DemandedBits.cpp 16.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
//===- DemandedBits.cpp - Determine demanded bits -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements a demanded bits analysis. A demanded bit is one that
// contributes to a result; bits that are not demanded can be either zero or
// one without affecting control or data flow. For example in this sequence:
//
//   %1 = add i32 %x, %y
//   %2 = trunc i32 %1 to i16
//
// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
// trunc.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DemandedBits.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdint>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "demanded-bits"

char DemandedBitsWrapperPass::ID = 0;

INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
                      "Demanded bits analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
                    "Demanded bits analysis", false, false)

DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
  initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
}

void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AssumptionCacheTracker>();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.setPreservesAll();
}

void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
  DB->print(OS);
}

static bool isAlwaysLive(Instruction *I) {
  return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
         I->mayHaveSideEffects();
}

void DemandedBits::determineLiveOperandBits(
    const Instruction *UserI, const Value *Val, unsigned OperandNo,
    const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2,
    bool &KnownBitsComputed) {
  unsigned BitWidth = AB.getBitWidth();

  // We're called once per operand, but for some instructions, we need to
  // compute known bits of both operands in order to determine the live bits of
  // either (when both operands are instructions themselves). We don't,
  // however, want to do this twice, so we cache the result in APInts that live
  // in the caller. For the two-relevant-operands case, both operand values are
  // provided here.
  auto ComputeKnownBits =
      [&](unsigned BitWidth, const Value *V1, const Value *V2) {
        if (KnownBitsComputed)
          return;
        KnownBitsComputed = true;

        const DataLayout &DL = UserI->getModule()->getDataLayout();
        Known = KnownBits(BitWidth);
        computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);

        if (V2) {
          Known2 = KnownBits(BitWidth);
          computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
        }
      };

  switch (UserI->getOpcode()) {
  default: break;
  case Instruction::Call:
  case Instruction::Invoke:
    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
      switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::bswap:
        // The alive bits of the input are the swapped alive bits of
        // the output.
        AB = AOut.byteSwap();
        break;
      case Intrinsic::bitreverse:
        // The alive bits of the input are the reversed alive bits of
        // the output.
        AB = AOut.reverseBits();
        break;
      case Intrinsic::ctlz:
        if (OperandNo == 0) {
          // We need some output bits, so we need all bits of the
          // input to the left of, and including, the leftmost bit
          // known to be one.
          ComputeKnownBits(BitWidth, Val, nullptr);
          AB = APInt::getHighBitsSet(BitWidth,
                 std::min(BitWidth, Known.countMaxLeadingZeros()+1));
        }
        break;
      case Intrinsic::cttz:
        if (OperandNo == 0) {
          // We need some output bits, so we need all bits of the
          // input to the right of, and including, the rightmost bit
          // known to be one.
          ComputeKnownBits(BitWidth, Val, nullptr);
          AB = APInt::getLowBitsSet(BitWidth,
                 std::min(BitWidth, Known.countMaxTrailingZeros()+1));
        }
        break;
      case Intrinsic::fshl:
      case Intrinsic::fshr: {
        const APInt *SA;
        if (OperandNo == 2) {
          // Shift amount is modulo the bitwidth. For powers of two we have
          // SA % BW == SA & (BW - 1).
          if (isPowerOf2_32(BitWidth))
            AB = BitWidth - 1;
        } else if (match(II->getOperand(2), m_APInt(SA))) {
          // Normalize to funnel shift left. APInt shifts of BitWidth are well-
          // defined, so no need to special-case zero shifts here.
          uint64_t ShiftAmt = SA->urem(BitWidth);
          if (II->getIntrinsicID() == Intrinsic::fshr)
            ShiftAmt = BitWidth - ShiftAmt;

          if (OperandNo == 0)
            AB = AOut.lshr(ShiftAmt);
          else if (OperandNo == 1)
            AB = AOut.shl(BitWidth - ShiftAmt);
        }
        break;
      }
      }
    break;
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
    // Find the highest live output bit. We don't need any more input
    // bits than that (adds, and thus subtracts, ripple only to the
    // left).
    AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
    break;
  case Instruction::Shl:
    if (OperandNo == 0) {
      const APInt *ShiftAmtC;
      if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
        AB = AOut.lshr(ShiftAmt);

        // If the shift is nuw/nsw, then the high bits are not dead
        // (because we've promised that they *must* be zero).
        const ShlOperator *S = cast<ShlOperator>(UserI);
        if (S->hasNoSignedWrap())
          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
        else if (S->hasNoUnsignedWrap())
          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
      }
    }
    break;
  case Instruction::LShr:
    if (OperandNo == 0) {
      const APInt *ShiftAmtC;
      if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
        AB = AOut.shl(ShiftAmt);

        // If the shift is exact, then the low bits are not dead
        // (they must be zero).
        if (cast<LShrOperator>(UserI)->isExact())
          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
      }
    }
    break;
  case Instruction::AShr:
    if (OperandNo == 0) {
      const APInt *ShiftAmtC;
      if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
        AB = AOut.shl(ShiftAmt);
        // Because the high input bit is replicated into the
        // high-order bits of the result, if we need any of those
        // bits, then we must keep the highest input bit.
        if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
            .getBoolValue())
          AB.setSignBit();

        // If the shift is exact, then the low bits are not dead
        // (they must be zero).
        if (cast<AShrOperator>(UserI)->isExact())
          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
      }
    }
    break;
  case Instruction::And:
    AB = AOut;

    // For bits that are known zero, the corresponding bits in the
    // other operand are dead (unless they're both zero, in which
    // case they can't both be dead, so just mark the LHS bits as
    // dead).
    ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
    if (OperandNo == 0)
      AB &= ~Known2.Zero;
    else
      AB &= ~(Known.Zero & ~Known2.Zero);
    break;
  case Instruction::Or:
    AB = AOut;

    // For bits that are known one, the corresponding bits in the
    // other operand are dead (unless they're both one, in which
    // case they can't both be dead, so just mark the LHS bits as
    // dead).
    ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
    if (OperandNo == 0)
      AB &= ~Known2.One;
    else
      AB &= ~(Known.One & ~Known2.One);
    break;
  case Instruction::Xor:
  case Instruction::PHI:
    AB = AOut;
    break;
  case Instruction::Trunc:
    AB = AOut.zext(BitWidth);
    break;
  case Instruction::ZExt:
    AB = AOut.trunc(BitWidth);
    break;
  case Instruction::SExt:
    AB = AOut.trunc(BitWidth);
    // Because the high input bit is replicated into the
    // high-order bits of the result, if we need any of those
    // bits, then we must keep the highest input bit.
    if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
                                      AOut.getBitWidth() - BitWidth))
        .getBoolValue())
      AB.setSignBit();
    break;
  case Instruction::Select:
    if (OperandNo != 0)
      AB = AOut;
    break;
  case Instruction::ExtractElement:
    if (OperandNo == 0)
      AB = AOut;
    break;
  case Instruction::InsertElement:
  case Instruction::ShuffleVector:
    if (OperandNo == 0 || OperandNo == 1)
      AB = AOut;
    break;
  }
}

bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  DB.emplace(F, AC, DT);
  return false;
}

void DemandedBitsWrapperPass::releaseMemory() {
  DB.reset();
}

void DemandedBits::performAnalysis() {
  if (Analyzed)
    // Analysis already completed for this function.
    return;
  Analyzed = true;

  Visited.clear();
  AliveBits.clear();
  DeadUses.clear();

  SmallSetVector<Instruction*, 16> Worklist;

  // Collect the set of "root" instructions that are known live.
  for (Instruction &I : instructions(F)) {
    if (!isAlwaysLive(&I))
      continue;

    LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
    // For integer-valued instructions, set up an initial empty set of alive
    // bits and add the instruction to the work list. For other instructions
    // add their operands to the work list (for integer values operands, mark
    // all bits as live).
    Type *T = I.getType();
    if (T->isIntOrIntVectorTy()) {
      if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second)
        Worklist.insert(&I);

      continue;
    }

    // Non-integer-typed instructions...
    for (Use &OI : I.operands()) {
      if (Instruction *J = dyn_cast<Instruction>(OI)) {
        Type *T = J->getType();
        if (T->isIntOrIntVectorTy())
          AliveBits[J] = APInt::getAllOnesValue(T->getScalarSizeInBits());
        else
          Visited.insert(J);
        Worklist.insert(J);
      }
    }
    // To save memory, we don't add I to the Visited set here. Instead, we
    // check isAlwaysLive on every instruction when searching for dead
    // instructions later (we need to check isAlwaysLive for the
    // integer-typed instructions anyway).
  }

  // Propagate liveness backwards to operands.
  while (!Worklist.empty()) {
    Instruction *UserI = Worklist.pop_back_val();

    LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
    APInt AOut;
    bool InputIsKnownDead = false;
    if (UserI->getType()->isIntOrIntVectorTy()) {
      AOut = AliveBits[UserI];
      LLVM_DEBUG(dbgs() << " Alive Out: 0x"
                        << Twine::utohexstr(AOut.getLimitedValue()));

      // If all bits of the output are dead, then all bits of the input
      // are also dead.
      InputIsKnownDead = !AOut && !isAlwaysLive(UserI);
    }
    LLVM_DEBUG(dbgs() << "\n");

    KnownBits Known, Known2;
    bool KnownBitsComputed = false;
    // Compute the set of alive bits for each operand. These are anded into the
    // existing set, if any, and if that changes the set of alive bits, the
    // operand is added to the work-list.
    for (Use &OI : UserI->operands()) {
      // We also want to detect dead uses of arguments, but will only store
      // demanded bits for instructions.
      Instruction *I = dyn_cast<Instruction>(OI);
      if (!I && !isa<Argument>(OI))
        continue;

      Type *T = OI->getType();
      if (T->isIntOrIntVectorTy()) {
        unsigned BitWidth = T->getScalarSizeInBits();
        APInt AB = APInt::getAllOnesValue(BitWidth);
        if (InputIsKnownDead) {
          AB = APInt(BitWidth, 0);
        } else {
          // Bits of each operand that are used to compute alive bits of the
          // output are alive, all others are dead.
          determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB,
                                   Known, Known2, KnownBitsComputed);

          // Keep track of uses which have no demanded bits.
          if (AB.isNullValue())
            DeadUses.insert(&OI);
          else
            DeadUses.erase(&OI);
        }

        if (I) {
          // If we've added to the set of alive bits (or the operand has not
          // been previously visited), then re-queue the operand to be visited
          // again.
          auto Res = AliveBits.try_emplace(I);
          if (Res.second || (AB |= Res.first->second) != Res.first->second) {
            Res.first->second = std::move(AB);
            Worklist.insert(I);
          }
        }
      } else if (I && Visited.insert(I).second) {
        Worklist.insert(I);
      }
    }
  }
}

APInt DemandedBits::getDemandedBits(Instruction *I) {
  performAnalysis();

  auto Found = AliveBits.find(I);
  if (Found != AliveBits.end())
    return Found->second;

  const DataLayout &DL = I->getModule()->getDataLayout();
  return APInt::getAllOnesValue(
      DL.getTypeSizeInBits(I->getType()->getScalarType()));
}

bool DemandedBits::isInstructionDead(Instruction *I) {
  performAnalysis();

  return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
    !isAlwaysLive(I);
}

bool DemandedBits::isUseDead(Use *U) {
  // We only track integer uses, everything else is assumed live.
  if (!(*U)->getType()->isIntOrIntVectorTy())
    return false;

  // Uses by always-live instructions are never dead.
  Instruction *UserI = cast<Instruction>(U->getUser());
  if (isAlwaysLive(UserI))
    return false;

  performAnalysis();
  if (DeadUses.count(U))
    return true;

  // If no output bits are demanded, no input bits are demanded and the use
  // is dead. These uses might not be explicitly present in the DeadUses map.
  if (UserI->getType()->isIntOrIntVectorTy()) {
    auto Found = AliveBits.find(UserI);
    if (Found != AliveBits.end() && Found->second.isNullValue())
      return true;
  }

  return false;
}

void DemandedBits::print(raw_ostream &OS) {
  performAnalysis();
  for (auto &KV : AliveBits) {
    OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue())
       << " for " << *KV.first << '\n';
  }
}

FunctionPass *llvm::createDemandedBitsWrapperPass() {
  return new DemandedBitsWrapperPass();
}

AnalysisKey DemandedBitsAnalysis::Key;

DemandedBits DemandedBitsAnalysis::run(Function &F,
                                             FunctionAnalysisManager &AM) {
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  return DemandedBits(F, AC, DT);
}

PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
                                               FunctionAnalysisManager &AM) {
  AM.getResult<DemandedBitsAnalysis>(F).print(OS);
  return PreservedAnalyses::all();
}