LazyCallGraph.cpp 66 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <string>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "lcg"

void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
                                                     Edge::Kind EK) {
  EdgeIndexMap.insert({&TargetN, Edges.size()});
  Edges.emplace_back(TargetN, EK);
}

void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
  Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
}

bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
  auto IndexMapI = EdgeIndexMap.find(&TargetN);
  if (IndexMapI == EdgeIndexMap.end())
    return false;

  Edges[IndexMapI->second] = Edge();
  EdgeIndexMap.erase(IndexMapI);
  return true;
}

static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
                    DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
                    LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
  if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
    return;

  LLVM_DEBUG(dbgs() << "    Added callable function: " << N.getName() << "\n");
  Edges.emplace_back(LazyCallGraph::Edge(N, EK));
}

LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
  assert(!Edges && "Must not have already populated the edges for this node!");

  LLVM_DEBUG(dbgs() << "  Adding functions called by '" << getName()
                    << "' to the graph.\n");

  Edges = EdgeSequence();

  SmallVector<Constant *, 16> Worklist;
  SmallPtrSet<Function *, 4> Callees;
  SmallPtrSet<Constant *, 16> Visited;

  // Find all the potential call graph edges in this function. We track both
  // actual call edges and indirect references to functions. The direct calls
  // are trivially added, but to accumulate the latter we walk the instructions
  // and add every operand which is a constant to the worklist to process
  // afterward.
  //
  // Note that we consider *any* function with a definition to be a viable
  // edge. Even if the function's definition is subject to replacement by
  // some other module (say, a weak definition) there may still be
  // optimizations which essentially speculate based on the definition and
  // a way to check that the specific definition is in fact the one being
  // used. For example, this could be done by moving the weak definition to
  // a strong (internal) definition and making the weak definition be an
  // alias. Then a test of the address of the weak function against the new
  // strong definition's address would be an effective way to determine the
  // safety of optimizing a direct call edge.
  for (BasicBlock &BB : *F)
    for (Instruction &I : BB) {
      if (auto CS = CallSite(&I))
        if (Function *Callee = CS.getCalledFunction())
          if (!Callee->isDeclaration())
            if (Callees.insert(Callee).second) {
              Visited.insert(Callee);
              addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
                      LazyCallGraph::Edge::Call);
            }

      for (Value *Op : I.operand_values())
        if (Constant *C = dyn_cast<Constant>(Op))
          if (Visited.insert(C).second)
            Worklist.push_back(C);
    }

  // We've collected all the constant (and thus potentially function or
  // function containing) operands to all of the instructions in the function.
  // Process them (recursively) collecting every function found.
  visitReferences(Worklist, Visited, [&](Function &F) {
    addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
            LazyCallGraph::Edge::Ref);
  });

  // Add implicit reference edges to any defined libcall functions (if we
  // haven't found an explicit edge).
  for (auto *F : G->LibFunctions)
    if (!Visited.count(F))
      addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
              LazyCallGraph::Edge::Ref);

  return *Edges;
}

void LazyCallGraph::Node::replaceFunction(Function &NewF) {
  assert(F != &NewF && "Must not replace a function with itself!");
  F = &NewF;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
  dbgs() << *this << '\n';
}
#endif

static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
  LibFunc LF;

  // Either this is a normal library function or a "vectorizable" function.
  return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName());
}

LazyCallGraph::LazyCallGraph(
    Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
  LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
                    << "\n");
  for (Function &F : M) {
    if (F.isDeclaration())
      continue;
    // If this function is a known lib function to LLVM then we want to
    // synthesize reference edges to it to model the fact that LLVM can turn
    // arbitrary code into a library function call.
    if (isKnownLibFunction(F, GetTLI(F)))
      LibFunctions.insert(&F);

    if (F.hasLocalLinkage())
      continue;

    // External linkage defined functions have edges to them from other
    // modules.
    LLVM_DEBUG(dbgs() << "  Adding '" << F.getName()
                      << "' to entry set of the graph.\n");
    addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
  }

  // Externally visible aliases of internal functions are also viable entry
  // edges to the module.
  for (auto &A : M.aliases()) {
    if (A.hasLocalLinkage())
      continue;
    if (Function* F = dyn_cast<Function>(A.getAliasee())) {
      LLVM_DEBUG(dbgs() << "  Adding '" << F->getName()
                        << "' with alias '" << A.getName()
                        << "' to entry set of the graph.\n");
      addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
    }
  }

  // Now add entry nodes for functions reachable via initializers to globals.
  SmallVector<Constant *, 16> Worklist;
  SmallPtrSet<Constant *, 16> Visited;
  for (GlobalVariable &GV : M.globals())
    if (GV.hasInitializer())
      if (Visited.insert(GV.getInitializer()).second)
        Worklist.push_back(GV.getInitializer());

  LLVM_DEBUG(
      dbgs() << "  Adding functions referenced by global initializers to the "
                "entry set.\n");
  visitReferences(Worklist, Visited, [&](Function &F) {
    addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
            LazyCallGraph::Edge::Ref);
  });
}

LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
    : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
      EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
      SCCMap(std::move(G.SCCMap)),
      LibFunctions(std::move(G.LibFunctions)) {
  updateGraphPtrs();
}

LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
  BPA = std::move(G.BPA);
  NodeMap = std::move(G.NodeMap);
  EntryEdges = std::move(G.EntryEdges);
  SCCBPA = std::move(G.SCCBPA);
  SCCMap = std::move(G.SCCMap);
  LibFunctions = std::move(G.LibFunctions);
  updateGraphPtrs();
  return *this;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
  dbgs() << *this << '\n';
}
#endif

#ifndef NDEBUG
void LazyCallGraph::SCC::verify() {
  assert(OuterRefSCC && "Can't have a null RefSCC!");
  assert(!Nodes.empty() && "Can't have an empty SCC!");

  for (Node *N : Nodes) {
    assert(N && "Can't have a null node!");
    assert(OuterRefSCC->G->lookupSCC(*N) == this &&
           "Node does not map to this SCC!");
    assert(N->DFSNumber == -1 &&
           "Must set DFS numbers to -1 when adding a node to an SCC!");
    assert(N->LowLink == -1 &&
           "Must set low link to -1 when adding a node to an SCC!");
    for (Edge &E : **N)
      assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
  }
}
#endif

bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
  if (this == &C)
    return false;

  for (Node &N : *this)
    for (Edge &E : N->calls())
      if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
        return true;

  // No edges found.
  return false;
}

bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
  if (this == &TargetC)
    return false;

  LazyCallGraph &G = *OuterRefSCC->G;

  // Start with this SCC.
  SmallPtrSet<const SCC *, 16> Visited = {this};
  SmallVector<const SCC *, 16> Worklist = {this};

  // Walk down the graph until we run out of edges or find a path to TargetC.
  do {
    const SCC &C = *Worklist.pop_back_val();
    for (Node &N : C)
      for (Edge &E : N->calls()) {
        SCC *CalleeC = G.lookupSCC(E.getNode());
        if (!CalleeC)
          continue;

        // If the callee's SCC is the TargetC, we're done.
        if (CalleeC == &TargetC)
          return true;

        // If this is the first time we've reached this SCC, put it on the
        // worklist to recurse through.
        if (Visited.insert(CalleeC).second)
          Worklist.push_back(CalleeC);
      }
  } while (!Worklist.empty());

  // No paths found.
  return false;
}

LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
  dbgs() << *this << '\n';
}
#endif

#ifndef NDEBUG
void LazyCallGraph::RefSCC::verify() {
  assert(G && "Can't have a null graph!");
  assert(!SCCs.empty() && "Can't have an empty SCC!");

  // Verify basic properties of the SCCs.
  SmallPtrSet<SCC *, 4> SCCSet;
  for (SCC *C : SCCs) {
    assert(C && "Can't have a null SCC!");
    C->verify();
    assert(&C->getOuterRefSCC() == this &&
           "SCC doesn't think it is inside this RefSCC!");
    bool Inserted = SCCSet.insert(C).second;
    assert(Inserted && "Found a duplicate SCC!");
    auto IndexIt = SCCIndices.find(C);
    assert(IndexIt != SCCIndices.end() &&
           "Found an SCC that doesn't have an index!");
  }

  // Check that our indices map correctly.
  for (auto &SCCIndexPair : SCCIndices) {
    SCC *C = SCCIndexPair.first;
    int i = SCCIndexPair.second;
    assert(C && "Can't have a null SCC in the indices!");
    assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
    assert(SCCs[i] == C && "Index doesn't point to SCC!");
  }

  // Check that the SCCs are in fact in post-order.
  for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
    SCC &SourceSCC = *SCCs[i];
    for (Node &N : SourceSCC)
      for (Edge &E : *N) {
        if (!E.isCall())
          continue;
        SCC &TargetSCC = *G->lookupSCC(E.getNode());
        if (&TargetSCC.getOuterRefSCC() == this) {
          assert(SCCIndices.find(&TargetSCC)->second <= i &&
                 "Edge between SCCs violates post-order relationship.");
          continue;
        }
      }
  }
}
#endif

bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
  if (&RC == this)
    return false;

  // Search all edges to see if this is a parent.
  for (SCC &C : *this)
    for (Node &N : C)
      for (Edge &E : *N)
        if (G->lookupRefSCC(E.getNode()) == &RC)
          return true;

  return false;
}

bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
  if (&RC == this)
    return false;

  // For each descendant of this RefSCC, see if one of its children is the
  // argument. If not, add that descendant to the worklist and continue
  // searching.
  SmallVector<const RefSCC *, 4> Worklist;
  SmallPtrSet<const RefSCC *, 4> Visited;
  Worklist.push_back(this);
  Visited.insert(this);
  do {
    const RefSCC &DescendantRC = *Worklist.pop_back_val();
    for (SCC &C : DescendantRC)
      for (Node &N : C)
        for (Edge &E : *N) {
          auto *ChildRC = G->lookupRefSCC(E.getNode());
          if (ChildRC == &RC)
            return true;
          if (!ChildRC || !Visited.insert(ChildRC).second)
            continue;
          Worklist.push_back(ChildRC);
        }
  } while (!Worklist.empty());

  return false;
}

/// Generic helper that updates a postorder sequence of SCCs for a potentially
/// cycle-introducing edge insertion.
///
/// A postorder sequence of SCCs of a directed graph has one fundamental
/// property: all deges in the DAG of SCCs point "up" the sequence. That is,
/// all edges in the SCC DAG point to prior SCCs in the sequence.
///
/// This routine both updates a postorder sequence and uses that sequence to
/// compute the set of SCCs connected into a cycle. It should only be called to
/// insert a "downward" edge which will require changing the sequence to
/// restore it to a postorder.
///
/// When inserting an edge from an earlier SCC to a later SCC in some postorder
/// sequence, all of the SCCs which may be impacted are in the closed range of
/// those two within the postorder sequence. The algorithm used here to restore
/// the state is as follows:
///
/// 1) Starting from the source SCC, construct a set of SCCs which reach the
///    source SCC consisting of just the source SCC. Then scan toward the
///    target SCC in postorder and for each SCC, if it has an edge to an SCC
///    in the set, add it to the set. Otherwise, the source SCC is not
///    a successor, move it in the postorder sequence to immediately before
///    the source SCC, shifting the source SCC and all SCCs in the set one
///    position toward the target SCC. Stop scanning after processing the
///    target SCC.
/// 2) If the source SCC is now past the target SCC in the postorder sequence,
///    and thus the new edge will flow toward the start, we are done.
/// 3) Otherwise, starting from the target SCC, walk all edges which reach an
///    SCC between the source and the target, and add them to the set of
///    connected SCCs, then recurse through them. Once a complete set of the
///    SCCs the target connects to is known, hoist the remaining SCCs between
///    the source and the target to be above the target. Note that there is no
///    need to process the source SCC, it is already known to connect.
/// 4) At this point, all of the SCCs in the closed range between the source
///    SCC and the target SCC in the postorder sequence are connected,
///    including the target SCC and the source SCC. Inserting the edge from
///    the source SCC to the target SCC will form a cycle out of precisely
///    these SCCs. Thus we can merge all of the SCCs in this closed range into
///    a single SCC.
///
/// This process has various important properties:
/// - Only mutates the SCCs when adding the edge actually changes the SCC
///   structure.
/// - Never mutates SCCs which are unaffected by the change.
/// - Updates the postorder sequence to correctly satisfy the postorder
///   constraint after the edge is inserted.
/// - Only reorders SCCs in the closed postorder sequence from the source to
///   the target, so easy to bound how much has changed even in the ordering.
/// - Big-O is the number of edges in the closed postorder range of SCCs from
///   source to target.
///
/// This helper routine, in addition to updating the postorder sequence itself
/// will also update a map from SCCs to indices within that sequence.
///
/// The sequence and the map must operate on pointers to the SCC type.
///
/// Two callbacks must be provided. The first computes the subset of SCCs in
/// the postorder closed range from the source to the target which connect to
/// the source SCC via some (transitive) set of edges. The second computes the
/// subset of the same range which the target SCC connects to via some
/// (transitive) set of edges. Both callbacks should populate the set argument
/// provided.
template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
          typename ComputeSourceConnectedSetCallableT,
          typename ComputeTargetConnectedSetCallableT>
static iterator_range<typename PostorderSequenceT::iterator>
updatePostorderSequenceForEdgeInsertion(
    SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
    SCCIndexMapT &SCCIndices,
    ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
    ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
  int SourceIdx = SCCIndices[&SourceSCC];
  int TargetIdx = SCCIndices[&TargetSCC];
  assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");

  SmallPtrSet<SCCT *, 4> ConnectedSet;

  // Compute the SCCs which (transitively) reach the source.
  ComputeSourceConnectedSet(ConnectedSet);

  // Partition the SCCs in this part of the port-order sequence so only SCCs
  // connecting to the source remain between it and the target. This is
  // a benign partition as it preserves postorder.
  auto SourceI = std::stable_partition(
      SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
      [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
  for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
    SCCIndices.find(SCCs[i])->second = i;

  // If the target doesn't connect to the source, then we've corrected the
  // post-order and there are no cycles formed.
  if (!ConnectedSet.count(&TargetSCC)) {
    assert(SourceI > (SCCs.begin() + SourceIdx) &&
           "Must have moved the source to fix the post-order.");
    assert(*std::prev(SourceI) == &TargetSCC &&
           "Last SCC to move should have bene the target.");

    // Return an empty range at the target SCC indicating there is nothing to
    // merge.
    return make_range(std::prev(SourceI), std::prev(SourceI));
  }

  assert(SCCs[TargetIdx] == &TargetSCC &&
         "Should not have moved target if connected!");
  SourceIdx = SourceI - SCCs.begin();
  assert(SCCs[SourceIdx] == &SourceSCC &&
         "Bad updated index computation for the source SCC!");


  // See whether there are any remaining intervening SCCs between the source
  // and target. If so we need to make sure they all are reachable form the
  // target.
  if (SourceIdx + 1 < TargetIdx) {
    ConnectedSet.clear();
    ComputeTargetConnectedSet(ConnectedSet);

    // Partition SCCs so that only SCCs reached from the target remain between
    // the source and the target. This preserves postorder.
    auto TargetI = std::stable_partition(
        SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
        [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
    for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
      SCCIndices.find(SCCs[i])->second = i;
    TargetIdx = std::prev(TargetI) - SCCs.begin();
    assert(SCCs[TargetIdx] == &TargetSCC &&
           "Should always end with the target!");
  }

  // At this point, we know that connecting source to target forms a cycle
  // because target connects back to source, and we know that all of the SCCs
  // between the source and target in the postorder sequence participate in that
  // cycle.
  return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
}

bool
LazyCallGraph::RefSCC::switchInternalEdgeToCall(
    Node &SourceN, Node &TargetN,
    function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
  assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
  SmallVector<SCC *, 1> DeletedSCCs;

#ifndef NDEBUG
  // In a debug build, verify the RefSCC is valid to start with and when this
  // routine finishes.
  verify();
  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
#endif

  SCC &SourceSCC = *G->lookupSCC(SourceN);
  SCC &TargetSCC = *G->lookupSCC(TargetN);

  // If the two nodes are already part of the same SCC, we're also done as
  // we've just added more connectivity.
  if (&SourceSCC == &TargetSCC) {
    SourceN->setEdgeKind(TargetN, Edge::Call);
    return false; // No new cycle.
  }

  // At this point we leverage the postorder list of SCCs to detect when the
  // insertion of an edge changes the SCC structure in any way.
  //
  // First and foremost, we can eliminate the need for any changes when the
  // edge is toward the beginning of the postorder sequence because all edges
  // flow in that direction already. Thus adding a new one cannot form a cycle.
  int SourceIdx = SCCIndices[&SourceSCC];
  int TargetIdx = SCCIndices[&TargetSCC];
  if (TargetIdx < SourceIdx) {
    SourceN->setEdgeKind(TargetN, Edge::Call);
    return false; // No new cycle.
  }

  // Compute the SCCs which (transitively) reach the source.
  auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
#ifndef NDEBUG
    // Check that the RefSCC is still valid before computing this as the
    // results will be nonsensical of we've broken its invariants.
    verify();
#endif
    ConnectedSet.insert(&SourceSCC);
    auto IsConnected = [&](SCC &C) {
      for (Node &N : C)
        for (Edge &E : N->calls())
          if (ConnectedSet.count(G->lookupSCC(E.getNode())))
            return true;

      return false;
    };

    for (SCC *C :
         make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
      if (IsConnected(*C))
        ConnectedSet.insert(C);
  };

  // Use a normal worklist to find which SCCs the target connects to. We still
  // bound the search based on the range in the postorder list we care about,
  // but because this is forward connectivity we just "recurse" through the
  // edges.
  auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
#ifndef NDEBUG
    // Check that the RefSCC is still valid before computing this as the
    // results will be nonsensical of we've broken its invariants.
    verify();
#endif
    ConnectedSet.insert(&TargetSCC);
    SmallVector<SCC *, 4> Worklist;
    Worklist.push_back(&TargetSCC);
    do {
      SCC &C = *Worklist.pop_back_val();
      for (Node &N : C)
        for (Edge &E : *N) {
          if (!E.isCall())
            continue;
          SCC &EdgeC = *G->lookupSCC(E.getNode());
          if (&EdgeC.getOuterRefSCC() != this)
            // Not in this RefSCC...
            continue;
          if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
            // Not in the postorder sequence between source and target.
            continue;

          if (ConnectedSet.insert(&EdgeC).second)
            Worklist.push_back(&EdgeC);
        }
    } while (!Worklist.empty());
  };

  // Use a generic helper to update the postorder sequence of SCCs and return
  // a range of any SCCs connected into a cycle by inserting this edge. This
  // routine will also take care of updating the indices into the postorder
  // sequence.
  auto MergeRange = updatePostorderSequenceForEdgeInsertion(
      SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
      ComputeTargetConnectedSet);

  // Run the user's callback on the merged SCCs before we actually merge them.
  if (MergeCB)
    MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));

  // If the merge range is empty, then adding the edge didn't actually form any
  // new cycles. We're done.
  if (MergeRange.empty()) {
    // Now that the SCC structure is finalized, flip the kind to call.
    SourceN->setEdgeKind(TargetN, Edge::Call);
    return false; // No new cycle.
  }

#ifndef NDEBUG
  // Before merging, check that the RefSCC remains valid after all the
  // postorder updates.
  verify();
#endif

  // Otherwise we need to merge all of the SCCs in the cycle into a single
  // result SCC.
  //
  // NB: We merge into the target because all of these functions were already
  // reachable from the target, meaning any SCC-wide properties deduced about it
  // other than the set of functions within it will not have changed.
  for (SCC *C : MergeRange) {
    assert(C != &TargetSCC &&
           "We merge *into* the target and shouldn't process it here!");
    SCCIndices.erase(C);
    TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
    for (Node *N : C->Nodes)
      G->SCCMap[N] = &TargetSCC;
    C->clear();
    DeletedSCCs.push_back(C);
  }

  // Erase the merged SCCs from the list and update the indices of the
  // remaining SCCs.
  int IndexOffset = MergeRange.end() - MergeRange.begin();
  auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
  for (SCC *C : make_range(EraseEnd, SCCs.end()))
    SCCIndices[C] -= IndexOffset;

  // Now that the SCC structure is finalized, flip the kind to call.
  SourceN->setEdgeKind(TargetN, Edge::Call);

  // And we're done, but we did form a new cycle.
  return true;
}

void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
                                                           Node &TargetN) {
  assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");

#ifndef NDEBUG
  // In a debug build, verify the RefSCC is valid to start with and when this
  // routine finishes.
  verify();
  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
#endif

  assert(G->lookupRefSCC(SourceN) == this &&
         "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) == this &&
         "Target must be in this RefSCC.");
  assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
         "Source and Target must be in separate SCCs for this to be trivial!");

  // Set the edge kind.
  SourceN->setEdgeKind(TargetN, Edge::Ref);
}

iterator_range<LazyCallGraph::RefSCC::iterator>
LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
  assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");

#ifndef NDEBUG
  // In a debug build, verify the RefSCC is valid to start with and when this
  // routine finishes.
  verify();
  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
#endif

  assert(G->lookupRefSCC(SourceN) == this &&
         "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) == this &&
         "Target must be in this RefSCC.");

  SCC &TargetSCC = *G->lookupSCC(TargetN);
  assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
                                                "the same SCC to require the "
                                                "full CG update.");

  // Set the edge kind.
  SourceN->setEdgeKind(TargetN, Edge::Ref);

  // Otherwise we are removing a call edge from a single SCC. This may break
  // the cycle. In order to compute the new set of SCCs, we need to do a small
  // DFS over the nodes within the SCC to form any sub-cycles that remain as
  // distinct SCCs and compute a postorder over the resulting SCCs.
  //
  // However, we specially handle the target node. The target node is known to
  // reach all other nodes in the original SCC by definition. This means that
  // we want the old SCC to be replaced with an SCC containing that node as it
  // will be the root of whatever SCC DAG results from the DFS. Assumptions
  // about an SCC such as the set of functions called will continue to hold,
  // etc.

  SCC &OldSCC = TargetSCC;
  SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
  SmallVector<Node *, 16> PendingSCCStack;
  SmallVector<SCC *, 4> NewSCCs;

  // Prepare the nodes for a fresh DFS.
  SmallVector<Node *, 16> Worklist;
  Worklist.swap(OldSCC.Nodes);
  for (Node *N : Worklist) {
    N->DFSNumber = N->LowLink = 0;
    G->SCCMap.erase(N);
  }

  // Force the target node to be in the old SCC. This also enables us to take
  // a very significant short-cut in the standard Tarjan walk to re-form SCCs
  // below: whenever we build an edge that reaches the target node, we know
  // that the target node eventually connects back to all other nodes in our
  // walk. As a consequence, we can detect and handle participants in that
  // cycle without walking all the edges that form this connection, and instead
  // by relying on the fundamental guarantee coming into this operation (all
  // nodes are reachable from the target due to previously forming an SCC).
  TargetN.DFSNumber = TargetN.LowLink = -1;
  OldSCC.Nodes.push_back(&TargetN);
  G->SCCMap[&TargetN] = &OldSCC;

  // Scan down the stack and DFS across the call edges.
  for (Node *RootN : Worklist) {
    assert(DFSStack.empty() &&
           "Cannot begin a new root with a non-empty DFS stack!");
    assert(PendingSCCStack.empty() &&
           "Cannot begin a new root with pending nodes for an SCC!");

    // Skip any nodes we've already reached in the DFS.
    if (RootN->DFSNumber != 0) {
      assert(RootN->DFSNumber == -1 &&
             "Shouldn't have any mid-DFS root nodes!");
      continue;
    }

    RootN->DFSNumber = RootN->LowLink = 1;
    int NextDFSNumber = 2;

    DFSStack.push_back({RootN, (*RootN)->call_begin()});
    do {
      Node *N;
      EdgeSequence::call_iterator I;
      std::tie(N, I) = DFSStack.pop_back_val();
      auto E = (*N)->call_end();
      while (I != E) {
        Node &ChildN = I->getNode();
        if (ChildN.DFSNumber == 0) {
          // We haven't yet visited this child, so descend, pushing the current
          // node onto the stack.
          DFSStack.push_back({N, I});

          assert(!G->SCCMap.count(&ChildN) &&
                 "Found a node with 0 DFS number but already in an SCC!");
          ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
          N = &ChildN;
          I = (*N)->call_begin();
          E = (*N)->call_end();
          continue;
        }

        // Check for the child already being part of some component.
        if (ChildN.DFSNumber == -1) {
          if (G->lookupSCC(ChildN) == &OldSCC) {
            // If the child is part of the old SCC, we know that it can reach
            // every other node, so we have formed a cycle. Pull the entire DFS
            // and pending stacks into it. See the comment above about setting
            // up the old SCC for why we do this.
            int OldSize = OldSCC.size();
            OldSCC.Nodes.push_back(N);
            OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
            PendingSCCStack.clear();
            while (!DFSStack.empty())
              OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
            for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
              N.DFSNumber = N.LowLink = -1;
              G->SCCMap[&N] = &OldSCC;
            }
            N = nullptr;
            break;
          }

          // If the child has already been added to some child component, it
          // couldn't impact the low-link of this parent because it isn't
          // connected, and thus its low-link isn't relevant so skip it.
          ++I;
          continue;
        }

        // Track the lowest linked child as the lowest link for this node.
        assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
        if (ChildN.LowLink < N->LowLink)
          N->LowLink = ChildN.LowLink;

        // Move to the next edge.
        ++I;
      }
      if (!N)
        // Cleared the DFS early, start another round.
        break;

      // We've finished processing N and its descendants, put it on our pending
      // SCC stack to eventually get merged into an SCC of nodes.
      PendingSCCStack.push_back(N);

      // If this node is linked to some lower entry, continue walking up the
      // stack.
      if (N->LowLink != N->DFSNumber)
        continue;

      // Otherwise, we've completed an SCC. Append it to our post order list of
      // SCCs.
      int RootDFSNumber = N->DFSNumber;
      // Find the range of the node stack by walking down until we pass the
      // root DFS number.
      auto SCCNodes = make_range(
          PendingSCCStack.rbegin(),
          find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
            return N->DFSNumber < RootDFSNumber;
          }));

      // Form a new SCC out of these nodes and then clear them off our pending
      // stack.
      NewSCCs.push_back(G->createSCC(*this, SCCNodes));
      for (Node &N : *NewSCCs.back()) {
        N.DFSNumber = N.LowLink = -1;
        G->SCCMap[&N] = NewSCCs.back();
      }
      PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
    } while (!DFSStack.empty());
  }

  // Insert the remaining SCCs before the old one. The old SCC can reach all
  // other SCCs we form because it contains the target node of the removed edge
  // of the old SCC. This means that we will have edges into all of the new
  // SCCs, which means the old one must come last for postorder.
  int OldIdx = SCCIndices[&OldSCC];
  SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());

  // Update the mapping from SCC* to index to use the new SCC*s, and remove the
  // old SCC from the mapping.
  for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
    SCCIndices[SCCs[Idx]] = Idx;

  return make_range(SCCs.begin() + OldIdx,
                    SCCs.begin() + OldIdx + NewSCCs.size());
}

void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
                                                     Node &TargetN) {
  assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");

  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) != this &&
         "Target must not be in this RefSCC.");
#ifdef EXPENSIVE_CHECKS
  assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");
#endif

  // Edges between RefSCCs are the same regardless of call or ref, so we can
  // just flip the edge here.
  SourceN->setEdgeKind(TargetN, Edge::Call);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
                                                    Node &TargetN) {
  assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");

  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) != this &&
         "Target must not be in this RefSCC.");
#ifdef EXPENSIVE_CHECKS
  assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");
#endif

  // Edges between RefSCCs are the same regardless of call or ref, so we can
  // just flip the edge here.
  SourceN->setEdgeKind(TargetN, Edge::Ref);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
                                                  Node &TargetN) {
  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");

  SourceN->insertEdgeInternal(TargetN, Edge::Ref);

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
                                               Edge::Kind EK) {
  // First insert it into the caller.
  SourceN->insertEdgeInternal(TargetN, EK);

  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");

  assert(G->lookupRefSCC(TargetN) != this &&
         "Target must not be in this RefSCC.");
#ifdef EXPENSIVE_CHECKS
  assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");
#endif

#ifndef NDEBUG
  // Check that the RefSCC is still valid.
  verify();
#endif
}

SmallVector<LazyCallGraph::RefSCC *, 1>
LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
  assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
  RefSCC &SourceC = *G->lookupRefSCC(SourceN);
  assert(&SourceC != this && "Source must not be in this RefSCC.");
#ifdef EXPENSIVE_CHECKS
  assert(SourceC.isDescendantOf(*this) &&
         "Source must be a descendant of the Target.");
#endif

  SmallVector<RefSCC *, 1> DeletedRefSCCs;

#ifndef NDEBUG
  // In a debug build, verify the RefSCC is valid to start with and when this
  // routine finishes.
  verify();
  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
#endif

  int SourceIdx = G->RefSCCIndices[&SourceC];
  int TargetIdx = G->RefSCCIndices[this];
  assert(SourceIdx < TargetIdx &&
         "Postorder list doesn't see edge as incoming!");

  // Compute the RefSCCs which (transitively) reach the source. We do this by
  // working backwards from the source using the parent set in each RefSCC,
  // skipping any RefSCCs that don't fall in the postorder range. This has the
  // advantage of walking the sparser parent edge (in high fan-out graphs) but
  // more importantly this removes examining all forward edges in all RefSCCs
  // within the postorder range which aren't in fact connected. Only connected
  // RefSCCs (and their edges) are visited here.
  auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
    Set.insert(&SourceC);
    auto IsConnected = [&](RefSCC &RC) {
      for (SCC &C : RC)
        for (Node &N : C)
          for (Edge &E : *N)
            if (Set.count(G->lookupRefSCC(E.getNode())))
              return true;

      return false;
    };

    for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
                                G->PostOrderRefSCCs.begin() + TargetIdx + 1))
      if (IsConnected(*C))
        Set.insert(C);
  };

  // Use a normal worklist to find which SCCs the target connects to. We still
  // bound the search based on the range in the postorder list we care about,
  // but because this is forward connectivity we just "recurse" through the
  // edges.
  auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
    Set.insert(this);
    SmallVector<RefSCC *, 4> Worklist;
    Worklist.push_back(this);
    do {
      RefSCC &RC = *Worklist.pop_back_val();
      for (SCC &C : RC)
        for (Node &N : C)
          for (Edge &E : *N) {
            RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
            if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
              // Not in the postorder sequence between source and target.
              continue;

            if (Set.insert(&EdgeRC).second)
              Worklist.push_back(&EdgeRC);
          }
    } while (!Worklist.empty());
  };

  // Use a generic helper to update the postorder sequence of RefSCCs and return
  // a range of any RefSCCs connected into a cycle by inserting this edge. This
  // routine will also take care of updating the indices into the postorder
  // sequence.
  iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
      updatePostorderSequenceForEdgeInsertion(
          SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
          ComputeSourceConnectedSet, ComputeTargetConnectedSet);

  // Build a set so we can do fast tests for whether a RefSCC will end up as
  // part of the merged RefSCC.
  SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());

  // This RefSCC will always be part of that set, so just insert it here.
  MergeSet.insert(this);

  // Now that we have identified all of the SCCs which need to be merged into
  // a connected set with the inserted edge, merge all of them into this SCC.
  SmallVector<SCC *, 16> MergedSCCs;
  int SCCIndex = 0;
  for (RefSCC *RC : MergeRange) {
    assert(RC != this && "We're merging into the target RefSCC, so it "
                         "shouldn't be in the range.");

    // Walk the inner SCCs to update their up-pointer and walk all the edges to
    // update any parent sets.
    // FIXME: We should try to find a way to avoid this (rather expensive) edge
    // walk by updating the parent sets in some other manner.
    for (SCC &InnerC : *RC) {
      InnerC.OuterRefSCC = this;
      SCCIndices[&InnerC] = SCCIndex++;
      for (Node &N : InnerC)
        G->SCCMap[&N] = &InnerC;
    }

    // Now merge in the SCCs. We can actually move here so try to reuse storage
    // the first time through.
    if (MergedSCCs.empty())
      MergedSCCs = std::move(RC->SCCs);
    else
      MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
    RC->SCCs.clear();
    DeletedRefSCCs.push_back(RC);
  }

  // Append our original SCCs to the merged list and move it into place.
  for (SCC &InnerC : *this)
    SCCIndices[&InnerC] = SCCIndex++;
  MergedSCCs.append(SCCs.begin(), SCCs.end());
  SCCs = std::move(MergedSCCs);

  // Remove the merged away RefSCCs from the post order sequence.
  for (RefSCC *RC : MergeRange)
    G->RefSCCIndices.erase(RC);
  int IndexOffset = MergeRange.end() - MergeRange.begin();
  auto EraseEnd =
      G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
  for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
    G->RefSCCIndices[RC] -= IndexOffset;

  // At this point we have a merged RefSCC with a post-order SCCs list, just
  // connect the nodes to form the new edge.
  SourceN->insertEdgeInternal(TargetN, Edge::Ref);

  // We return the list of SCCs which were merged so that callers can
  // invalidate any data they have associated with those SCCs. Note that these
  // SCCs are no longer in an interesting state (they are totally empty) but
  // the pointers will remain stable for the life of the graph itself.
  return DeletedRefSCCs;
}

void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
  assert(G->lookupRefSCC(SourceN) == this &&
         "The source must be a member of this RefSCC.");
  assert(G->lookupRefSCC(TargetN) != this &&
         "The target must not be a member of this RefSCC");

#ifndef NDEBUG
  // In a debug build, verify the RefSCC is valid to start with and when this
  // routine finishes.
  verify();
  auto VerifyOnExit = make_scope_exit([&]() { verify(); });
#endif

  // First remove it from the node.
  bool Removed = SourceN->removeEdgeInternal(TargetN);
  (void)Removed;
  assert(Removed && "Target not in the edge set for this caller?");
}

SmallVector<LazyCallGraph::RefSCC *, 1>
LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
                                             ArrayRef<Node *> TargetNs) {
  // We return a list of the resulting *new* RefSCCs in post-order.
  SmallVector<RefSCC *, 1> Result;

#ifndef NDEBUG
  // In a debug build, verify the RefSCC is valid to start with and that either
  // we return an empty list of result RefSCCs and this RefSCC remains valid,
  // or we return new RefSCCs and this RefSCC is dead.
  verify();
  auto VerifyOnExit = make_scope_exit([&]() {
    // If we didn't replace our RefSCC with new ones, check that this one
    // remains valid.
    if (G)
      verify();
  });
#endif

  // First remove the actual edges.
  for (Node *TargetN : TargetNs) {
    assert(!(*SourceN)[*TargetN].isCall() &&
           "Cannot remove a call edge, it must first be made a ref edge");

    bool Removed = SourceN->removeEdgeInternal(*TargetN);
    (void)Removed;
    assert(Removed && "Target not in the edge set for this caller?");
  }

  // Direct self references don't impact the ref graph at all.
  if (llvm::all_of(TargetNs,
                   [&](Node *TargetN) { return &SourceN == TargetN; }))
    return Result;

  // If all targets are in the same SCC as the source, because no call edges
  // were removed there is no RefSCC structure change.
  SCC &SourceC = *G->lookupSCC(SourceN);
  if (llvm::all_of(TargetNs, [&](Node *TargetN) {
        return G->lookupSCC(*TargetN) == &SourceC;
      }))
    return Result;

  // We build somewhat synthetic new RefSCCs by providing a postorder mapping
  // for each inner SCC. We store these inside the low-link field of the nodes
  // rather than associated with SCCs because this saves a round-trip through
  // the node->SCC map and in the common case, SCCs are small. We will verify
  // that we always give the same number to every node in the SCC such that
  // these are equivalent.
  int PostOrderNumber = 0;

  // Reset all the other nodes to prepare for a DFS over them, and add them to
  // our worklist.
  SmallVector<Node *, 8> Worklist;
  for (SCC *C : SCCs) {
    for (Node &N : *C)
      N.DFSNumber = N.LowLink = 0;

    Worklist.append(C->Nodes.begin(), C->Nodes.end());
  }

  // Track the number of nodes in this RefSCC so that we can quickly recognize
  // an important special case of the edge removal not breaking the cycle of
  // this RefSCC.
  const int NumRefSCCNodes = Worklist.size();

  SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
  SmallVector<Node *, 4> PendingRefSCCStack;
  do {
    assert(DFSStack.empty() &&
           "Cannot begin a new root with a non-empty DFS stack!");
    assert(PendingRefSCCStack.empty() &&
           "Cannot begin a new root with pending nodes for an SCC!");

    Node *RootN = Worklist.pop_back_val();
    // Skip any nodes we've already reached in the DFS.
    if (RootN->DFSNumber != 0) {
      assert(RootN->DFSNumber == -1 &&
             "Shouldn't have any mid-DFS root nodes!");
      continue;
    }

    RootN->DFSNumber = RootN->LowLink = 1;
    int NextDFSNumber = 2;

    DFSStack.push_back({RootN, (*RootN)->begin()});
    do {
      Node *N;
      EdgeSequence::iterator I;
      std::tie(N, I) = DFSStack.pop_back_val();
      auto E = (*N)->end();

      assert(N->DFSNumber != 0 && "We should always assign a DFS number "
                                  "before processing a node.");

      while (I != E) {
        Node &ChildN = I->getNode();
        if (ChildN.DFSNumber == 0) {
          // Mark that we should start at this child when next this node is the
          // top of the stack. We don't start at the next child to ensure this
          // child's lowlink is reflected.
          DFSStack.push_back({N, I});

          // Continue, resetting to the child node.
          ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
          N = &ChildN;
          I = ChildN->begin();
          E = ChildN->end();
          continue;
        }
        if (ChildN.DFSNumber == -1) {
          // If this child isn't currently in this RefSCC, no need to process
          // it.
          ++I;
          continue;
        }

        // Track the lowest link of the children, if any are still in the stack.
        // Any child not on the stack will have a LowLink of -1.
        assert(ChildN.LowLink != 0 &&
               "Low-link must not be zero with a non-zero DFS number.");
        if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
          N->LowLink = ChildN.LowLink;
        ++I;
      }

      // We've finished processing N and its descendants, put it on our pending
      // stack to eventually get merged into a RefSCC.
      PendingRefSCCStack.push_back(N);

      // If this node is linked to some lower entry, continue walking up the
      // stack.
      if (N->LowLink != N->DFSNumber) {
        assert(!DFSStack.empty() &&
               "We never found a viable root for a RefSCC to pop off!");
        continue;
      }

      // Otherwise, form a new RefSCC from the top of the pending node stack.
      int RefSCCNumber = PostOrderNumber++;
      int RootDFSNumber = N->DFSNumber;

      // Find the range of the node stack by walking down until we pass the
      // root DFS number. Update the DFS numbers and low link numbers in the
      // process to avoid re-walking this list where possible.
      auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
        if (N->DFSNumber < RootDFSNumber)
          // We've found the bottom.
          return true;

        // Update this node and keep scanning.
        N->DFSNumber = -1;
        // Save the post-order number in the lowlink field so that we can use
        // it to map SCCs into new RefSCCs after we finish the DFS.
        N->LowLink = RefSCCNumber;
        return false;
      });
      auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());

      // If we find a cycle containing all nodes originally in this RefSCC then
      // the removal hasn't changed the structure at all. This is an important
      // special case and we can directly exit the entire routine more
      // efficiently as soon as we discover it.
      if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
        // Clear out the low link field as we won't need it.
        for (Node *N : RefSCCNodes)
          N->LowLink = -1;
        // Return the empty result immediately.
        return Result;
      }

      // We've already marked the nodes internally with the RefSCC number so
      // just clear them off the stack and continue.
      PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
    } while (!DFSStack.empty());

    assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
    assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
  } while (!Worklist.empty());

  assert(PostOrderNumber > 1 &&
         "Should never finish the DFS when the existing RefSCC remains valid!");

  // Otherwise we create a collection of new RefSCC nodes and build
  // a radix-sort style map from postorder number to these new RefSCCs. We then
  // append SCCs to each of these RefSCCs in the order they occurred in the
  // original SCCs container.
  for (int i = 0; i < PostOrderNumber; ++i)
    Result.push_back(G->createRefSCC(*G));

  // Insert the resulting postorder sequence into the global graph postorder
  // sequence before the current RefSCC in that sequence, and then remove the
  // current one.
  //
  // FIXME: It'd be nice to change the APIs so that we returned an iterator
  // range over the global postorder sequence and generally use that sequence
  // rather than building a separate result vector here.
  int Idx = G->getRefSCCIndex(*this);
  G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
  G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
                             Result.end());
  for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
    G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;

  for (SCC *C : SCCs) {
    // We store the SCC number in the node's low-link field above.
    int SCCNumber = C->begin()->LowLink;
    // Clear out all of the SCC's node's low-link fields now that we're done
    // using them as side-storage.
    for (Node &N : *C) {
      assert(N.LowLink == SCCNumber &&
             "Cannot have different numbers for nodes in the same SCC!");
      N.LowLink = -1;
    }

    RefSCC &RC = *Result[SCCNumber];
    int SCCIndex = RC.SCCs.size();
    RC.SCCs.push_back(C);
    RC.SCCIndices[C] = SCCIndex;
    C->OuterRefSCC = &RC;
  }

  // Now that we've moved things into the new RefSCCs, clear out our current
  // one.
  G = nullptr;
  SCCs.clear();
  SCCIndices.clear();

#ifndef NDEBUG
  // Verify the new RefSCCs we've built.
  for (RefSCC *RC : Result)
    RC->verify();
#endif

  // Return the new list of SCCs.
  return Result;
}

void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
                                                       Node &TargetN) {
  // The only trivial case that requires any graph updates is when we add new
  // ref edge and may connect different RefSCCs along that path. This is only
  // because of the parents set. Every other part of the graph remains constant
  // after this edge insertion.
  assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
  RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
  if (&TargetRC == this)
    return;

#ifdef EXPENSIVE_CHECKS
  assert(TargetRC.isDescendantOf(*this) &&
         "Target must be a descendant of the Source.");
#endif
}

void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
                                                  Node &TargetN) {
#ifndef NDEBUG
  // Check that the RefSCC is still valid when we finish.
  auto ExitVerifier = make_scope_exit([this] { verify(); });

#ifdef EXPENSIVE_CHECKS
  // Check that we aren't breaking some invariants of the SCC graph. Note that
  // this is quadratic in the number of edges in the call graph!
  SCC &SourceC = *G->lookupSCC(SourceN);
  SCC &TargetC = *G->lookupSCC(TargetN);
  if (&SourceC != &TargetC)
    assert(SourceC.isAncestorOf(TargetC) &&
           "Call edge is not trivial in the SCC graph!");
#endif // EXPENSIVE_CHECKS
#endif // NDEBUG

  // First insert it into the source or find the existing edge.
  auto InsertResult =
      SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
  if (!InsertResult.second) {
    // Already an edge, just update it.
    Edge &E = SourceN->Edges[InsertResult.first->second];
    if (E.isCall())
      return; // Nothing to do!
    E.setKind(Edge::Call);
  } else {
    // Create the new edge.
    SourceN->Edges.emplace_back(TargetN, Edge::Call);
  }

  // Now that we have the edge, handle the graph fallout.
  handleTrivialEdgeInsertion(SourceN, TargetN);
}

void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
#ifndef NDEBUG
  // Check that the RefSCC is still valid when we finish.
  auto ExitVerifier = make_scope_exit([this] { verify(); });

#ifdef EXPENSIVE_CHECKS
  // Check that we aren't breaking some invariants of the RefSCC graph.
  RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
  RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
  if (&SourceRC != &TargetRC)
    assert(SourceRC.isAncestorOf(TargetRC) &&
           "Ref edge is not trivial in the RefSCC graph!");
#endif // EXPENSIVE_CHECKS
#endif // NDEBUG

  // First insert it into the source or find the existing edge.
  auto InsertResult =
      SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
  if (!InsertResult.second)
    // Already an edge, we're done.
    return;

  // Create the new edge.
  SourceN->Edges.emplace_back(TargetN, Edge::Ref);

  // Now that we have the edge, handle the graph fallout.
  handleTrivialEdgeInsertion(SourceN, TargetN);
}

void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
  Function &OldF = N.getFunction();

#ifndef NDEBUG
  // Check that the RefSCC is still valid when we finish.
  auto ExitVerifier = make_scope_exit([this] { verify(); });

  assert(G->lookupRefSCC(N) == this &&
         "Cannot replace the function of a node outside this RefSCC.");

  assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
         "Must not have already walked the new function!'");

  // It is important that this replacement not introduce graph changes so we
  // insist that the caller has already removed every use of the original
  // function and that all uses of the new function correspond to existing
  // edges in the graph. The common and expected way to use this is when
  // replacing the function itself in the IR without changing the call graph
  // shape and just updating the analysis based on that.
  assert(&OldF != &NewF && "Cannot replace a function with itself!");
  assert(OldF.use_empty() &&
         "Must have moved all uses from the old function to the new!");
#endif

  N.replaceFunction(NewF);

  // Update various call graph maps.
  G->NodeMap.erase(&OldF);
  G->NodeMap[&NewF] = &N;
}

void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
  assert(SCCMap.empty() &&
         "This method cannot be called after SCCs have been formed!");

  return SourceN->insertEdgeInternal(TargetN, EK);
}

void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
  assert(SCCMap.empty() &&
         "This method cannot be called after SCCs have been formed!");

  bool Removed = SourceN->removeEdgeInternal(TargetN);
  (void)Removed;
  assert(Removed && "Target not in the edge set for this caller?");
}

void LazyCallGraph::removeDeadFunction(Function &F) {
  // FIXME: This is unnecessarily restrictive. We should be able to remove
  // functions which recursively call themselves.
  assert(F.use_empty() &&
         "This routine should only be called on trivially dead functions!");

  // We shouldn't remove library functions as they are never really dead while
  // the call graph is in use -- every function definition refers to them.
  assert(!isLibFunction(F) &&
         "Must not remove lib functions from the call graph!");

  auto NI = NodeMap.find(&F);
  if (NI == NodeMap.end())
    // Not in the graph at all!
    return;

  Node &N = *NI->second;
  NodeMap.erase(NI);

  // Remove this from the entry edges if present.
  EntryEdges.removeEdgeInternal(N);

  if (SCCMap.empty()) {
    // No SCCs have been formed, so removing this is fine and there is nothing
    // else necessary at this point but clearing out the node.
    N.clear();
    return;
  }

  // Cannot remove a function which has yet to be visited in the DFS walk, so
  // if we have a node at all then we must have an SCC and RefSCC.
  auto CI = SCCMap.find(&N);
  assert(CI != SCCMap.end() &&
         "Tried to remove a node without an SCC after DFS walk started!");
  SCC &C = *CI->second;
  SCCMap.erase(CI);
  RefSCC &RC = C.getOuterRefSCC();

  // This node must be the only member of its SCC as it has no callers, and
  // that SCC must be the only member of a RefSCC as it has no references.
  // Validate these properties first.
  assert(C.size() == 1 && "Dead functions must be in a singular SCC");
  assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");

  auto RCIndexI = RefSCCIndices.find(&RC);
  int RCIndex = RCIndexI->second;
  PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
  RefSCCIndices.erase(RCIndexI);
  for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
    RefSCCIndices[PostOrderRefSCCs[i]] = i;

  // Finally clear out all the data structures from the node down through the
  // components.
  N.clear();
  N.G = nullptr;
  N.F = nullptr;
  C.clear();
  RC.clear();
  RC.G = nullptr;

  // Nothing to delete as all the objects are allocated in stable bump pointer
  // allocators.
}

LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
  return *new (MappedN = BPA.Allocate()) Node(*this, F);
}

void LazyCallGraph::updateGraphPtrs() {
  // Walk the node map to update their graph pointers. While this iterates in
  // an unstable order, the order has no effect so it remains correct.
  for (auto &FunctionNodePair : NodeMap)
    FunctionNodePair.second->G = this;

  for (auto *RC : PostOrderRefSCCs)
    RC->G = this;
}

template <typename RootsT, typename GetBeginT, typename GetEndT,
          typename GetNodeT, typename FormSCCCallbackT>
void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
                                     GetEndT &&GetEnd, GetNodeT &&GetNode,
                                     FormSCCCallbackT &&FormSCC) {
  using EdgeItT = decltype(GetBegin(std::declval<Node &>()));

  SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
  SmallVector<Node *, 16> PendingSCCStack;

  // Scan down the stack and DFS across the call edges.
  for (Node *RootN : Roots) {
    assert(DFSStack.empty() &&
           "Cannot begin a new root with a non-empty DFS stack!");
    assert(PendingSCCStack.empty() &&
           "Cannot begin a new root with pending nodes for an SCC!");

    // Skip any nodes we've already reached in the DFS.
    if (RootN->DFSNumber != 0) {
      assert(RootN->DFSNumber == -1 &&
             "Shouldn't have any mid-DFS root nodes!");
      continue;
    }

    RootN->DFSNumber = RootN->LowLink = 1;
    int NextDFSNumber = 2;

    DFSStack.push_back({RootN, GetBegin(*RootN)});
    do {
      Node *N;
      EdgeItT I;
      std::tie(N, I) = DFSStack.pop_back_val();
      auto E = GetEnd(*N);
      while (I != E) {
        Node &ChildN = GetNode(I);
        if (ChildN.DFSNumber == 0) {
          // We haven't yet visited this child, so descend, pushing the current
          // node onto the stack.
          DFSStack.push_back({N, I});

          ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
          N = &ChildN;
          I = GetBegin(*N);
          E = GetEnd(*N);
          continue;
        }

        // If the child has already been added to some child component, it
        // couldn't impact the low-link of this parent because it isn't
        // connected, and thus its low-link isn't relevant so skip it.
        if (ChildN.DFSNumber == -1) {
          ++I;
          continue;
        }

        // Track the lowest linked child as the lowest link for this node.
        assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
        if (ChildN.LowLink < N->LowLink)
          N->LowLink = ChildN.LowLink;

        // Move to the next edge.
        ++I;
      }

      // We've finished processing N and its descendants, put it on our pending
      // SCC stack to eventually get merged into an SCC of nodes.
      PendingSCCStack.push_back(N);

      // If this node is linked to some lower entry, continue walking up the
      // stack.
      if (N->LowLink != N->DFSNumber)
        continue;

      // Otherwise, we've completed an SCC. Append it to our post order list of
      // SCCs.
      int RootDFSNumber = N->DFSNumber;
      // Find the range of the node stack by walking down until we pass the
      // root DFS number.
      auto SCCNodes = make_range(
          PendingSCCStack.rbegin(),
          find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
            return N->DFSNumber < RootDFSNumber;
          }));
      // Form a new SCC out of these nodes and then clear them off our pending
      // stack.
      FormSCC(SCCNodes);
      PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
    } while (!DFSStack.empty());
  }
}

/// Build the internal SCCs for a RefSCC from a sequence of nodes.
///
/// Appends the SCCs to the provided vector and updates the map with their
/// indices. Both the vector and map must be empty when passed into this
/// routine.
void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
  assert(RC.SCCs.empty() && "Already built SCCs!");
  assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");

  for (Node *N : Nodes) {
    assert(N->LowLink >= (*Nodes.begin())->LowLink &&
           "We cannot have a low link in an SCC lower than its root on the "
           "stack!");

    // This node will go into the next RefSCC, clear out its DFS and low link
    // as we scan.
    N->DFSNumber = N->LowLink = 0;
  }

  // Each RefSCC contains a DAG of the call SCCs. To build these, we do
  // a direct walk of the call edges using Tarjan's algorithm. We reuse the
  // internal storage as we won't need it for the outer graph's DFS any longer.
  buildGenericSCCs(
      Nodes, [](Node &N) { return N->call_begin(); },
      [](Node &N) { return N->call_end(); },
      [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
      [this, &RC](node_stack_range Nodes) {
        RC.SCCs.push_back(createSCC(RC, Nodes));
        for (Node &N : *RC.SCCs.back()) {
          N.DFSNumber = N.LowLink = -1;
          SCCMap[&N] = RC.SCCs.back();
        }
      });

  // Wire up the SCC indices.
  for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
    RC.SCCIndices[RC.SCCs[i]] = i;
}

void LazyCallGraph::buildRefSCCs() {
  if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
    // RefSCCs are either non-existent or already built!
    return;

  assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");

  SmallVector<Node *, 16> Roots;
  for (Edge &E : *this)
    Roots.push_back(&E.getNode());

  // The roots will be popped of a stack, so use reverse to get a less
  // surprising order. This doesn't change any of the semantics anywhere.
  std::reverse(Roots.begin(), Roots.end());

  buildGenericSCCs(
      Roots,
      [](Node &N) {
        // We need to populate each node as we begin to walk its edges.
        N.populate();
        return N->begin();
      },
      [](Node &N) { return N->end(); },
      [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
      [this](node_stack_range Nodes) {
        RefSCC *NewRC = createRefSCC(*this);
        buildSCCs(*NewRC, Nodes);

        // Push the new node into the postorder list and remember its position
        // in the index map.
        bool Inserted =
            RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
        (void)Inserted;
        assert(Inserted && "Cannot already have this RefSCC in the index map!");
        PostOrderRefSCCs.push_back(NewRC);
#ifndef NDEBUG
        NewRC->verify();
#endif
      });
}

AnalysisKey LazyCallGraphAnalysis::Key;

LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}

static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
  OS << "  Edges in function: " << N.getFunction().getName() << "\n";
  for (LazyCallGraph::Edge &E : N.populate())
    OS << "    " << (E.isCall() ? "call" : "ref ") << " -> "
       << E.getFunction().getName() << "\n";

  OS << "\n";
}

static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
  OS << "    SCC with " << C.size() << " functions:\n";

  for (LazyCallGraph::Node &N : C)
    OS << "      " << N.getFunction().getName() << "\n";
}

static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
  OS << "  RefSCC with " << C.size() << " call SCCs:\n";

  for (LazyCallGraph::SCC &InnerC : C)
    printSCC(OS, InnerC);

  OS << "\n";
}

PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
                                                ModuleAnalysisManager &AM) {
  LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);

  OS << "Printing the call graph for module: " << M.getModuleIdentifier()
     << "\n\n";

  for (Function &F : M)
    printNode(OS, G.get(F));

  G.buildRefSCCs();
  for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
    printRefSCC(OS, C);

  return PreservedAnalyses::all();
}

LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
    : OS(OS) {}

static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
  std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";

  for (LazyCallGraph::Edge &E : N.populate()) {
    OS << "  " << Name << " -> \""
       << DOT::EscapeString(E.getFunction().getName()) << "\"";
    if (!E.isCall()) // It is a ref edge.
      OS << " [style=dashed,label=\"ref\"]";
    OS << ";\n";
  }

  OS << "\n";
}

PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
                                                   ModuleAnalysisManager &AM) {
  LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);

  OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";

  for (Function &F : M)
    printNodeDOT(OS, G.get(F));

  OS << "}\n";

  return PreservedAnalyses::all();
}