size should be greater than 32 bits.
      return Size <= 32;
    }
  }
  return false;
}

/// Return true if a type contains any 16-bit floating point vectors
bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
    uint64_t NElements = AT->getSize().getZExtValue();
    if (NElements == 0)
      return false;
    return containsAnyFP16Vectors(AT->getElementType());
  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
    const RecordDecl *RD = RT->getDecl();

    // If this is a C++ record, check the bases first.
    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
      if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
            return containsAnyFP16Vectors(B.getType());
          }))
        return true;

    if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
          return FD && containsAnyFP16Vectors(FD->getType());
        }))
      return true;

    return false;
  } else {
    if (const VectorType *VT = Ty->getAs<VectorType>())
      return (VT->getElementType()->isFloat16Type() ||
              VT->getElementType()->isHalfType());
    return false;
  }
}

bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
                                           llvm::Type *eltTy,
                                           unsigned numElts) const {
  if (!llvm::isPowerOf2_32(numElts))
    return false;
  unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
  if (size > 64)
    return false;
  if (vectorSize.getQuantity() != 8 &&
      (vectorSize.getQuantity() != 16 || numElts == 1))
    return false;
  return true;
}

bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
  // Homogeneous aggregates for AAPCS-VFP must have base types of float,
  // double, or 64-bit or 128-bit vectors.
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
    if (BT->getKind() == BuiltinType::Float ||
        BT->getKind() == BuiltinType::Double ||
        BT->getKind() == BuiltinType::LongDouble)
      return true;
  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
    unsigned VecSize = getContext().getTypeSize(VT);
    if (VecSize == 64 || VecSize == 128)
      return true;
  }
  return false;
}

bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
                                                   uint64_t Members) const {
  return Members <= 4;
}

bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
                                        bool acceptHalf) const {
  // Give precedence to user-specified calling conventions.
  if (callConvention != llvm::CallingConv::C)
    return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
  else
    return (getABIKind() == AAPCS_VFP) ||
           (acceptHalf && (getABIKind() == AAPCS16_VFP));
}

Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                              QualType Ty) const {
  CharUnits SlotSize = CharUnits::fromQuantity(4);

  // Empty records are ignored for parameter passing purposes.
  if (isEmptyRecord(getContext(), Ty, true)) {
    Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
    return Addr;
  }

  CharUnits TySize = getContext().getTypeSizeInChars(Ty);
  CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);

  // Use indirect if size of the illegal vector is bigger than 16 bytes.
  bool IsIndirect = false;
  const Type *Base = nullptr;
  uint64_t Members = 0;
  if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
    IsIndirect = true;

  // ARMv7k passes structs bigger than 16 bytes indirectly, in space
  // allocated by the caller.
  } else if (TySize > CharUnits::fromQuantity(16) &&
             getABIKind() == ARMABIInfo::AAPCS16_VFP &&
             !isHomogeneousAggregate(Ty, Base, Members)) {
    IsIndirect = true;

  // Otherwise, bound the type's ABI alignment.
  // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
  // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
  // Our callers should be prepared to handle an under-aligned address.
  } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
             getABIKind() == ARMABIInfo::AAPCS) {
    TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
    TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
  } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
    // ARMv7k allows type alignment up to 16 bytes.
    TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
    TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
  } else {
    TyAlignForABI = CharUnits::fromQuantity(4);
  }

  std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
                          SlotSize, /*AllowHigherAlign*/ true);
}

//===----------------------------------------------------------------------===//
// NVPTX ABI Implementation
//===----------------------------------------------------------------------===//

namespace {

class NVPTXABIInfo : public ABIInfo {
public:
  NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}

  ABIArgInfo classifyReturnType(QualType RetTy) const;
  ABIArgInfo classifyArgumentType(QualType Ty) const;

  void computeInfo(CGFunctionInfo &FI) const override;
  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;
};

class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
public:
  NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
    : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &M) const override;
  bool shouldEmitStaticExternCAliases() const override;

private:
  // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
  // resulting MDNode to the nvvm.annotations MDNode.
  static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
};

/// Checks if the type is unsupported directly by the current target.
static bool isUnsupportedType(ASTContext &Context, QualType T) {
  if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
    return true;
  if (!Context.getTargetInfo().hasFloat128Type() &&
      (T->isFloat128Type() ||
       (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
    return true;
  if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
      Context.getTypeSize(T) > 64)
    return true;
  if (const auto *AT = T->getAsArrayTypeUnsafe())
    return isUnsupportedType(Context, AT->getElementType());
  const auto *RT = T->getAs<RecordType>();
  if (!RT)
    return false;
  const RecordDecl *RD = RT->getDecl();

  // If this is a C++ record, check the bases first.
  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
    for (const CXXBaseSpecifier &I : CXXRD->bases())
      if (isUnsupportedType(Context, I.getType()))
        return true;

  for (const FieldDecl *I : RD->fields())
    if (isUnsupportedType(Context, I->getType()))
      return true;
  return false;
}

/// Coerce the given type into an array with maximum allowed size of elements.
static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context,
                                            llvm::LLVMContext &LLVMContext,
                                            unsigned MaxSize) {
  // Alignment and Size are measured in bits.
  const uint64_t Size = Context.getTypeSize(Ty);
  const uint64_t Alignment = Context.getTypeAlign(Ty);
  const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
  llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div);
  const uint64_t NumElements = (Size + Div - 1) / Div;
  return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
}

ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
  if (RetTy->isVoidType())
    return ABIArgInfo::getIgnore();

  if (getContext().getLangOpts().OpenMP &&
      getContext().getLangOpts().OpenMPIsDevice &&
      isUnsupportedType(getContext(), RetTy))
    return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64);

  // note: this is different from default ABI
  if (!RetTy->isScalarType())
    return ABIArgInfo::getDirect();

  // Treat an enum type as its underlying type.
  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    RetTy = EnumTy->getDecl()->getIntegerType();

  return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
                                           : ABIArgInfo::getDirect());
}

ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
  // Treat an enum type as its underlying type.
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    Ty = EnumTy->getDecl()->getIntegerType();

  // Return aggregates type as indirect by value
  if (isAggregateTypeForABI(Ty))
    return getNaturalAlignIndirect(Ty, /* byval */ true);

  return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
                                        : ABIArgInfo::getDirect());
}

void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
  if (!getCXXABI().classifyReturnType(FI))
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
  for (auto &I : FI.arguments())
    I.info = classifyArgumentType(I.type);

  // Always honor user-specified calling convention.
  if (FI.getCallingConvention() != llvm::CallingConv::C)
    return;

  FI.setEffectiveCallingConvention(getRuntimeCC());
}

Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                QualType Ty) const {
  llvm_unreachable("NVPTX does not support varargs");
}

void NVPTXTargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
  if (GV->isDeclaration())
    return;
  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
  if (!FD) return;

  llvm::Function *F = cast<llvm::Function>(GV);

  // Perform special handling in OpenCL mode
  if (M.getLangOpts().OpenCL) {
    // Use OpenCL function attributes to check for kernel functions
    // By default, all functions are device functions
    if (FD->hasAttr<OpenCLKernelAttr>()) {
      // OpenCL __kernel functions get kernel metadata
      // Create !{<func-ref>, metadata !"kernel", i32 1} node
      addNVVMMetadata(F, "kernel", 1);
      // And kernel functions are not subject to inlining
      F->addFnAttr(llvm::Attribute::NoInline);
    }
  }

  // Perform special handling in CUDA mode.
  if (M.getLangOpts().CUDA) {
    // CUDA __global__ functions get a kernel metadata entry.  Since
    // __global__ functions cannot be called from the device, we do not
    // need to set the noinline attribute.
    if (FD->hasAttr<CUDAGlobalAttr>()) {
      // Create !{<func-ref>, metadata !"kernel", i32 1} node
      addNVVMMetadata(F, "kernel", 1);
    }
    if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
      // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
      llvm::APSInt MaxThreads(32);
      MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
      if (MaxThreads > 0)
        addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());

      // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
      // not specified in __launch_bounds__ or if the user specified a 0 value,
      // we don't have to add a PTX directive.
      if (Attr->getMinBlocks()) {
        llvm::APSInt MinBlocks(32);
        MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
        if (MinBlocks > 0)
          // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
          addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
      }
    }
  }
}

void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
                                             int Operand) {
  llvm::Module *M = F->getParent();
  llvm::LLVMContext &Ctx = M->getContext();

  // Get "nvvm.annotations" metadata node
  llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");

  llvm::Metadata *MDVals[] = {
      llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
      llvm::ConstantAsMetadata::get(
          llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
  // Append metadata to nvvm.annotations
  MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
}

bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
  return false;
}
}

//===----------------------------------------------------------------------===//
// SystemZ ABI Implementation
//===----------------------------------------------------------------------===//

namespace {

class SystemZABIInfo : public SwiftABIInfo {
  bool HasVector;

public:
  SystemZABIInfo(CodeGenTypes &CGT, bool HV)
    : SwiftABIInfo(CGT), HasVector(HV) {}

  bool isPromotableIntegerType(QualType Ty) const;
  bool isCompoundType(QualType Ty) const;
  bool isVectorArgumentType(QualType Ty) const;
  bool isFPArgumentType(QualType Ty) const;
  QualType GetSingleElementType(QualType Ty) const;

  ABIArgInfo classifyReturnType(QualType RetTy) const;
  ABIArgInfo classifyArgumentType(QualType ArgTy) const;

  void computeInfo(CGFunctionInfo &FI) const override {
    if (!getCXXABI().classifyReturnType(FI))
      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    for (auto &I : FI.arguments())
      I.info = classifyArgumentType(I.type);
  }

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;

  bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
                                    bool asReturnValue) const override {
    return occupiesMoreThan(CGT, scalars, /*total*/ 4);
  }
  bool isSwiftErrorInRegister() const override {
    return false;
  }
};

class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
public:
  SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector)
    : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {}
};

}

bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
  // Treat an enum type as its underlying type.
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    Ty = EnumTy->getDecl()->getIntegerType();

  // Promotable integer types are required to be promoted by the ABI.
  if (Ty->isPromotableIntegerType())
    return true;

  // 32-bit values must also be promoted.
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
    switch (BT->getKind()) {
    case BuiltinType::Int:
    case BuiltinType::UInt:
      return true;
    default:
      return false;
    }
  return false;
}

bool SystemZABIInfo::isCompoundType(QualType Ty) const {
  return (Ty->isAnyComplexType() ||
          Ty->isVectorType() ||
          isAggregateTypeForABI(Ty));
}

bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
  return (HasVector &&
          Ty->isVectorType() &&
          getContext().getTypeSize(Ty) <= 128);
}

bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
    switch (BT->getKind()) {
    case BuiltinType::Float:
    case BuiltinType::Double:
      return true;
    default:
      return false;
    }

  return false;
}

QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
  if (const RecordType *RT = Ty->getAsStructureType()) {
    const RecordDecl *RD = RT->getDecl();
    QualType Found;

    // If this is a C++ record, check the bases first.
    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
      for (const auto &I : CXXRD->bases()) {
        QualType Base = I.getType();

        // Empty bases don't affect things either way.
        if (isEmptyRecord(getContext(), Base, true))
          continue;

        if (!Found.isNull())
          return Ty;
        Found = GetSingleElementType(Base);
      }

    // Check the fields.
    for (const auto *FD : RD->fields()) {
      // For compatibility with GCC, ignore empty bitfields in C++ mode.
      // Unlike isSingleElementStruct(), empty structure and array fields
      // do count.  So do anonymous bitfields that aren't zero-sized.
      if (getContext().getLangOpts().CPlusPlus &&
          FD->isZeroLengthBitField(getContext()))
        continue;

      // Unlike isSingleElementStruct(), arrays do not count.
      // Nested structures still do though.
      if (!Found.isNull())
        return Ty;
      Found = GetSingleElementType(FD->getType());
    }

    // Unlike isSingleElementStruct(), trailing padding is allowed.
    // An 8-byte aligned struct s { float f; } is passed as a double.
    if (!Found.isNull())
      return Found;
  }

  return Ty;
}

Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                  QualType Ty) const {
  // Assume that va_list type is correct; should be pointer to LLVM type:
  // struct {
  //   i64 __gpr;
  //   i64 __fpr;
  //   i8 *__overflow_arg_area;
  //   i8 *__reg_save_area;
  // };

  // Every non-vector argument occupies 8 bytes and is passed by preference
  // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
  // always passed on the stack.
  Ty = getContext().getCanonicalType(Ty);
  auto TyInfo = getContext().getTypeInfoInChars(Ty);
  llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
  llvm::Type *DirectTy = ArgTy;
  ABIArgInfo AI = classifyArgumentType(Ty);
  bool IsIndirect = AI.isIndirect();
  bool InFPRs = false;
  bool IsVector = false;
  CharUnits UnpaddedSize;
  CharUnits DirectAlign;
  if (IsIndirect) {
    DirectTy = llvm::PointerType::getUnqual(DirectTy);
    UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
  } else {
    if (AI.getCoerceToType())
      ArgTy = AI.getCoerceToType();
    InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy();
    IsVector = ArgTy->isVectorTy();
    UnpaddedSize = TyInfo.first;
    DirectAlign = TyInfo.second;
  }
  CharUnits PaddedSize = CharUnits::fromQuantity(8);
  if (IsVector && UnpaddedSize > PaddedSize)
    PaddedSize = CharUnits::fromQuantity(16);
  assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");

  CharUnits Padding = (PaddedSize - UnpaddedSize);

  llvm::Type *IndexTy = CGF.Int64Ty;
  llvm::Value *PaddedSizeV =
    llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());

  if (IsVector) {
    // Work out the address of a vector argument on the stack.
    // Vector arguments are always passed in the high bits of a
    // single (8 byte) or double (16 byte) stack slot.
    Address OverflowArgAreaPtr =
        CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
    Address OverflowArgArea =
      Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
              TyInfo.second);
    Address MemAddr =
      CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");

    // Update overflow_arg_area_ptr pointer
    llvm::Value *NewOverflowArgArea =
      CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
                            "overflow_arg_area");
    CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);

    return MemAddr;
  }

  assert(PaddedSize.getQuantity() == 8);

  unsigned MaxRegs, RegCountField, RegSaveIndex;
  CharUnits RegPadding;
  if (InFPRs) {
    MaxRegs = 4; // Maximum of 4 FPR arguments
    RegCountField = 1; // __fpr
    RegSaveIndex = 16; // save offset for f0
    RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
  } else {
    MaxRegs = 5; // Maximum of 5 GPR arguments
    RegCountField = 0; // __gpr
    RegSaveIndex = 2; // save offset for r2
    RegPadding = Padding; // values are passed in the low bits of a GPR
  }

  Address RegCountPtr =
      CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
  llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
  llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
  llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
                                                 "fits_in_regs");

  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);

  // Emit code to load the value if it was passed in registers.
  CGF.EmitBlock(InRegBlock);

  // Work out the address of an argument register.
  llvm::Value *ScaledRegCount =
    CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
  llvm::Value *RegBase =
    llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
                                      + RegPadding.getQuantity());
  llvm::Value *RegOffset =
    CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
  Address RegSaveAreaPtr =
      CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
  llvm::Value *RegSaveArea =
    CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
  Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
                                           "raw_reg_addr"),
                     PaddedSize);
  Address RegAddr =
    CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");

  // Update the register count
  llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
  llvm::Value *NewRegCount =
    CGF.Builder.CreateAdd(RegCount, One, "reg_count");
  CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
  CGF.EmitBranch(ContBlock);

  // Emit code to load the value if it was passed in memory.
  CGF.EmitBlock(InMemBlock);

  // Work out the address of a stack argument.
  Address OverflowArgAreaPtr =
      CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
  Address OverflowArgArea =
    Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
            PaddedSize);
  Address RawMemAddr =
    CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
  Address MemAddr =
    CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");

  // Update overflow_arg_area_ptr pointer
  llvm::Value *NewOverflowArgArea =
    CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
                          "overflow_arg_area");
  CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
  CGF.EmitBranch(ContBlock);

  // Return the appropriate result.
  CGF.EmitBlock(ContBlock);
  Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
                                 MemAddr, InMemBlock, "va_arg.addr");

  if (IsIndirect)
    ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
                      TyInfo.second);

  return ResAddr;
}

ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
  if (RetTy->isVoidType())
    return ABIArgInfo::getIgnore();
  if (isVectorArgumentType(RetTy))
    return ABIArgInfo::getDirect();
  if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
    return getNaturalAlignIndirect(RetTy);
  return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy)
                                         : ABIArgInfo::getDirect());
}

ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
  // Handle the generic C++ ABI.
  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);

  // Integers and enums are extended to full register width.
  if (isPromotableIntegerType(Ty))
    return ABIArgInfo::getExtend(Ty);

  // Handle vector types and vector-like structure types.  Note that
  // as opposed to float-like structure types, we do not allow any
  // padding for vector-like structures, so verify the sizes match.
  uint64_t Size = getContext().getTypeSize(Ty);
  QualType SingleElementTy = GetSingleElementType(Ty);
  if (isVectorArgumentType(SingleElementTy) &&
      getContext().getTypeSize(SingleElementTy) == Size)
    return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));

  // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
  if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
    return getNaturalAlignIndirect(Ty, /*ByVal=*/false);

  // Handle small structures.
  if (const RecordType *RT = Ty->getAs<RecordType>()) {
    // Structures with flexible arrays have variable length, so really
    // fail the size test above.
    const RecordDecl *RD = RT->getDecl();
    if (RD->hasFlexibleArrayMember())
      return getNaturalAlignIndirect(Ty, /*ByVal=*/false);

    // The structure is passed as an unextended integer, a float, or a double.
    llvm::Type *PassTy;
    if (isFPArgumentType(SingleElementTy)) {
      assert(Size == 32 || Size == 64);
      if (Size == 32)
        PassTy = llvm::Type::getFloatTy(getVMContext());
      else
        PassTy = llvm::Type::getDoubleTy(getVMContext());
    } else
      PassTy = llvm::IntegerType::get(getVMContext(), Size);
    return ABIArgInfo::getDirect(PassTy);
  }

  // Non-structure compounds are passed indirectly.
  if (isCompoundType(Ty))
    return getNaturalAlignIndirect(Ty, /*ByVal=*/false);

  return ABIArgInfo::getDirect(nullptr);
}

//===----------------------------------------------------------------------===//
// MSP430 ABI Implementation
//===----------------------------------------------------------------------===//

namespace {

class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
public:
  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &M) const override;
};

}

void MSP430TargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
  if (GV->isDeclaration())
    return;
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
    if (!InterruptAttr)
      return;

    // Handle 'interrupt' attribute:
    llvm::Function *F = cast<llvm::Function>(GV);

    // Step 1: Set ISR calling convention.
    F->setCallingConv(llvm::CallingConv::MSP430_INTR);

    // Step 2: Add attributes goodness.
    F->addFnAttr(llvm::Attribute::NoInline);
    F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
  }
}

//===----------------------------------------------------------------------===//
// MIPS ABI Implementation.  This works for both little-endian and
// big-endian variants.
//===----------------------------------------------------------------------===//

namespace {
class MipsABIInfo : public ABIInfo {
  bool IsO32;
  unsigned MinABIStackAlignInBytes, StackAlignInBytes;
  void CoerceToIntArgs(uint64_t TySize,
                       SmallVectorImpl<llvm::Type *> &ArgList) const;
  llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
  llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
  llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
public:
  MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
    ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
    StackAlignInBytes(IsO32 ? 8 : 16) {}

  ABIArgInfo classifyReturnType(QualType RetTy) const;
  ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
  void computeInfo(CGFunctionInfo &FI) const override;
  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;
  ABIArgInfo extendType(QualType Ty) const;
};

class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
  unsigned SizeOfUnwindException;
public:
  MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
    : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
      SizeOfUnwindException(IsO32 ? 24 : 32) {}

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
    return 29;
  }

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override {
    const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
    if (!FD) return;
    llvm::Function *Fn = cast<llvm::Function>(GV);

    if (FD->hasAttr<MipsLongCallAttr>())
      Fn->addFnAttr("long-call");
    else if (FD->hasAttr<MipsShortCallAttr>())
      Fn->addFnAttr("short-call");

    // Other attributes do not have a meaning for declarations.
    if (GV->isDeclaration())
      return;

    if (FD->hasAttr<Mips16Attr>()) {
      Fn->addFnAttr("mips16");
    }
    else if (FD->hasAttr<NoMips16Attr>()) {
      Fn->addFnAttr("nomips16");
    }

    if (FD->hasAttr<MicroMipsAttr>())
      Fn->addFnAttr("micromips");
    else if (FD->hasAttr<NoMicroMipsAttr>())
      Fn->addFnAttr("nomicromips");

    const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
    if (!Attr)
      return;

    const char *Kind;
    switch (Attr->getInterrupt()) {
    case MipsInterruptAttr::eic:     Kind = "eic"; break;
    case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
    case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
    case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
    case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
    case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
    case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
    case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
    case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
    }

    Fn->addFnAttr("interrupt", Kind);

  }

  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                               llvm::Value *Address) const override;

  unsigned getSizeOfUnwindException() const override {
    return SizeOfUnwindException;
  }
};
}

void MipsABIInfo::CoerceToIntArgs(
    uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
  llvm::IntegerType *IntTy =
    llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);

  // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
  for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
    ArgList.push_back(IntTy);

  // If necessary, add one more integer type to ArgList.
  unsigned R = TySize % (MinABIStackAlignInBytes * 8);

  if (R)
    ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
}

// In N32/64, an aligned double precision floating point field is passed in
// a register.
llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
  SmallVector<llvm::Type*, 8> ArgList, IntArgList;

  if (IsO32) {
    CoerceToIntArgs(TySize, ArgList);
    return llvm::StructType::get(getVMContext(), ArgList);
  }

  if (Ty->isComplexType())
    return CGT.ConvertType(Ty);

  const RecordType *RT = Ty->getAs<RecordType>();

  // Unions/vectors are passed in integer registers.
  if (!RT || !RT->isStructureOrClassType()) {
    CoerceToIntArgs(TySize, ArgList);
    return llvm::StructType::get(getVMContext(), ArgList);
  }

  const RecordDecl *RD = RT->getDecl();
  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
  assert(!(TySize % 8) && "Size of structure must be multiple of 8.");

  uint64_t LastOffset = 0;
  unsigned idx = 0;
  llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);

  // Iterate over fields in the struct/class and check if there are any aligned
  // double fields.
  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
       i != e; ++i, ++idx) {
    const QualType Ty = i->getType();
    const BuiltinType *BT = Ty->getAs<BuiltinType>();

    if (!BT || BT->getKind() != BuiltinType::Double)
      continue;

    uint64_t Offset = Layout.getFieldOffset(idx);
    if (Offset % 64) // Ignore doubles that are not aligned.
      continue;

    // Add ((Offset - LastOffset) / 64) args of type i64.
    for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
      ArgList.push_back(I64);

    // Add double type.
    ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
    LastOffset = Offset + 64;
  }

  CoerceToIntArgs(TySize - LastOffset, IntArgList);
  ArgList.append(IntArgList.begin(), IntArgList.end());

  return llvm::StructType::get(getVMContext(), ArgList);
}

llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
                                        uint64_t Offset) const {
  if (OrigOffset + MinABIStackAlignInBytes > Offset)
    return nullptr;

  return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
}

ABIArgInfo
MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
  Ty = useFirstFieldIfTransparentUnion(Ty);

  uint64_t OrigOffset = Offset;
  uint64_t TySize = getContext().getTypeSize(Ty);
  uint64_t Align = getContext().getTypeAlign(Ty) / 8;

  Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
                   (uint64_t)StackAlignInBytes);
  unsigned CurrOffset = llvm::alignTo(Offset, Align);
  Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;

  if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
    // Ignore empty aggregates.
    if (TySize == 0)
      return ABIArgInfo::getIgnore();

    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
      Offset = OrigOffset + MinABIStackAlignInBytes;
      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
    }

    // If we have reached here, aggregates are passed directly by coercing to
    // another structure type. Padding is inserted if the offset of the
    // aggregate is unaligned.
    ABIArgInfo ArgInfo =
        ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
                              getPaddingType(OrigOffset, CurrOffset));
    ArgInfo.setInReg(true);
    return ArgInfo;
  }

  // Treat an enum type as its underlying type.
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    Ty = EnumTy->getDecl()->getIntegerType();

  // All integral types are promoted to the GPR width.
  if (Ty->isIntegralOrEnumerationType())
    return extendType(Ty);

  return ABIArgInfo::getDirect(
      nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
}

llvm::Type*
MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
  const RecordType *RT = RetTy->getAs<RecordType>();
  SmallVector<llvm::Type*, 8> RTList;

  if (RT && RT->isStructureOrClassType()) {
    const RecordDecl *RD = RT->getDecl();
    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
    unsigned FieldCnt = Layout.getFieldCount();

    // N32/64 returns struct/classes in floating point registers if the
    // following conditions are met:
    // 1. The size of the struct/class is no larger than 128-bit.
    // 2. The struct/class has one or two fields all of which are floating
    //    point types.
    // 3. The offset of the first field is zero (this follows what gcc does).
    //
    // Any other composite results are returned in integer registers.
    //
    if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
      RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
      for (; b != e; ++b) {
        const BuiltinType *BT = b->getType()->getAs<BuiltinType>();

        if (!BT || !BT->isFloatingPoint())
          break;

        RTList.push_back(CGT.ConvertType(b->getType()));
      }

      if (b == e)
        return llvm::StructType::get(getVMContext(), RTList,
                                     RD->hasAttr<PackedAttr>());

      RTList.clear();
    }
  }

  CoerceToIntArgs(Size, RTList);
  return llvm::StructType::get(getVMContext(), RTList);
}

ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
  uint64_t Size = getContext().getTypeSize(RetTy);

  if (RetTy->isVoidType())
    return ABIArgInfo::getIgnore();

  // O32 doesn't treat zero-sized structs differently from other structs.
  // However, N32/N64 ignores zero sized return values.
  if (!IsO32 && Size == 0)
    return ABIArgInfo::getIgnore();

  if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
    if (Size <= 128) {
      if (RetTy->isAnyComplexType())
        return ABIArgInfo::getDirect();

      // O32 returns integer vectors in registers and N32/N64 returns all small
      // aggregates in registers.
      if (!IsO32 ||
          (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
        ABIArgInfo ArgInfo =
            ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
        ArgInfo.setInReg(true);
        return ArgInfo;
      }
    }

    return getNaturalAlignIndirect(RetTy);
  }

  // Treat an enum type as its underlying type.
  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
    RetTy = EnumTy->getDecl()->getIntegerType();

  if (RetTy->isPromotableIntegerType())
    return ABIArgInfo::getExtend(RetTy);

  if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
      RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
    return ABIArgInfo::getSignExtend(RetTy);

  return ABIArgInfo::getDirect();
}

void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
  ABIArgInfo &RetInfo = FI.getReturnInfo();
  if (!getCXXABI().classifyReturnType(FI))
    RetInfo = classifyReturnType(FI.getReturnType());

  // Check if a pointer to an aggregate is passed as a hidden argument.
  uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;

  for (auto &I : FI.arguments())
    I.info = classifyArgumentType(I.type, Offset);
}

Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                               QualType OrigTy) const {
  QualType Ty = OrigTy;

  // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
  // Pointers are also promoted in the same way but this only matters for N32.
  unsigned SlotSizeInBits = IsO32 ? 32 : 64;
  unsigned PtrWidth = getTarget().getPointerWidth(0);
  bool DidPromote = false;
  if ((Ty->isIntegerType() &&
          getContext().getIntWidth(Ty) < SlotSizeInBits) ||
      (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
    DidPromote = true;
    Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
                                            Ty->isSignedIntegerType());
  }

  auto TyInfo = getContext().getTypeInfoInChars(Ty);

  // The alignment of things in the argument area is never larger than
  // StackAlignInBytes.
  TyInfo.second =
    std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));

  // MinABIStackAlignInBytes is the size of argument slots on the stack.
  CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);

  Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
                          TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);


  // If there was a promotion, "unpromote" into a temporary.
  // TODO: can we just use a pointer into a subset of the original slot?
  if (DidPromote) {
    Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
    llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);

    // Truncate down to the right width.
    llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
                                                 : CGF.IntPtrTy);
    llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
    if (OrigTy->isPointerType())
      V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());

    CGF.Builder.CreateStore(V, Temp);
    Addr = Temp;
  }

  return Addr;
}

ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
  int TySize = getContext().getTypeSize(Ty);

  // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
  if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
    return ABIArgInfo::getSignExtend(Ty);

  return ABIArgInfo::getExtend(Ty);
}

bool
MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                                               llvm::Value *Address) const {
  // This information comes from gcc's implementation, which seems to
  // as canonical as it gets.

  // Everything on MIPS is 4 bytes.  Double-precision FP registers
  // are aliased to pairs of single-precision FP registers.
  llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);

  // 0-31 are the general purpose registers, $0 - $31.
  // 32-63 are the floating-point registers, $f0 - $f31.
  // 64 and 65 are the multiply/divide registers, $hi and $lo.
  // 66 is the (notional, I think) register for signal-handler return.
  AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);

  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
  // They are one bit wide and ignored here.

  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
  // (coprocessor 1 is the FP unit)
  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
  // 176-181 are the DSP accumulator registers.
  AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
  return false;
}

//===----------------------------------------------------------------------===//
// AVR ABI Implementation.
//===----------------------------------------------------------------------===//

namespace {
class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
public:
  AVRTargetCodeGenInfo(CodeGenTypes &CGT)
    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { }

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override {
    if (GV->isDeclaration())
      return;
    const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
    if (!FD) return;
    auto *Fn = cast<llvm::Function>(GV);

    if (FD->getAttr<AVRInterruptAttr>())
      Fn->addFnAttr("interrupt");

    if (FD->getAttr<AVRSignalAttr>())
      Fn->addFnAttr("signal");
  }
};
}

//===----------------------------------------------------------------------===//
// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
// Currently subclassed only to implement custom OpenCL C function attribute
// handling.
//===----------------------------------------------------------------------===//

namespace {

class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
public:
  TCETargetCodeGenInfo(CodeGenTypes &CGT)
    : DefaultTargetCodeGenInfo(CGT) {}

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &M) const override;
};

void TCETargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
  if (GV->isDeclaration())
    return;
  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
  if (!FD) return;

  llvm::Function *F = cast<llvm::Function>(GV);

  if (M.getLangOpts().OpenCL) {
    if (FD->hasAttr<OpenCLKernelAttr>()) {
      // OpenCL C Kernel functions are not subject to inlining
      F->addFnAttr(llvm::Attribute::NoInline);
      const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
      if (Attr) {
        // Convert the reqd_work_group_size() attributes to metadata.
        llvm::LLVMContext &Context = F->getContext();
        llvm::NamedMDNode *OpenCLMetadata =
            M.getModule().getOrInsertNamedMetadata(
                "opencl.kernel_wg_size_info");

        SmallVector<llvm::Metadata *, 5> Operands;
        Operands.push_back(llvm::ConstantAsMetadata::get(F));

        Operands.push_back(
            llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
                M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
        Operands.push_back(
            llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
                M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
        Operands.push_back(
            llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
                M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));

        // Add a boolean constant operand for "required" (true) or "hint"
        // (false) for implementing the work_group_size_hint attr later.
        // Currently always true as the hint is not yet implemented.
        Operands.push_back(
            llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
      }
    }
  }
}

}

//===----------------------------------------------------------------------===//
// Hexagon ABI Implementation
//===----------------------------------------------------------------------===//

namespace {

class HexagonABIInfo : public ABIInfo {


public:
  HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}

private:

  ABIArgInfo classifyReturnType(QualType RetTy) const;
  ABIArgInfo classifyArgumentType(QualType RetTy) const;

  void computeInfo(CGFunctionInfo &FI) const override;

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;
};

class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
public:
  HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
    :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
    return 29;
  }
};

}

void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
  if (!getCXXABI().classifyReturnType(FI))
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
  for (auto &I : FI.arguments())
    I.info = classifyArgumentType(I.type);
}

ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
  if (!isAggregateTypeForABI(Ty)) {
    // Treat an enum type as its underlying type.
    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
      Ty = EnumTy->getDecl()->getIntegerType();

    return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty)
                                          : ABIArgInfo::getDirect());
  }

  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);

  // Ignore empty records.
  if (isEmptyRecord(getContext(), Ty, true))
    return ABIArgInfo::getIgnore();

  uint64_t Size = getContext().getTypeSize(Ty);
  if (Size > 64)
    return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
    // Pass in the smallest viable integer type.
  else if (Size > 32)
      return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
  else if (Size > 16)
      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
  else if (Size > 8)
      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
  else
      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
}

ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
  if (RetTy->isVoidType())
    return ABIArgInfo::getIgnore();

  // Large vector types should be returned via memory.
  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
    return getNaturalAlignIndirect(RetTy);

  if (!isAggregateTypeForABI(RetTy)) {
    // Treat an enum type as its underlying type.
    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
      RetTy = EnumTy->getDecl()->getIntegerType();

    return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy)
                                             : ABIArgInfo::getDirect());
  }

  if (isEmptyRecord(getContext(), RetTy, true))
    return ABIArgInfo::getIgnore();

  // Aggregates <= 8 bytes are returned in r0; other aggregates
  // are returned indirectly.
  uint64_t Size = getContext().getTypeSize(RetTy);
  if (Size <= 64) {
    // Return in the smallest viable integer type.
    if (Size <= 8)
      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
    if (Size <= 16)
      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
    if (Size <= 32)
      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
    return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
  }

  return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
}

Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                  QualType Ty) const {
  // FIXME: Someone needs to audit that this handle alignment correctly.
  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
                          getContext().getTypeInfoInChars(Ty),
                          CharUnits::fromQuantity(4),
                          /*AllowHigherAlign*/ true);
}

//===----------------------------------------------------------------------===//
// Lanai ABI Implementation
//===----------------------------------------------------------------------===//

namespace {
class LanaiABIInfo : public DefaultABIInfo {
public:
  LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}

  bool shouldUseInReg(QualType Ty, CCState &State) const;

  void computeInfo(CGFunctionInfo &FI) const override {
    CCState State(FI);
    // Lanai uses 4 registers to pass arguments unless the function has the
    // regparm attribute set.
    if (FI.getHasRegParm()) {
      State.FreeRegs = FI.getRegParm();
    } else {
      State.FreeRegs = 4;
    }

    if (!getCXXABI().classifyReturnType(FI))
      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    for (auto &I : FI.arguments())
      I.info = classifyArgumentType(I.type, State);
  }

  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
  ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
};
} // end anonymous namespace

bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
  unsigned Size = getContext().getTypeSize(Ty);
  unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;

  if (SizeInRegs == 0)
    return false;

  if (SizeInRegs > State.FreeRegs) {
    State.FreeRegs = 0;
    return false;
  }

  State.FreeRegs -= SizeInRegs;

  return true;
}

ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
                                           CCState &State) const {
  if (!ByVal) {
    if (State.FreeRegs) {
      --State.FreeRegs; // Non-byval indirects just use one pointer.
      return getNaturalAlignIndirectInReg(Ty);
    }
    return getNaturalAlignIndirect(Ty, false);
  }

  // Compute the byval alignment.
  const unsigned MinABIStackAlignInBytes = 4;
  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
                                 /*Realign=*/TypeAlign >
                                     MinABIStackAlignInBytes);
}

ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
                                              CCState &State) const {
  // Check with the C++ ABI first.
  const RecordType *RT = Ty->getAs<RecordType>();
  if (RT) {
    CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
    if (RAA == CGCXXABI::RAA_Indirect) {
      return getIndirectResult(Ty, /*ByVal=*/false, State);
    } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
      return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
    }
  }

  if (isAggregateTypeForABI(Ty)) {
    // Structures with flexible arrays are always indirect.
    if (RT && RT->getDecl()->hasFlexibleArrayMember())
      return getIndirectResult(Ty, /*ByVal=*/true, State);

    // Ignore empty structs/unions.
    if (isEmptyRecord(getContext(), Ty, true))
      return ABIArgInfo::getIgnore();

    llvm::LLVMContext &LLVMContext = getVMContext();
    unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
    if (SizeInRegs <= State.FreeRegs) {
      llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
      SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
      llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
      State.FreeRegs -= SizeInRegs;
      return ABIArgInfo::getDirectInReg(Result);
    } else {
      State.FreeRegs = 0;
    }
    return getIndirectResult(Ty, true, State);
  }

  // Treat an enum type as its underlying type.
  if (const auto *EnumTy = Ty->getAs<EnumType>())
    Ty = EnumTy->getDecl()->getIntegerType();

  bool InReg = shouldUseInReg(Ty, State);
  if (Ty->isPromotableIntegerType()) {
    if (InReg)
      return ABIArgInfo::getDirectInReg();
    return ABIArgInfo::getExtend(Ty);
  }
  if (InReg)
    return ABIArgInfo::getDirectInReg();
  return ABIArgInfo::getDirect();
}

namespace {
class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
public:
  LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
      : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {}
};
}

//===----------------------------------------------------------------------===//
// AMDGPU ABI Implementation
//===----------------------------------------------------------------------===//

namespace {

class AMDGPUABIInfo final : public DefaultABIInfo {
private:
  static const unsigned MaxNumRegsForArgsRet = 16;

  unsigned numRegsForType(QualType Ty) const;

  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
  bool isHomogeneousAggregateSmallEnough(const Type *Base,
                                         uint64_t Members) const override;

  // Coerce HIP pointer arguments from generic pointers to global ones.
  llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
                                       unsigned ToAS) const {
    // Structure types.
    if (auto STy = dyn_cast<llvm::StructType>(Ty)) {
      SmallVector<llvm::Type *, 8> EltTys;
      bool Changed = false;
      for (auto T : STy->elements()) {
        auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
        EltTys.push_back(NT);
        Changed |= (NT != T);
      }
      // Skip if there is no change in element types.
      if (!Changed)
        return STy;
      if (STy->hasName())
        return llvm::StructType::create(
            EltTys, (STy->getName() + ".coerce").str(), STy->isPacked());
      return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked());
    }
    // Arrary types.
    if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) {
      auto T = ATy->getElementType();
      auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
      // Skip if there is no change in that element type.
      if (NT == T)
        return ATy;
      return llvm::ArrayType::get(NT, ATy->getNumElements());
    }
    // Single value types.
    if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
      return llvm::PointerType::get(
          cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
    return Ty;
  }

public:
  explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
    DefaultABIInfo(CGT) {}

  ABIArgInfo classifyReturnType(QualType RetTy) const;
  ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
  ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;

  void computeInfo(CGFunctionInfo &FI) const override;
  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;
};

bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
  return true;
}

bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
  const Type *Base, uint64_t Members) const {
  uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;

  // Homogeneous Aggregates may occupy at most 16 registers.
  return Members * NumRegs <= MaxNumRegsForArgsRet;
}

/// Estimate number of registers the type will use when passed in registers.
unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
  unsigned NumRegs = 0;

  if (const VectorType *VT = Ty->getAs<VectorType>()) {
    // Compute from the number of elements. The reported size is based on the
    // in-memory size, which includes the padding 4th element for 3-vectors.
    QualType EltTy = VT->getElementType();
    unsigned EltSize = getContext().getTypeSize(EltTy);

    // 16-bit element vectors should be passed as packed.
    if (EltSize == 16)
      return (VT->getNumElements() + 1) / 2;

    unsigned EltNumRegs = (EltSize + 31) / 32;
    return EltNumRegs * VT->getNumElements();
  }

  if (const RecordType *RT = Ty->getAs<RecordType>()) {
    const RecordDecl *RD = RT->getDecl();
    assert(!RD->hasFlexibleArrayMember());

    for (const FieldDecl *Field : RD->fields()) {
      QualType FieldTy = Field->getType();
      NumRegs += numRegsForType(FieldTy);
    }

    return NumRegs;
  }

  return (getContext().getTypeSize(Ty) + 31) / 32;
}

void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
  llvm::CallingConv::ID CC = FI.getCallingConvention();

  if (!getCXXABI().classifyReturnType(FI))
    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());

  unsigned NumRegsLeft = MaxNumRegsForArgsRet;
  for (auto &Arg : FI.arguments()) {
    if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
      Arg.info = classifyKernelArgumentType(Arg.type);
    } else {
      Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
    }
  }
}

Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                 QualType Ty) const {
  llvm_unreachable("AMDGPU does not support varargs");
}

ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
  if (isAggregateTypeForABI(RetTy)) {
    // Records with non-trivial destructors/copy-constructors should not be
    // returned by value.
    if (!getRecordArgABI(RetTy, getCXXABI())) {
      // Ignore empty structs/unions.
      if (isEmptyRecord(getContext(), RetTy, true))
        return ABIArgInfo::getIgnore();

      // Lower single-element structs to just return a regular value.
      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
        return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));

      if (const RecordType *RT = RetTy->getAs<RecordType>()) {
        const RecordDecl *RD = RT->getDecl();
        if (RD->hasFlexibleArrayMember())
          return DefaultABIInfo::classifyReturnType(RetTy);
      }

      // Pack aggregates <= 4 bytes into single VGPR or pair.
      uint64_t Size = getContext().getTypeSize(RetTy);
      if (Size <= 16)
        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));

      if (Size <= 32)
        return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));

      if (Size <= 64) {
        llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
        return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
      }

      if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
        return ABIArgInfo::getDirect();
    }
  }

  // Otherwise just do the default thing.
  return DefaultABIInfo::classifyReturnType(RetTy);
}

/// For kernels all parameters are really passed in a special buffer. It doesn't
/// make sense to pass anything byval, so everything must be direct.
ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
  Ty = useFirstFieldIfTransparentUnion(Ty);

  // TODO: Can we omit empty structs?

  llvm::Type *LTy = nullptr;
  if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
    LTy = CGT.ConvertType(QualType(SeltTy, 0));

  if (getContext().getLangOpts().HIP) {
    if (!LTy)
      LTy = CGT.ConvertType(Ty);
    LTy = coerceKernelArgumentType(
        LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
        /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
  }

  // If we set CanBeFlattened to true, CodeGen will expand the struct to its
  // individual elements, which confuses the Clover OpenCL backend; therefore we
  // have to set it to false here. Other args of getDirect() are just defaults.
  return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
}

ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
                                               unsigned &NumRegsLeft) const {
  assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");

  Ty = useFirstFieldIfTransparentUnion(Ty);

  if (isAggregateTypeForABI(Ty)) {
    // Records with non-trivial destructors/copy-constructors should not be
    // passed by value.
    if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);

    // Ignore empty structs/unions.
    if (isEmptyRecord(getContext(), Ty, true))
      return ABIArgInfo::getIgnore();

    // Lower single-element structs to just pass a regular value. TODO: We
    // could do reasonable-size multiple-element structs too, using getExpand(),
    // though watch out for things like bitfields.
    if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
      return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));

    if (const RecordType *RT = Ty->getAs<RecordType>()) {
      const RecordDecl *RD = RT->getDecl();
      if (RD->hasFlexibleArrayMember())
        return DefaultABIInfo::classifyArgumentType(Ty);
    }

    // Pack aggregates <= 8 bytes into single VGPR or pair.
    uint64_t Size = getContext().getTypeSize(Ty);
    if (Size <= 64) {
      unsigned NumRegs = (Size + 31) / 32;
      NumRegsLeft -= std::min(NumRegsLeft, NumRegs);

      if (Size <= 16)
        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));

      if (Size <= 32)
        return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));

      // XXX: Should this be i64 instead, and should the limit increase?
      llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
      return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
    }

    if (NumRegsLeft > 0) {
      unsigned NumRegs = numRegsForType(Ty);
      if (NumRegsLeft >= NumRegs) {
        NumRegsLeft -= NumRegs;
        return ABIArgInfo::getDirect();
      }
    }
  }

  // Otherwise just do the default thing.
  ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
  if (!ArgInfo.isIndirect()) {
    unsigned NumRegs = numRegsForType(Ty);
    NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
  }

  return ArgInfo;
}

class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
public:
  AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
    : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {}
  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &M) const override;
  unsigned getOpenCLKernelCallingConv() const override;

  llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
      llvm::PointerType *T, QualType QT) const override;

  LangAS getASTAllocaAddressSpace() const override {
    return getLangASFromTargetAS(
        getABIInfo().getDataLayout().getAllocaAddrSpace());
  }
  LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
                                  const VarDecl *D) const override;
  llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
                                         SyncScope Scope,
                                         llvm::AtomicOrdering Ordering,
                                         llvm::LLVMContext &Ctx) const override;
  llvm::Function *
  createEnqueuedBlockKernel(CodeGenFunction &CGF,
                            llvm::Function *BlockInvokeFunc,
                            llvm::Value *BlockLiteral) const override;
  bool shouldEmitStaticExternCAliases() const override;
  void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
};
}

static bool requiresAMDGPUProtectedVisibility(const Decl *D,
                                              llvm::GlobalValue *GV) {
  if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
    return false;

  return D->hasAttr<OpenCLKernelAttr>() ||
         (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
         (isa<VarDecl>(D) &&
          (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
           D->hasAttr<HIPPinnedShadowAttr>()));
}

static bool requiresAMDGPUDefaultVisibility(const Decl *D,
                                            llvm::GlobalValue *GV) {
  if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
    return false;

  return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>();
}

void AMDGPUTargetCodeGenInfo::setTargetAttributes(
    const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
  if (requiresAMDGPUDefaultVisibility(D, GV)) {
    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
    GV->setDSOLocal(false);
  } else if (requiresAMDGPUProtectedVisibility(D, GV)) {
    GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
    GV->setDSOLocal(true);
  }

  if (GV->isDeclaration())
    return;
  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
  if (!FD)
    return;

  llvm::Function *F = cast<llvm::Function>(GV);

  const auto *ReqdWGS = M.getLangOpts().OpenCL ?
    FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;


  const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
                              FD->hasAttr<OpenCLKernelAttr>();
  const bool IsHIPKernel = M.getLangOpts().HIP &&
                           FD->hasAttr<CUDAGlobalAttr>();
  if ((IsOpenCLKernel || IsHIPKernel) &&
      (M.getTriple().getOS() == llvm::Triple::AMDHSA))
    F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");

  const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
  if (ReqdWGS || FlatWGS) {
    unsigned Min = 0;
    unsigned Max = 0;
    if (FlatWGS) {
      Min = FlatWGS->getMin()
                ->EvaluateKnownConstInt(M.getContext())
                .getExtValue();
      Max = FlatWGS->getMax()
                ->EvaluateKnownConstInt(M.getContext())
                .getExtValue();
    }
    if (ReqdWGS && Min == 0 && Max == 0)
      Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();

    if (Min != 0) {
      assert(Min <= Max && "Min must be less than or equal Max");

      std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
      F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
    } else
      assert(Max == 0 && "Max must be zero");
  } else if (IsOpenCLKernel || IsHIPKernel) {
    // By default, restrict the maximum size to a value specified by
    // --gpu-max-threads-per-block=n or its default value.
    std::string AttrVal =
        std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock);
    F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
  }

  if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
    unsigned Min =
        Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
    unsigned Max = Attr->getMax() ? Attr->getMax()
                                        ->EvaluateKnownConstInt(M.getContext())
                                        .getExtValue()
                                  : 0;

    if (Min != 0) {
      assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");

      std::string AttrVal = llvm::utostr(Min);
      if (Max != 0)
        AttrVal = AttrVal + "," + llvm::utostr(Max);
      F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
    } else
      assert(Max == 0 && "Max must be zero");
  }

  if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
    unsigned NumSGPR = Attr->getNumSGPR();

    if (NumSGPR != 0)
      F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
  }

  if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
    uint32_t NumVGPR = Attr->getNumVGPR();

    if (NumVGPR != 0)
      F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
  }
}

unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
  return llvm::CallingConv::AMDGPU_KERNEL;
}

// Currently LLVM assumes null pointers always have value 0,
// which results in incorrectly transformed IR. Therefore, instead of
// emitting null pointers in private and local address spaces, a null
// pointer in generic address space is emitted which is casted to a
// pointer in local or private address space.
llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
    const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
    QualType QT) const {
  if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
    return llvm::ConstantPointerNull::get(PT);

  auto &Ctx = CGM.getContext();
  auto NPT = llvm::PointerType::get(PT->getElementType(),
      Ctx.getTargetAddressSpace(LangAS::opencl_generic));
  return llvm::ConstantExpr::getAddrSpaceCast(
      llvm::ConstantPointerNull::get(NPT), PT);
}

LangAS
AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
                                                  const VarDecl *D) const {
  assert(!CGM.getLangOpts().OpenCL &&
         !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
         "Address space agnostic languages only");
  LangAS DefaultGlobalAS = getLangASFromTargetAS(
      CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
  if (!D)
    return DefaultGlobalAS;

  LangAS AddrSpace = D->getType().getAddressSpace();
  assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
  if (AddrSpace != LangAS::Default)
    return AddrSpace;

  if (CGM.isTypeConstant(D->getType(), false)) {
    if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
      return ConstAS.getValue();
  }
  return DefaultGlobalAS;
}

llvm::SyncScope::ID
AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
                                            SyncScope Scope,
                                            llvm::AtomicOrdering Ordering,
                                            llvm::LLVMContext &Ctx) const {
  std::string Name;
  switch (Scope) {
  case SyncScope::OpenCLWorkGroup:
    Name = "workgroup";
    break;
  case SyncScope::OpenCLDevice:
    Name = "agent";
    break;
  case SyncScope::OpenCLAllSVMDevices:
    Name = "";
    break;
  case SyncScope::OpenCLSubGroup:
    Name = "wavefront";
  }

  if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
    if (!Name.empty())
      Name = Twine(Twine(Name) + Twine("-")).str();

    Name = Twine(Twine(Name) + Twine("one-as")).str();
  }

  return Ctx.getOrInsertSyncScopeID(Name);
}

bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
  return false;
}

void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
    const FunctionType *&FT) const {
  FT = getABIInfo().getContext().adjustFunctionType(
      FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
}

//===----------------------------------------------------------------------===//
// SPARC v8 ABI Implementation.
// Based on the SPARC Compliance Definition version 2.4.1.
//
// Ensures that complex values are passed in registers.
//
namespace {
class SparcV8ABIInfo : public DefaultABIInfo {
public:
  SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}

private:
  ABIArgInfo classifyReturnType(QualType RetTy) const;
  void computeInfo(CGFunctionInfo &FI) const override;
};
} // end anonymous namespace


ABIArgInfo
SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
  if (Ty->isAnyComplexType()) {
    return ABIArgInfo::getDirect();
  }
  else {
    return DefaultABIInfo::classifyReturnType(Ty);
  }
}

void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {

  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
  for (auto &Arg : FI.arguments())
    Arg.info = classifyArgumentType(Arg.type);
}

namespace {
class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
public:
  SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
    : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {}
};
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// SPARC v9 ABI Implementation.
// Based on the SPARC Compliance Definition version 2.4.1.
//
// Function arguments a mapped to a nominal "parameter array" and promoted to
// registers depending on their type. Each argument occupies 8 or 16 bytes in
// the array, structs larger than 16 bytes are passed indirectly.
//
// One case requires special care:
//
//   struct mixed {
//     int i;
//     float f;
//   };
//
// When a struct mixed is passed by value, it only occupies 8 bytes in the
// parameter array, but the int is passed in an integer register, and the float
// is passed in a floating point register. This is represented as two arguments
// with the LLVM IR inreg attribute:
//
//   declare void f(i32 inreg %i, float inreg %f)
//
// The code generator will only allocate 4 bytes from the parameter array for
// the inreg arguments. All other arguments are allocated a multiple of 8
// bytes.
//
namespace {
class SparcV9ABIInfo : public ABIInfo {
public:
  SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}

private:
  ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
  void computeInfo(CGFunctionInfo &FI) const override;
  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;

  // Coercion type builder for structs passed in registers. The coercion type
  // serves two purposes:
  //
  // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
  //    in registers.
  // 2. Expose aligned floating point elements as first-level elements, so the
  //    code generator knows to pass them in floating point registers.
  //
  // We also compute the InReg flag which indicates that the struct contains
  // aligned 32-bit floats.
  //
  struct CoerceBuilder {
    llvm::LLVMContext &Context;
    const llvm::DataLayout &DL;
    SmallVector<llvm::Type*, 8> Elems;
    uint64_t Size;
    bool InReg;

    CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
      : Context(c), DL(dl), Size(0), InReg(false) {}

    // Pad Elems with integers until Size is ToSize.
    void pad(uint64_t ToSize) {
      assert(ToSize >= Size && "Cannot remove elements");
      if (ToSize == Size)
        return;

      // Finish the current 64-bit word.
      uint64_t Aligned = llvm::alignTo(Size, 64);
      if (Aligned > Size && Aligned <= ToSize) {
        Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
        Size = Aligned;
      }

      // Add whole 64-bit words.
      while (Size + 64 <= ToSize) {
        Elems.push_back(llvm::Type::getInt64Ty(Context));
        Size += 64;
      }

      // Final in-word padding.
      if (Size < ToSize) {
        Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
        Size = ToSize;
      }
    }

    // Add a floating point element at Offset.
    void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
      // Unaligned floats are treated as integers.
      if (Offset % Bits)
        return;
      // The InReg flag is only required if there are any floats < 64 bits.
      if (Bits < 64)
        InReg = true;
      pad(Offset);
      Elems.push_back(Ty);
      Size = Offset + Bits;
    }

    // Add a struct type to the coercion type, starting at Offset (in bits).
    void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
      const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
      for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
        llvm::Type *ElemTy = StrTy->getElementType(i);
        uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
        switch (ElemTy->getTypeID()) {
        case llvm::Type::StructTyID:
          addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
          break;
        case llvm::Type::FloatTyID:
          addFloat(ElemOffset, ElemTy, 32);
          break;
        case llvm::Type::DoubleTyID:
          addFloat(ElemOffset, ElemTy, 64);
          break;
        case llvm::Type::FP128TyID:
          addFloat(ElemOffset, ElemTy, 128);
          break;
        case llvm::Type::PointerTyID:
          if (ElemOffset % 64 == 0) {
            pad(ElemOffset);
            Elems.push_back(ElemTy);
            Size += 64;
          }
          break;
        default:
          break;
        }
      }
    }

    // Check if Ty is a usable substitute for the coercion type.
    bool isUsableType(llvm::StructType *Ty) const {
      return llvm::makeArrayRef(Elems) == Ty->elements();
    }

    // Get the coercion type as a literal struct type.
    llvm::Type *getType() const {
      if (Elems.size() == 1)
        return Elems.front();
      else
        return llvm::StructType::get(Context, Elems);
    }
  };
};
} // end anonymous namespace

ABIArgInfo
SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
  if (Ty->isVoidType())
    return ABIArgInfo::getIgnore();

  uint64_t Size = getContext().getTypeSize(Ty);

  // Anything too big to fit in registers is passed with an explicit indirect
  // pointer / sret pointer.
  if (Size > SizeLimit)
    return getNaturalAlignIndirect(Ty, /*ByVal=*/false);

  // Treat an enum type as its underlying type.
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    Ty = EnumTy->getDecl()->getIntegerType();

  // Integer types smaller than a register are extended.
  if (Size < 64 && Ty->isIntegerType())
    return ABIArgInfo::getExtend(Ty);

  // Other non-aggregates go in registers.
  if (!isAggregateTypeForABI(Ty))
    return ABIArgInfo::getDirect();

  // If a C++ object has either a non-trivial copy constructor or a non-trivial
  // destructor, it is passed with an explicit indirect pointer / sret pointer.
  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
    return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);

  // This is a small aggregate type that should be passed in registers.
  // Build a coercion type from the LLVM struct type.
  llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
  if (!StrTy)
    return ABIArgInfo::getDirect();

  CoerceBuilder CB(getVMContext(), getDataLayout());
  CB.addStruct(0, StrTy);
  CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));

  // Try to use the original type for coercion.
  llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();

  if (CB.InReg)
    return ABIArgInfo::getDirectInReg(CoerceTy);
  else
    return ABIArgInfo::getDirect(CoerceTy);
}

Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                  QualType Ty) const {
  ABIArgInfo AI = classifyType(Ty, 16 * 8);
  llvm::Type *ArgTy = CGT.ConvertType(Ty);
  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
    AI.setCoerceToType(ArgTy);

  CharUnits SlotSize = CharUnits::fromQuantity(8);

  CGBuilderTy &Builder = CGF.Builder;
  Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);

  auto TypeInfo = getContext().getTypeInfoInChars(Ty);

  Address ArgAddr = Address::invalid();
  CharUnits Stride;
  switch (AI.getKind()) {
  case ABIArgInfo::Expand:
  case ABIArgInfo::CoerceAndExpand:
  case ABIArgInfo::InAlloca:
    llvm_unreachable("Unsupported ABI kind for va_arg");

  case ABIArgInfo::Extend: {
    Stride = SlotSize;
    CharUnits Offset = SlotSize - TypeInfo.first;
    ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
    break;
  }

  case ABIArgInfo::Direct: {
    auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
    Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
    ArgAddr = Addr;
    break;
  }

  case ABIArgInfo::Indirect:
    Stride = SlotSize;
    ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
    ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
                      TypeInfo.second);
    break;

  case ABIArgInfo::Ignore:
    return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
  }

  // Update VAList.
  Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
  Builder.CreateStore(NextPtr.getPointer(), VAListAddr);

  return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
}

void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
  FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
  for (auto &I : FI.arguments())
    I.info = classifyType(I.type, 16 * 8);
}

namespace {
class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
public:
  SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
    : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}

  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
    return 14;
  }

  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                               llvm::Value *Address) const override;
};
} // end anonymous namespace

bool
SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
                                                llvm::Value *Address) const {
  // This is calculated from the LLVM and GCC tables and verified
  // against gcc output.  AFAIK all ABIs use the same encoding.

  CodeGen::CGBuilderTy &Builder = CGF.Builder;

  llvm::IntegerType *i8 = CGF.Int8Ty;
  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);

  // 0-31: the 8-byte general-purpose registers
  AssignToArrayRange(Builder, Address, Eight8, 0, 31);

  // 32-63: f0-31, the 4-byte floating-point registers
  AssignToArrayRange(Builder, Address, Four8, 32, 63);

  //   Y   = 64
  //   PSR = 65
  //   WIM = 66
  //   TBR = 67
  //   PC  = 68
  //   NPC = 69
  //   FSR = 70
  //   CSR = 71
  AssignToArrayRange(Builder, Address, Eight8, 64, 71);

  // 72-87: d0-15, the 8-byte floating-point registers
  AssignToArrayRange(Builder, Address, Eight8, 72, 87);

  return false;
}

// ARC ABI implementation.
namespace {

class ARCABIInfo : public DefaultABIInfo {
public:
  using DefaultABIInfo::DefaultABIInfo;

private:
  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;

  void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
    if (!State.FreeRegs)
      return;
    if (Info.isIndirect() && Info.getInReg())
      State.FreeRegs--;
    else if (Info.isDirect() && Info.getInReg()) {
      unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
      if (sz < State.FreeRegs)
        State.FreeRegs -= sz;
      else
        State.FreeRegs = 0;
    }
  }

  void computeInfo(CGFunctionInfo &FI) const override {
    CCState State(FI);
    // ARC uses 8 registers to pass arguments.
    State.FreeRegs = 8;

    if (!getCXXABI().classifyReturnType(FI))
      FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
    updateState(FI.getReturnInfo(), FI.getReturnType(), State);
    for (auto &I : FI.arguments()) {
      I.info = classifyArgumentType(I.type, State.FreeRegs);
      updateState(I.info, I.type, State);
    }
  }

  ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
  ABIArgInfo getIndirectByValue(QualType Ty) const;
  ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
  ABIArgInfo classifyReturnType(QualType RetTy) const;
};

class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
public:
  ARCTargetCodeGenInfo(CodeGenTypes &CGT)
      : TargetCodeGenInfo(new ARCABIInfo(CGT)) {}
};


ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
  return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
                       getNaturalAlignIndirect(Ty, false);
}

ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
  // Compute the byval alignment.
  const unsigned MinABIStackAlignInBytes = 4;
  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
  return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
                                 TypeAlign > MinABIStackAlignInBytes);
}

Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                              QualType Ty) const {
  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
                          getContext().getTypeInfoInChars(Ty),
                          CharUnits::fromQuantity(4), true);
}

ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
                                            uint8_t FreeRegs) const {
  // Handle the generic C++ ABI.
  const RecordType *RT = Ty->getAs<RecordType>();
  if (RT) {
    CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
    if (RAA == CGCXXABI::RAA_Indirect)
      return getIndirectByRef(Ty, FreeRegs > 0);

    if (RAA == CGCXXABI::RAA_DirectInMemory)
      return getIndirectByValue(Ty);
  }

  // Treat an enum type as its underlying type.
  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
    Ty = EnumTy->getDecl()->getIntegerType();

  auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;

  if (isAggregateTypeForABI(Ty)) {
    // Structures with flexible arrays are always indirect.
    if (RT && RT->getDecl()->hasFlexibleArrayMember())
      return getIndirectByValue(Ty);

    // Ignore empty structs/unions.
    if (isEmptyRecord(getContext(), Ty, true))
      return ABIArgInfo::getIgnore();

    llvm::LLVMContext &LLVMContext = getVMContext();

    llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
    SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
    llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);

    return FreeRegs >= SizeInRegs ?
        ABIArgInfo::getDirectInReg(Result) :
        ABIArgInfo::getDirect(Result, 0, nullptr, false);
  }

  return Ty->isPromotableIntegerType() ?
      (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) :
                                ABIArgInfo::getExtend(Ty)) :
      (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() :
                                ABIArgInfo::getDirect());
}

ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
  if (RetTy->isAnyComplexType())
    return ABIArgInfo::getDirectInReg();

  // Arguments of size > 4 registers are indirect.
  auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
  if (RetSize > 4)
    return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);

  return DefaultABIInfo::classifyReturnType(RetTy);
}

} // End anonymous namespace.

//===----------------------------------------------------------------------===//
// XCore ABI Implementation
//===----------------------------------------------------------------------===//

namespace {

/// A SmallStringEnc instance is used to build up the TypeString by passing
/// it by reference between functions that append to it.
typedef llvm::SmallString<128> SmallStringEnc;

/// TypeStringCache caches the meta encodings of Types.
///
/// The reason for caching TypeStrings is two fold:
///   1. To cache a type's encoding for later uses;
///   2. As a means to break recursive member type inclusion.
///
/// A cache Entry can have a Status of:
///   NonRecursive:   The type encoding is not recursive;
///   Recursive:      The type encoding is recursive;
///   Incomplete:     An incomplete TypeString;
///   IncompleteUsed: An incomplete TypeString that has been used in a
///                   Recursive type encoding.
///
/// A NonRecursive entry will have all of its sub-members expanded as fully
/// as possible. Whilst it may contain types which are recursive, the type
/// itself is not recursive and thus its encoding may be safely used whenever
/// the type is encountered.
///
/// A Recursive entry will have all of its sub-members expanded as fully as
/// possible. The type itself is recursive and it may contain other types which
/// are recursive. The Recursive encoding must not be used during the expansion
/// of a recursive type's recursive branch. For simplicity the code uses
/// IncompleteCount to reject all usage of Recursive encodings for member types.
///
/// An Incomplete entry is always a RecordType and only encodes its
/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
/// are placed into the cache during type expansion as a means to identify and
/// handle recursive inclusion of types as sub-members. If there is recursion
/// the entry becomes IncompleteUsed.
///
/// During the expansion of a RecordType's members:
///
///   If the cache contains a NonRecursive encoding for the member type, the
///   cached encoding is used;
///
///   If the cache contains a Recursive encoding for the member type, the
///   cached encoding is 'Swapped' out, as it may be incorrect, and...
///
///   If the member is a RecordType, an Incomplete encoding is placed into the
///   cache to break potential recursive inclusion of itself as a sub-member;
///
///   Once a member RecordType has been expanded, its temporary incomplete
///   entry is removed from the cache. If a Recursive encoding was swapped out
///   it is swapped back in;
///
///   If an incomplete entry is used to expand a sub-member, the incomplete
///   entry is marked as IncompleteUsed. The cache keeps count of how many
///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
///
///   If a member's encoding is found to be a NonRecursive or Recursive viz:
///   IncompleteUsedCount==0, the member's encoding is added to the cache.
///   Else the member is part of a recursive type and thus the recursion has
///   been exited too soon for the encoding to be correct for the member.
///
class TypeStringCache {
  enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
  struct Entry {
    std::string Str;     // The encoded TypeString for the type.
    enum Status State;   // Information about the encoding in 'Str'.
    std::string Swapped; // A temporary place holder for a Recursive encoding
                         // during the expansion of RecordType's members.
  };
  std::map<const IdentifierInfo *, struct Entry> Map;
  unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
  unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
public:
  TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
  void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
  bool removeIncomplete(const IdentifierInfo *ID);
  void addIfComplete(const IdentifierInfo *ID, StringRef Str,
                     bool IsRecursive);
  StringRef lookupStr(const IdentifierInfo *ID);
};

/// TypeString encodings for enum & union fields must be order.
/// FieldEncoding is a helper for this ordering process.
class FieldEncoding {
  bool HasName;
  std::string Enc;
public:
  FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
  StringRef str() { return Enc; }
  bool operator<(const FieldEncoding &rhs) const {
    if (HasName != rhs.HasName) return HasName;
    return Enc < rhs.Enc;
  }
};

class XCoreABIInfo : public DefaultABIInfo {
public:
  XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;
};

class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
  mutable TypeStringCache TSC;
public:
  XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
    :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
  void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
                    CodeGen::CodeGenModule &M) const override;
};

} // End anonymous namespace.

// TODO: this implementation is likely now redundant with the default
// EmitVAArg.
Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                QualType Ty) const {
  CGBuilderTy &Builder = CGF.Builder;

  // Get the VAList.
  CharUnits SlotSize = CharUnits::fromQuantity(4);
  Address AP(Builder.CreateLoad(VAListAddr), SlotSize);

  // Handle the argument.
  ABIArgInfo AI = classifyArgumentType(Ty);
  CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
  llvm::Type *ArgTy = CGT.ConvertType(Ty);
  if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
    AI.setCoerceToType(ArgTy);
  llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);

  Address Val = Address::invalid();
  CharUnits ArgSize = CharUnits::Zero();
  switch (AI.getKind()) {
  case ABIArgInfo::Expand:
  case ABIArgInfo::CoerceAndExpand:
  case ABIArgInfo::InAlloca:
    llvm_unreachable("Unsupported ABI kind for va_arg");
  case ABIArgInfo::Ignore:
    Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
    ArgSize = CharUnits::Zero();
    break;
  case ABIArgInfo::Extend:
  case ABIArgInfo::Direct:
    Val = Builder.CreateBitCast(AP, ArgPtrTy);
    ArgSize = CharUnits::fromQuantity(
                       getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
    ArgSize = ArgSize.alignTo(SlotSize);
    break;
  case ABIArgInfo::Indirect:
    Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
    Val = Address(Builder.CreateLoad(Val), TypeAlign);
    ArgSize = SlotSize;
    break;
  }

  // Increment the VAList.
  if (!ArgSize.isZero()) {
    Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
    Builder.CreateStore(APN.getPointer(), VAListAddr);
  }

  return Val;
}

/// During the expansion of a RecordType, an incomplete TypeString is placed
/// into the cache as a means to identify and break recursion.
/// If there is a Recursive encoding in the cache, it is swapped out and will
/// be reinserted by removeIncomplete().
/// All other types of encoding should have been used rather than arriving here.
void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
                                    std::string StubEnc) {
  if (!ID)
    return;
  Entry &E = Map[ID];
  assert( (E.Str.empty() || E.State == Recursive) &&
         "Incorrectly use of addIncomplete");
  assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
  E.Swapped.swap(E.Str); // swap out the Recursive
  E.Str.swap(StubEnc);
  E.State = Incomplete;
  ++IncompleteCount;
}

/// Once the RecordType has been expanded, the temporary incomplete TypeString
/// must be removed from the cache.
/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
/// Returns true if the RecordType was defined recursively.
bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
  if (!ID)
    return false;
  auto I = Map.find(ID);
  assert(I != Map.end() && "Entry not present");
  Entry &E = I->second;
  assert( (E.State == Incomplete ||
           E.State == IncompleteUsed) &&
         "Entry must be an incomplete type");
  bool IsRecursive = false;
  if (E.State == IncompleteUsed) {
    // We made use of our Incomplete encoding, thus we are recursive.
    IsRecursive = true;
    --IncompleteUsedCount;
  }
  if (E.Swapped.empty())
    Map.erase(I);
  else {
    // Swap the Recursive back.
    E.Swapped.swap(E.Str);
    E.Swapped.clear();
    E.State = Recursive;
  }
  --IncompleteCount;
  return IsRecursive;
}

/// Add the encoded TypeString to the cache only if it is NonRecursive or
/// Recursive (viz: all sub-members were expanded as fully as possible).
void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
                                    bool IsRecursive) {
  if (!ID || IncompleteUsedCount)
    return; // No key or it is is an incomplete sub-type so don't add.
  Entry &E = Map[ID];
  if (IsRecursive && !E.Str.empty()) {
    assert(E.State==Recursive && E.Str.size() == Str.size() &&
           "This is not the same Recursive entry");
    // The parent container was not recursive after all, so we could have used
    // this Recursive sub-member entry after all, but we assumed the worse when
    // we started viz: IncompleteCount!=0.
    return;
  }
  assert(E.Str.empty() && "Entry already present");
  E.Str = Str.str();
  E.State = IsRecursive? Recursive : NonRecursive;
}

/// Return a cached TypeString encoding for the ID. If there isn't one, or we
/// are recursively expanding a type (IncompleteCount != 0) and the cached
/// encoding is Recursive, return an empty StringRef.
StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
  if (!ID)
    return StringRef();   // We have no key.
  auto I = Map.find(ID);
  if (I == Map.end())
    return StringRef();   // We have no encoding.
  Entry &E = I->second;
  if (E.State == Recursive && IncompleteCount)
    return StringRef();   // We don't use Recursive encodings for member types.

  if (E.State == Incomplete) {
    // The incomplete type is being used to break out of recursion.
    E.State = IncompleteUsed;
    ++IncompleteUsedCount;
  }
  return E.Str;
}

/// The XCore ABI includes a type information section that communicates symbol
/// type information to the linker. The linker uses this information to verify
/// safety/correctness of things such as array bound and pointers et al.
/// The ABI only requires C (and XC) language modules to emit TypeStrings.
/// This type information (TypeString) is emitted into meta data for all global
/// symbols: definitions, declarations, functions & variables.
///
/// The TypeString carries type, qualifier, name, size & value details.
/// Please see 'Tools Development Guide' section 2.16.2 for format details:
/// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
/// The output is tested by test/CodeGen/xcore-stringtype.c.
///
static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
                          CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);

/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
                                          CodeGen::CodeGenModule &CGM) const {
  SmallStringEnc Enc;
  if (getTypeString(Enc, D, CGM, TSC)) {
    llvm::LLVMContext &Ctx = CGM.getModule().getContext();
    llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
                                llvm::MDString::get(Ctx, Enc.str())};
    llvm::NamedMDNode *MD =
      CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
    MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
  }
}

//===----------------------------------------------------------------------===//
// SPIR ABI Implementation
//===----------------------------------------------------------------------===//

namespace {
class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
public:
  SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
  unsigned getOpenCLKernelCallingConv() const override;
};

} // End anonymous namespace.

namespace clang {
namespace CodeGen {
void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
  DefaultABIInfo SPIRABI(CGM.getTypes());
  SPIRABI.computeInfo(FI);
}
}
}

unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
  return llvm::CallingConv::SPIR_KERNEL;
}

static bool appendType(SmallStringEnc &Enc, QualType QType,
                       const CodeGen::CodeGenModule &CGM,
                       TypeStringCache &TSC);

/// Helper function for appendRecordType().
/// Builds a SmallVector containing the encoded field types in declaration
/// order.
static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
                             const RecordDecl *RD,
                             const CodeGen::CodeGenModule &CGM,
                             TypeStringCache &TSC) {
  for (const auto *Field : RD->fields()) {
    SmallStringEnc Enc;
    Enc += "m(";
    Enc += Field->getName();
    Enc += "){";
    if (Field->isBitField()) {
      Enc += "b(";
      llvm::raw_svector_ostream OS(Enc);
      OS << Field->getBitWidthValue(CGM.getContext());
      Enc += ':';
    }
    if (!appendType(Enc, Field->getType(), CGM, TSC))
      return false;
    if (Field->isBitField())
      Enc += ')';
    Enc += '}';
    FE.emplace_back(!Field->getName().empty(), Enc);
  }
  return true;
}

/// Appends structure and union types to Enc and adds encoding to cache.
/// Recursively calls appendType (via extractFieldType) for each field.
/// Union types have their fields ordered according to the ABI.
static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
                             const CodeGen::CodeGenModule &CGM,
                             TypeStringCache &TSC, const IdentifierInfo *ID) {
  // Append the cached TypeString if we have one.
  StringRef TypeString = TSC.lookupStr(ID);
  if (!TypeString.empty()) {
    Enc += TypeString;
    return true;
  }

  // Start to emit an incomplete TypeString.
  size_t Start = Enc.size();
  Enc += (RT->isUnionType()? 'u' : 's');
  Enc += '(';
  if (ID)
    Enc += ID->getName();
  Enc += "){";

  // We collect all encoded fields and order as necessary.
  bool IsRecursive = false;
  const RecordDecl *RD = RT->getDecl()->getDefinition();
  if (RD && !RD->field_empty()) {
    // An incomplete TypeString stub is placed in the cache for this RecordType
    // so that recursive calls to this RecordType will use it whilst building a
    // complete TypeString for this RecordType.
    SmallVector<FieldEncoding, 16> FE;
    std::string StubEnc(Enc.substr(Start).str());
    StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
    TSC.addIncomplete(ID, std::move(StubEnc));
    if (!extractFieldType(FE, RD, CGM, TSC)) {
      (void) TSC.removeIncomplete(ID);
      return false;
    }
    IsRecursive = TSC.removeIncomplete(ID);
    // The ABI requires unions to be sorted but not structures.
    // See FieldEncoding::operator< for sort algorithm.
    if (RT->isUnionType())
      llvm::sort(FE);
    // We can now complete the TypeString.
    unsigned E = FE.size();
    for (unsigned I = 0; I != E; ++I) {
      if (I)
        Enc += ',';
      Enc += FE[I].str();
    }
  }
  Enc += '}';
  TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
  return true;
}

/// Appends enum types to Enc and adds the encoding to the cache.
static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
                           TypeStringCache &TSC,
                           const IdentifierInfo *ID) {
  // Append the cached TypeString if we have one.
  StringRef TypeString = TSC.lookupStr(ID);
  if (!TypeString.empty()) {
    Enc += TypeString;
    return true;
  }

  size_t Start = Enc.size();
  Enc += "e(";
  if (ID)
    Enc += ID->getName();
  Enc += "){";

  // We collect all encoded enumerations and order them alphanumerically.
  if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
    SmallVector<FieldEncoding, 16> FE;
    for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
         ++I) {
      SmallStringEnc EnumEnc;
      EnumEnc += "m(";
      EnumEnc += I->getName();
      EnumEnc += "){";
      I->getInitVal().toString(EnumEnc);
      EnumEnc += '}';
      FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
    }
    llvm::sort(FE);
    unsigned E = FE.size();
    for (unsigned I = 0; I != E; ++I) {
      if (I)
        Enc += ',';
      Enc += FE[I].str();
    }
  }
  Enc += '}';
  TSC.addIfComplete(ID, Enc.substr(Start), false);
  return true;
}

/// Appends type's qualifier to Enc.
/// This is done prior to appending the type's encoding.
static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
  // Qualifiers are emitted in alphabetical order.
  static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
  int Lookup = 0;
  if (QT.isConstQualified())
    Lookup += 1<<0;
  if (QT.isRestrictQualified())
    Lookup += 1<<1;
  if (QT.isVolatileQualified())
    Lookup += 1<<2;
  Enc += Table[Lookup];
}

/// Appends built-in types to Enc.
static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
  const char *EncType;
  switch (BT->getKind()) {
    case BuiltinType::Void:
      EncType = "0";
      break;
    case BuiltinType::Bool:
      EncType = "b";
      break;
    case BuiltinType::Char_U:
      EncType = "uc";
      break;
    case BuiltinType::UChar:
      EncType = "uc";
      break;
    case BuiltinType::SChar:
      EncType = "sc";
      break;
    case BuiltinType::UShort:
      EncType = "us";
      break;
    case BuiltinType::Short:
      EncType = "ss";
      break;
    case BuiltinType::UInt:
      EncType = "ui";
      break;
    case BuiltinType::Int:
      EncType = "si";
      break;
    case BuiltinType::ULong:
      EncType = "ul";
      break;
    case BuiltinType::Long:
      EncType = "sl";
      break;
    case BuiltinType::ULongLong:
      EncType = "ull";
      break;
    case BuiltinType::LongLong:
      EncType = "sll";
      break;
    case BuiltinType::Float:
      EncType = "ft";
      break;
    case BuiltinType::Double:
      EncType = "d";
      break;
    case BuiltinType::LongDouble:
      EncType = "ld";
      break;
    default:
      return false;
  }
  Enc += EncType;
  return true;
}

/// Appends a pointer encoding to Enc before calling appendType for the pointee.
static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
                              const CodeGen::CodeGenModule &CGM,
                              TypeStringCache &TSC) {
  Enc += "p(";
  if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
    return false;
  Enc += ')';
  return true;
}

/// Appends array encoding to Enc before calling appendType for the element.
static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
                            const ArrayType *AT,
                            const CodeGen::CodeGenModule &CGM,
                            TypeStringCache &TSC, StringRef NoSizeEnc) {
  if (AT->getSizeModifier() != ArrayType::Normal)
    return false;
  Enc += "a(";
  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
    CAT->getSize().toStringUnsigned(Enc);
  else
    Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
  Enc += ':';
  // The Qualifiers should be attached to the type rather than the array.
  appendQualifier(Enc, QT);
  if (!appendType(Enc, AT->getElementType(), CGM, TSC))
    return false;
  Enc += ')';
  return true;
}

/// Appends a function encoding to Enc, calling appendType for the return type
/// and the arguments.
static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
                             const CodeGen::CodeGenModule &CGM,
                             TypeStringCache &TSC) {
  Enc += "f{";
  if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
    return false;
  Enc += "}(";
  if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
    // N.B. we are only interested in the adjusted param types.
    auto I = FPT->param_type_begin();
    auto E = FPT->param_type_end();
    if (I != E) {
      do {
        if (!appendType(Enc, *I, CGM, TSC))
          return false;
        ++I;
        if (I != E)
          Enc += ',';
      } while (I != E);
      if (FPT->isVariadic())
        Enc += ",va";
    } else {
      if (FPT->isVariadic())
        Enc += "va";
      else
        Enc += '0';
    }
  }
  Enc += ')';
  return true;
}

/// Handles the type's qualifier before dispatching a call to handle specific
/// type encodings.
static bool appendType(SmallStringEnc &Enc, QualType QType,
                       const CodeGen::CodeGenModule &CGM,
                       TypeStringCache &TSC) {

  QualType QT = QType.getCanonicalType();

  if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
    // The Qualifiers should be attached to the type rather than the array.
    // Thus we don't call appendQualifier() here.
    return appendArrayType(Enc, QT, AT, CGM, TSC, "");

  appendQualifier(Enc, QT);

  if (const BuiltinType *BT = QT->getAs<BuiltinType>())
    return appendBuiltinType(Enc, BT);

  if (const PointerType *PT = QT->getAs<PointerType>())
    return appendPointerType(Enc, PT, CGM, TSC);

  if (const EnumType *ET = QT->getAs<EnumType>())
    return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());

  if (const RecordType *RT = QT->getAsStructureType())
    return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());

  if (const RecordType *RT = QT->getAsUnionType())
    return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());

  if (const FunctionType *FT = QT->getAs<FunctionType>())
    return appendFunctionType(Enc, FT, CGM, TSC);

  return false;
}

static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
                          CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
  if (!D)
    return false;

  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    if (FD->getLanguageLinkage() != CLanguageLinkage)
      return false;
    return appendType(Enc, FD->getType(), CGM, TSC);
  }

  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    if (VD->getLanguageLinkage() != CLanguageLinkage)
      return false;
    QualType QT = VD->getType().getCanonicalType();
    if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
      // Global ArrayTypes are given a size of '*' if the size is unknown.
      // The Qualifiers should be attached to the type rather than the array.
      // Thus we don't call appendQualifier() here.
      return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
    }
    return appendType(Enc, QT, CGM, TSC);
  }
  return false;
}

//===----------------------------------------------------------------------===//
// RISCV ABI Implementation
//===----------------------------------------------------------------------===//

namespace {
class RISCVABIInfo : public DefaultABIInfo {
private:
  // Size of the integer ('x') registers in bits.
  unsigned XLen;
  // Size of the floating point ('f') registers in bits. Note that the target
  // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
  // with soft float ABI has FLen==0).
  unsigned FLen;
  static const int NumArgGPRs = 8;
  static const int NumArgFPRs = 8;
  bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
                                      llvm::Type *&Field1Ty,
                                      CharUnits &Field1Off,
                                      llvm::Type *&Field2Ty,
                                      CharUnits &Field2Off) const;

public:
  RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
      : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}

  // DefaultABIInfo's classifyReturnType and classifyArgumentType are
  // non-virtual, but computeInfo is virtual, so we overload it.
  void computeInfo(CGFunctionInfo &FI) const override;

  ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
                                  int &ArgFPRsLeft) const;
  ABIArgInfo classifyReturnType(QualType RetTy) const;

  Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                    QualType Ty) const override;

  ABIArgInfo extendType(QualType Ty) const;

  bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
                                CharUnits &Field1Off, llvm::Type *&Field2Ty,
                                CharUnits &Field2Off, int &NeededArgGPRs,
                                int &NeededArgFPRs) const;
  ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
                                               CharUnits Field1Off,
                                               llvm::Type *Field2Ty,
                                               CharUnits Field2Off) const;
};
} // end anonymous namespace

void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
  QualType RetTy = FI.getReturnType();
  if (!getCXXABI().classifyReturnType(FI))
    FI.getReturnInfo() = classifyReturnType(RetTy);

  // IsRetIndirect is true if classifyArgumentType indicated the value should
  // be passed indirect, or if the type size is a scalar greater than 2*XLen
  // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
  // in LLVM IR, relying on the backend lowering code to rewrite the argument
  // list and pass indirectly on RV32.
  bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
  if (!IsRetIndirect && RetTy->isScalarType() &&
      getContext().getTypeSize(RetTy) > (2 * XLen)) {
    if (RetTy->isComplexType() && FLen) {
      QualType EltTy = RetTy->getAs<ComplexType>()->getElementType();
      IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
    } else {
      // This is a normal scalar > 2*XLen, such as fp128 on RV32.
      IsRetIndirect = true;
    }
  }

  // We must track the number of GPRs used in order to conform to the RISC-V
  // ABI, as integer scalars passed in registers should have signext/zeroext
  // when promoted, but are anyext if passed on the stack. As GPR usage is
  // different for variadic arguments, we must also track whether we are
  // examining a vararg or not.
  int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
  int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
  int NumFixedArgs = FI.getNumRequiredArgs();

  int ArgNum = 0;
  for (auto &ArgInfo : FI.arguments()) {
    bool IsFixed = ArgNum < NumFixedArgs;
    ArgInfo.info =
        classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
    ArgNum++;
  }
}

// Returns true if the struct is a potential candidate for the floating point
// calling convention. If this function returns true, the caller is
// responsible for checking that if there is only a single field then that
// field is a float.
bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
                                                  llvm::Type *&Field1Ty,
                                                  CharUnits &Field1Off,
                                                  llvm::Type *&Field2Ty,
                                                  CharUnits &Field2Off) const {
  bool IsInt = Ty->isIntegralOrEnumerationType();
  bool IsFloat = Ty->isRealFloatingType();

  if (IsInt || IsFloat) {
    uint64_t Size = getContext().getTypeSize(Ty);
    if (IsInt && Size > XLen)
      return false;
    // Can't be eligible if larger than the FP registers. Half precision isn't
    // currently supported on RISC-V and the ABI hasn't been confirmed, so
    // default to the integer ABI in that case.
    if (IsFloat && (Size > FLen || Size < 32))
      return false;
    // Can't be eligible if an integer type was already found (int+int pairs
    // are not eligible).
    if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
      return false;
    if (!Field1Ty) {
      Field1Ty = CGT.ConvertType(Ty);
      Field1Off = CurOff;
      return true;
    }
    if (!Field2Ty) {
      Field2Ty = CGT.ConvertType(Ty);
      Field2Off = CurOff;
      return true;
    }
    return false;
  }

  if (auto CTy = Ty->getAs<ComplexType>()) {
    if (Field1Ty)
      return false;
    QualType EltTy = CTy->getElementType();
    if (getContext().getTypeSize(EltTy) > FLen)
      return false;
    Field1Ty = CGT.ConvertType(EltTy);
    Field1Off = CurOff;
    assert(CurOff.isZero() && "Unexpected offset for first field");
    Field2Ty = Field1Ty;
    Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
    return true;
  }

  if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
    uint64_t ArraySize = ATy->getSize().getZExtValue();
    QualType EltTy = ATy->getElementType();
    CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
    for (uint64_t i = 0; i < ArraySize; ++i) {
      bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
                                                Field1Off, Field2Ty, Field2Off);
      if (!Ret)
        return false;
      CurOff += EltSize;
    }
    return true;
  }

  if (const auto *RTy = Ty->getAs<RecordType>()) {
    // Structures with either a non-trivial destructor or a non-trivial
    // copy constructor are not eligible for the FP calling convention.
    if (getRecordArgABI(Ty, CGT.getCXXABI()))
      return false;
    if (isEmptyRecord(getContext(), Ty, true))
      return true;
    const RecordDecl *RD = RTy->getDecl();
    // Unions aren't eligible unless they're empty (which is caught above).
    if (RD->isUnion())
      return false;
    int ZeroWidthBitFieldCount = 0;
    for (const FieldDecl *FD : RD->fields()) {
      const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
      uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
      QualType QTy = FD->getType();
      if (FD->isBitField()) {
        unsigned BitWidth = FD->getBitWidthValue(getContext());
        // Allow a bitfield with a type greater than XLen as long as the
        // bitwidth is XLen or less.
        if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
          QTy = getContext().getIntTypeForBitwidth(XLen, false);
        if (BitWidth == 0) {
          ZeroWidthBitFieldCount++;
          continue;
        }
      }

      bool Ret = detectFPCCEligibleStructHelper(
          QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
          Field1Ty, Field1Off, Field2Ty, Field2Off);
      if (!Ret)
        return false;

      // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
      // or int+fp structs, but are ignored for a struct with an fp field and
      // any number of zero-width bitfields.
      if (Field2Ty && ZeroWidthBitFieldCount > 0)
        return false;
    }
    return Field1Ty != nullptr;
  }

  return false;
}

// Determine if a struct is eligible for passing according to the floating
// point calling convention (i.e., when flattened it contains a single fp
// value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
// NeededArgGPRs are incremented appropriately.
bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
                                            CharUnits &Field1Off,
                                            llvm::Type *&Field2Ty,
                                            CharUnits &Field2Off,
                                            int &NeededArgGPRs,
                                            int &NeededArgFPRs) const {
  Field1Ty = nullptr;
  Field2Ty = nullptr;
  NeededArgGPRs = 0;
  NeededArgFPRs = 0;
  bool IsCandidate = detectFPCCEligibleStructHelper(
      Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
  // Not really a candidate if we have a single int but no float.
  if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
    return false;
  if (!IsCandidate)
    return false;
  if (Field1Ty && Field1Ty->isFloatingPointTy())
    NeededArgFPRs++;
  else if (Field1Ty)
    NeededArgGPRs++;
  if (Field2Ty && Field2Ty->isFloatingPointTy())
    NeededArgFPRs++;
  else if (Field2Ty)
    NeededArgGPRs++;
  return IsCandidate;
}

// Call getCoerceAndExpand for the two-element flattened struct described by
// Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
// appropriate coerceToType and unpaddedCoerceToType.
ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
    llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
    CharUnits Field2Off) const {
  SmallVector<llvm::Type *, 3> CoerceElts;
  SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
  if (!Field1Off.isZero())
    CoerceElts.push_back(llvm::ArrayType::get(
        llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));

  CoerceElts.push_back(Field1Ty);
  UnpaddedCoerceElts.push_back(Field1Ty);

  if (!Field2Ty) {
    return ABIArgInfo::getCoerceAndExpand(
        llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
        UnpaddedCoerceElts[0]);
  }

  CharUnits Field2Align =
      CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
  CharUnits Field1Size =
      CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
  CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);

  CharUnits Padding = CharUnits::Zero();
  if (Field2Off > Field2OffNoPadNoPack)
    Padding = Field2Off - Field2OffNoPadNoPack;
  else if (Field2Off != Field2Align && Field2Off > Field1Size)
    Padding = Field2Off - Field1Size;

  bool IsPacked = !Field2Off.isMultipleOf(Field2Align);

  if (!Padding.isZero())
    CoerceElts.push_back(llvm::ArrayType::get(
        llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));

  CoerceElts.push_back(Field2Ty);
  UnpaddedCoerceElts.push_back(Field2Ty);

  auto CoerceToType =
      llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
  auto UnpaddedCoerceToType =
      llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);

  return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
}

ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
                                              int &ArgGPRsLeft,
                                              int &ArgFPRsLeft) const {
  assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
  Ty = useFirstFieldIfTransparentUnion(Ty);

  // Structures with either a non-trivial destructor or a non-trivial
  // copy constructor are always passed indirectly.
  if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
    if (ArgGPRsLeft)
      ArgGPRsLeft -= 1;
    return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
                                           CGCXXABI::RAA_DirectInMemory);
  }

  // Ignore empty structs/unions.
  if (isEmptyRecord(getContext(), Ty, true))
    return ABIArgInfo::getIgnore();

  uint64_t Size = getContext().getTypeSize(Ty);

  // Pass floating point values via FPRs if possible.
  if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) {
    ArgFPRsLeft--;
    return ABIArgInfo::getDirect();
  }

  // Complex types for the hard float ABI must be passed direct rather than
  // using CoerceAndExpand.
  if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
    QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
    if (getContext().getTypeSize(EltTy) <= FLen) {
      ArgFPRsLeft -= 2;
      return ABIArgInfo::getDirect();
    }
  }

  if (IsFixed && FLen && Ty->isStructureOrClassType()) {
    llvm::Type *Field1Ty = nullptr;
    llvm::Type *Field2Ty = nullptr;
    CharUnits Field1Off = CharUnits::Zero();
    CharUnits Field2Off = CharUnits::Zero();
    int NeededArgGPRs;
    int NeededArgFPRs;
    bool IsCandidate =
        detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
                                 NeededArgGPRs, NeededArgFPRs);
    if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
        NeededArgFPRs <= ArgFPRsLeft) {
      ArgGPRsLeft -= NeededArgGPRs;
      ArgFPRsLeft -= NeededArgFPRs;
      return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
                                               Field2Off);
    }
  }

  uint64_t NeededAlign = getContext().getTypeAlign(Ty);
  bool MustUseStack = false;
  // Determine the number of GPRs needed to pass the current argument
  // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
  // register pairs, so may consume 3 registers.
  int NeededArgGPRs = 1;
  if (!IsFixed && NeededAlign == 2 * XLen)
    NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
  else if (Size > XLen && Size <= 2 * XLen)
    NeededArgGPRs = 2;

  if (NeededArgGPRs > ArgGPRsLeft) {
    MustUseStack = true;
    NeededArgGPRs = ArgGPRsLeft;
  }

  ArgGPRsLeft -= NeededArgGPRs;

  if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
    // Treat an enum type as its underlying type.
    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
      Ty = EnumTy->getDecl()->getIntegerType();

    // All integral types are promoted to XLen width, unless passed on the
    // stack.
    if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
      return extendType(Ty);
    }

    return ABIArgInfo::getDirect();
  }

  // Aggregates which are <= 2*XLen will be passed in registers if possible,
  // so coerce to integers.
  if (Size <= 2 * XLen) {
    unsigned Alignment = getContext().getTypeAlign(Ty);

    // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
    // required, and a 2-element XLen array if only XLen alignment is required.
    if (Size <= XLen) {
      return ABIArgInfo::getDirect(
          llvm::IntegerType::get(getVMContext(), XLen));
    } else if (Alignment == 2 * XLen) {
      return ABIArgInfo::getDirect(
          llvm::IntegerType::get(getVMContext(), 2 * XLen));
    } else {
      return ABIArgInfo::getDirect(llvm::ArrayType::get(
          llvm::IntegerType::get(getVMContext(), XLen), 2));
    }
  }
  return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
}

ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
  if (RetTy->isVoidType())
    return ABIArgInfo::getIgnore();

  int ArgGPRsLeft = 2;
  int ArgFPRsLeft = FLen ? 2 : 0;

  // The rules for return and argument types are the same, so defer to
  // classifyArgumentType.
  return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
                              ArgFPRsLeft);
}

Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
                                QualType Ty) const {
  CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);

  // Empty records are ignored for parameter passing purposes.
  if (isEmptyRecord(getContext(), Ty, true)) {
    Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
    Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
    return Addr;
  }

  std::pair<CharUnits, CharUnits> SizeAndAlign =
      getContext().getTypeInfoInChars(Ty);

  // Arguments bigger than 2*Xlen bytes are passed indirectly.
  bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;

  return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
                          SlotSize, /*AllowHigherAlign=*/true);
}

ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
  int TySize = getContext().getTypeSize(Ty);
  // RV64 ABI requires unsigned 32 bit integers to be sign extended.
  if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
    return ABIArgInfo::getSignExtend(Ty);
  return ABIArgInfo::getExtend(Ty);
}

namespace {
class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
public:
  RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
                         unsigned FLen)
      : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {}

  void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
                           CodeGen::CodeGenModule &CGM) const override {
    const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
    if (!FD) return;

    const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
    if (!Attr)
      return;

    const char *Kind;
    switch (Attr->getInterrupt()) {
    case RISCVInterruptAttr::user: Kind = "user"; break;
    case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
    case RISCVInterruptAttr::machine: Kind = "machine"; break;
    }

    auto *Fn = cast<llvm::Function>(GV);

    Fn->addFnAttr("interrupt", Kind);
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// Driver code
//===----------------------------------------------------------------------===//

bool CodeGenModule::supportsCOMDAT() const {
  return getTriple().supportsCOMDAT();
}

const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
  if (TheTargetCodeGenInfo)
    return *TheTargetCodeGenInfo;

  // Helper to set the unique_ptr while still keeping the return value.
  auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
    this->TheTargetCodeGenInfo.reset(P);
    return *P;
  };

  const llvm::Triple &Triple = getTarget().getTriple();
  switch (Triple.getArch()) {
  default:
    return SetCGInfo(new DefaultTargetCodeGenInfo(Types));

  case llvm::Triple::le32:
    return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
  case llvm::Triple::mips:
  case llvm::Triple::mipsel:
    if (Triple.getOS() == llvm::Triple::NaCl)
      return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
    return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));

  case llvm::Triple::mips64:
  case llvm::Triple::mips64el:
    return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));

  case llvm::Triple::avr:
    return SetCGInfo(new AVRTargetCodeGenInfo(Types));

  case llvm::Triple::aarch64:
  case llvm::Triple::aarch64_32:
  case llvm::Triple::aarch64_be: {
    AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
    if (getTarget().getABI() == "darwinpcs")
      Kind = AArch64ABIInfo::DarwinPCS;
    else if (Triple.isOSWindows())
      return SetCGInfo(
          new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));

    return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
  }

  case llvm::Triple::wasm32:
  case llvm::Triple::wasm64:
    return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types));

  case llvm::Triple::arm:
  case llvm::Triple::armeb:
  case llvm::Triple::thumb:
  case llvm::Triple::thumbeb: {
    if (Triple.getOS() == llvm::Triple::Win32) {
      return SetCGInfo(
          new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
    }

    ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
    StringRef ABIStr = getTarget().getABI();
    if (ABIStr == "apcs-gnu")
      Kind = ARMABIInfo::APCS;
    else if (ABIStr == "aapcs16")
      Kind = ARMABIInfo::AAPCS16_VFP;
    else if (CodeGenOpts.FloatABI == "hard" ||
             (CodeGenOpts.FloatABI != "soft" &&
              (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
               Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
               Triple.getEnvironment() == llvm::Triple::EABIHF)))
      Kind = ARMABIInfo::AAPCS_VFP;

    return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
  }

  case llvm::Triple::ppc:
    return SetCGInfo(
        new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft" ||
                                   getTarget().hasFeature("spe")));
  case llvm::Triple::ppc64:
    if (Triple.isOSBinFormatELF()) {
      PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
      if (getTarget().getABI() == "elfv2")
        Kind = PPC64_SVR4_ABIInfo::ELFv2;
      bool HasQPX = getTarget().getABI() == "elfv1-qpx";
      bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";

      return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
                                                        IsSoftFloat));
    } else
      return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
  case llvm::Triple::ppc64le: {
    assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
    PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
    if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
      Kind = PPC64_SVR4_ABIInfo::ELFv1;
    bool HasQPX = getTarget().getABI() == "elfv1-qpx";
    bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";

    return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
                                                      IsSoftFloat));
  }

  case llvm::Triple::nvptx:
  case llvm::Triple::nvptx64:
    return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));

  case llvm::Triple::msp430:
    return SetCGInfo(new MSP430TargetCodeGenInfo(Types));

  case llvm::Triple::riscv32:
  case llvm::Triple::riscv64: {
    StringRef ABIStr = getTarget().getABI();
    unsigned XLen = getTarget().getPointerWidth(0);
    unsigned ABIFLen = 0;
    if (ABIStr.endswith("f"))
      ABIFLen = 32;
    else if (ABIStr.endswith("d"))
      ABIFLen = 64;
    return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
  }

  case llvm::Triple::systemz: {
    bool HasVector = getTarget().getABI() == "vector";
    return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector));
  }

  case llvm::Triple::tce:
  case llvm::Triple::tcele:
    return SetCGInfo(new TCETargetCodeGenInfo(Types));

  case llvm::Triple::x86: {
    bool IsDarwinVectorABI = Triple.isOSDarwin();
    bool RetSmallStructInRegABI =
        X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
    bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();

    if (Triple.getOS() == llvm::Triple::Win32) {
      return SetCGInfo(new WinX86_32TargetCodeGenInfo(
          Types, IsDarwinVectorABI, RetSmallStructInRegABI,
          IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
    } else {
      return SetCGInfo(new X86_32TargetCodeGenInfo(
          Types, IsDarwinVectorABI, RetSmallStructInRegABI,
          IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
          CodeGenOpts.FloatABI == "soft"));
    }
  }

  case llvm::Triple::x86_64: {
    StringRef ABI = getTarget().getABI();
    X86AVXABILevel AVXLevel =
        (ABI == "avx512"
             ? X86AVXABILevel::AVX512
             : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);

    switch (Triple.getOS()) {
    case llvm::Triple::Win32:
      return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
    default:
      return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
    }
  }
  case llvm::Triple::hexagon:
    return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
  case llvm::Triple::lanai:
    return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
  case llvm::Triple::r600:
    return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
  case llvm::Triple::amdgcn:
    return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
  case llvm::Triple::sparc:
    return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
  case llvm::Triple::sparcv9:
    return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
  case llvm::Triple::xcore:
    return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
  case llvm::Triple::arc:
    return SetCGInfo(new ARCTargetCodeGenInfo(Types));
  case llvm::Triple::spir:
  case llvm::Triple::spir64:
    return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
  }
}

/// Create an OpenCL kernel for an enqueued block.
///
/// The kernel has the same function type as the block invoke function. Its
/// name is the name of the block invoke function postfixed with "_kernel".
/// It simply calls the block invoke function then returns.
llvm::Function *
TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
                                             llvm::Function *Invoke,
                                             llvm::Value *BlockLiteral) const {
  auto *InvokeFT = Invoke->getFunctionType();
  llvm::SmallVector<llvm::Type *, 2> ArgTys;
  for (auto &P : InvokeFT->params())
    ArgTys.push_back(P);
  auto &C = CGF.getLLVMContext();
  std::string Name = Invoke->getName().str() + "_kernel";
  auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
  auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
                                   &CGF.CGM.getModule());
  auto IP = CGF.Builder.saveIP();
  auto *BB = llvm::BasicBlock::Create(C, "entry", F);
  auto &Builder = CGF.Builder;
  Builder.SetInsertPoint(BB);
  llvm::SmallVector<llvm::Value *, 2> Args;
  for (auto &A : F->args())
    Args.push_back(&A);
  Builder.CreateCall(Invoke, Args);
  Builder.CreateRetVoid();
  Builder.restoreIP(IP);
  return F;
}

/// Create an OpenCL kernel for an enqueued block.
///
/// The type of the first argument (the block literal) is the struct type
/// of the block literal instead of a pointer type. The first argument
/// (block literal) is passed directly by value to the kernel. The kernel
/// allocates the same type of struct on stack and stores the block literal
/// to it and passes its pointer to the block invoke function. The kernel
/// has "enqueued-block" function attribute and kernel argument metadata.
llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
    CodeGenFunction &CGF, llvm::Function *Invoke,
    llvm::Value *BlockLiteral) const {
  auto &Builder = CGF.Builder;
  auto &C = CGF.getLLVMContext();

  auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
  auto *InvokeFT = Invoke->getFunctionType();
  llvm::SmallVector<llvm::Type *, 2> ArgTys;
  llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
  llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
  llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
  llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
  llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
  llvm::SmallVector<llvm::Metadata *, 8> ArgNames;

  ArgTys.push_back(BlockTy);
  ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
  AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
  ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
  ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
  AccessQuals.push_back(llvm::MDString::get(C, "none"));
  ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
  for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
    ArgTys.push_back(InvokeFT->getParamType(I));
    ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
    AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
    AccessQuals.push_back(llvm::MDString::get(C, "none"));
    ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
    ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
    ArgNames.push_back(
        llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
  }
  std::string Name = Invoke->getName().str() + "_kernel";
  auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
  auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
                                   &CGF.CGM.getModule());
  F->addFnAttr("enqueued-block");
  auto IP = CGF.Builder.saveIP();
  auto *BB = llvm::BasicBlock::Create(C, "entry", F);
  Builder.SetInsertPoint(BB);
  unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy);
  auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
  BlockPtr->setAlignment(llvm::MaybeAlign(BlockAlign));
  Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
  auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
  llvm::SmallVector<llvm::Value *, 2> Args;
  Args.push_back(Cast);
  for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
    Args.push_back(I);
  Builder.CreateCall(Invoke, Args);
  Builder.CreateRetVoid();
  Builder.restoreIP(IP);

  F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
  F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
  F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
  F->setMetadata("kernel_arg_base_type",
                 llvm::MDNode::get(C, ArgBaseTypeNames));
  F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
  if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
    F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));

  return F;
}