BranchRelaxation.cpp 19.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
//===- BranchRelaxation.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>

using namespace llvm;

#define DEBUG_TYPE "branch-relaxation"

STATISTIC(NumSplit, "Number of basic blocks split");
STATISTIC(NumConditionalRelaxed, "Number of conditional branches relaxed");
STATISTIC(NumUnconditionalRelaxed, "Number of unconditional branches relaxed");

#define BRANCH_RELAX_NAME "Branch relaxation pass"

namespace {

class BranchRelaxation : public MachineFunctionPass {
  /// BasicBlockInfo - Information about the offset and size of a single
  /// basic block.
  struct BasicBlockInfo {
    /// Offset - Distance from the beginning of the function to the beginning
    /// of this basic block.
    ///
    /// The offset is always aligned as required by the basic block.
    unsigned Offset = 0;

    /// Size - Size of the basic block in bytes.  If the block contains
    /// inline assembly, this is a worst case estimate.
    ///
    /// The size does not include any alignment padding whether from the
    /// beginning of the block, or from an aligned jump table at the end.
    unsigned Size = 0;

    BasicBlockInfo() = default;

    /// Compute the offset immediately following this block. \p MBB is the next
    /// block.
    unsigned postOffset(const MachineBasicBlock &MBB) const {
      const unsigned PO = Offset + Size;
      const Align Alignment = MBB.getAlignment();
      if (Alignment == 1)
        return PO;

      const Align ParentAlign = MBB.getParent()->getAlignment();
      if (Alignment <= ParentAlign)
        return PO + offsetToAlignment(PO, Alignment);

      // The alignment of this MBB is larger than the function's alignment, so we
      // can't tell whether or not it will insert nops. Assume that it will.
      return PO + Alignment.value() + offsetToAlignment(PO, Alignment);
    }
  };

  SmallVector<BasicBlockInfo, 16> BlockInfo;
  std::unique_ptr<RegScavenger> RS;
  LivePhysRegs LiveRegs;

  MachineFunction *MF;
  const TargetRegisterInfo *TRI;
  const TargetInstrInfo *TII;

  bool relaxBranchInstructions();
  void scanFunction();

  MachineBasicBlock *createNewBlockAfter(MachineBasicBlock &BB);

  MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI,
                                           MachineBasicBlock *DestBB);
  void adjustBlockOffsets(MachineBasicBlock &Start);
  bool isBlockInRange(const MachineInstr &MI, const MachineBasicBlock &BB) const;

  bool fixupConditionalBranch(MachineInstr &MI);
  bool fixupUnconditionalBranch(MachineInstr &MI);
  uint64_t computeBlockSize(const MachineBasicBlock &MBB) const;
  unsigned getInstrOffset(const MachineInstr &MI) const;
  void dumpBBs();
  void verify();

public:
  static char ID;

  BranchRelaxation() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override { return BRANCH_RELAX_NAME; }
};

} // end anonymous namespace

char BranchRelaxation::ID = 0;

char &llvm::BranchRelaxationPassID = BranchRelaxation::ID;

INITIALIZE_PASS(BranchRelaxation, DEBUG_TYPE, BRANCH_RELAX_NAME, false, false)

/// verify - check BBOffsets, BBSizes, alignment of islands
void BranchRelaxation::verify() {
#ifndef NDEBUG
  unsigned PrevNum = MF->begin()->getNumber();
  for (MachineBasicBlock &MBB : *MF) {
    const unsigned Num = MBB.getNumber();
    assert(isAligned(MBB.getAlignment(), BlockInfo[Num].Offset));
    assert(!Num || BlockInfo[PrevNum].postOffset(MBB) <= BlockInfo[Num].Offset);
    assert(BlockInfo[Num].Size == computeBlockSize(MBB));
    PrevNum = Num;
  }
#endif
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// print block size and offset information - debugging
LLVM_DUMP_METHOD void BranchRelaxation::dumpBBs() {
  for (auto &MBB : *MF) {
    const BasicBlockInfo &BBI = BlockInfo[MBB.getNumber()];
    dbgs() << format("%%bb.%u\toffset=%08x\t", MBB.getNumber(), BBI.Offset)
           << format("size=%#x\n", BBI.Size);
  }
}
#endif

/// scanFunction - Do the initial scan of the function, building up
/// information about each block.
void BranchRelaxation::scanFunction() {
  BlockInfo.clear();
  BlockInfo.resize(MF->getNumBlockIDs());

  // First thing, compute the size of all basic blocks, and see if the function
  // has any inline assembly in it. If so, we have to be conservative about
  // alignment assumptions, as we don't know for sure the size of any
  // instructions in the inline assembly.
  for (MachineBasicBlock &MBB : *MF)
    BlockInfo[MBB.getNumber()].Size = computeBlockSize(MBB);

  // Compute block offsets and known bits.
  adjustBlockOffsets(*MF->begin());
}

/// computeBlockSize - Compute the size for MBB.
uint64_t BranchRelaxation::computeBlockSize(const MachineBasicBlock &MBB) const {
  uint64_t Size = 0;
  for (const MachineInstr &MI : MBB)
    Size += TII->getInstSizeInBytes(MI);
  return Size;
}

/// getInstrOffset - Return the current offset of the specified machine
/// instruction from the start of the function.  This offset changes as stuff is
/// moved around inside the function.
unsigned BranchRelaxation::getInstrOffset(const MachineInstr &MI) const {
  const MachineBasicBlock *MBB = MI.getParent();

  // The offset is composed of two things: the sum of the sizes of all MBB's
  // before this instruction's block, and the offset from the start of the block
  // it is in.
  unsigned Offset = BlockInfo[MBB->getNumber()].Offset;

  // Sum instructions before MI in MBB.
  for (MachineBasicBlock::const_iterator I = MBB->begin(); &*I != &MI; ++I) {
    assert(I != MBB->end() && "Didn't find MI in its own basic block?");
    Offset += TII->getInstSizeInBytes(*I);
  }

  return Offset;
}

void BranchRelaxation::adjustBlockOffsets(MachineBasicBlock &Start) {
  unsigned PrevNum = Start.getNumber();
  for (auto &MBB : make_range(MachineFunction::iterator(Start), MF->end())) {
    unsigned Num = MBB.getNumber();
    if (!Num) // block zero is never changed from offset zero.
      continue;
    // Get the offset and known bits at the end of the layout predecessor.
    // Include the alignment of the current block.
    BlockInfo[Num].Offset = BlockInfo[PrevNum].postOffset(MBB);

    PrevNum = Num;
  }
}

/// Insert a new empty basic block and insert it after \BB
MachineBasicBlock *BranchRelaxation::createNewBlockAfter(MachineBasicBlock &BB) {
  // Create a new MBB for the code after the OrigBB.
  MachineBasicBlock *NewBB =
      MF->CreateMachineBasicBlock(BB.getBasicBlock());
  MF->insert(++BB.getIterator(), NewBB);

  // Insert an entry into BlockInfo to align it properly with the block numbers.
  BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());

  return NewBB;
}

/// Split the basic block containing MI into two blocks, which are joined by
/// an unconditional branch.  Update data structures and renumber blocks to
/// account for this change and returns the newly created block.
MachineBasicBlock *BranchRelaxation::splitBlockBeforeInstr(MachineInstr &MI,
                                                           MachineBasicBlock *DestBB) {
  MachineBasicBlock *OrigBB = MI.getParent();

  // Create a new MBB for the code after the OrigBB.
  MachineBasicBlock *NewBB =
      MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
  MF->insert(++OrigBB->getIterator(), NewBB);

  // Splice the instructions starting with MI over to NewBB.
  NewBB->splice(NewBB->end(), OrigBB, MI.getIterator(), OrigBB->end());

  // Add an unconditional branch from OrigBB to NewBB.
  // Note the new unconditional branch is not being recorded.
  // There doesn't seem to be meaningful DebugInfo available; this doesn't
  // correspond to anything in the source.
  TII->insertUnconditionalBranch(*OrigBB, NewBB, DebugLoc());

  // Insert an entry into BlockInfo to align it properly with the block numbers.
  BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());

  NewBB->transferSuccessors(OrigBB);
  OrigBB->addSuccessor(NewBB);
  OrigBB->addSuccessor(DestBB);

  // Cleanup potential unconditional branch to successor block.
  // Note that updateTerminator may change the size of the blocks.
  NewBB->updateTerminator();
  OrigBB->updateTerminator();

  // Figure out how large the OrigBB is.  As the first half of the original
  // block, it cannot contain a tablejump.  The size includes
  // the new jump we added.  (It should be possible to do this without
  // recounting everything, but it's very confusing, and this is rarely
  // executed.)
  BlockInfo[OrigBB->getNumber()].Size = computeBlockSize(*OrigBB);

  // Figure out how large the NewMBB is. As the second half of the original
  // block, it may contain a tablejump.
  BlockInfo[NewBB->getNumber()].Size = computeBlockSize(*NewBB);

  // All BBOffsets following these blocks must be modified.
  adjustBlockOffsets(*OrigBB);

  // Need to fix live-in lists if we track liveness.
  if (TRI->trackLivenessAfterRegAlloc(*MF))
    computeAndAddLiveIns(LiveRegs, *NewBB);

  ++NumSplit;

  return NewBB;
}

/// isBlockInRange - Returns true if the distance between specific MI and
/// specific BB can fit in MI's displacement field.
bool BranchRelaxation::isBlockInRange(
  const MachineInstr &MI, const MachineBasicBlock &DestBB) const {
  int64_t BrOffset = getInstrOffset(MI);
  int64_t DestOffset = BlockInfo[DestBB.getNumber()].Offset;

  if (TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - BrOffset))
    return true;

  LLVM_DEBUG(dbgs() << "Out of range branch to destination "
                    << printMBBReference(DestBB) << " from "
                    << printMBBReference(*MI.getParent()) << " to "
                    << DestOffset << " offset " << DestOffset - BrOffset << '\t'
                    << MI);

  return false;
}

/// fixupConditionalBranch - Fix up a conditional branch whose destination is
/// too far away to fit in its displacement field. It is converted to an inverse
/// conditional branch + an unconditional branch to the destination.
bool BranchRelaxation::fixupConditionalBranch(MachineInstr &MI) {
  DebugLoc DL = MI.getDebugLoc();
  MachineBasicBlock *MBB = MI.getParent();
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  MachineBasicBlock *NewBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;

  auto insertUncondBranch = [&](MachineBasicBlock *MBB,
                                MachineBasicBlock *DestBB) {
    unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
    int NewBrSize = 0;
    TII->insertUnconditionalBranch(*MBB, DestBB, DL, &NewBrSize);
    BBSize += NewBrSize;
  };
  auto insertBranch = [&](MachineBasicBlock *MBB, MachineBasicBlock *TBB,
                          MachineBasicBlock *FBB,
                          SmallVectorImpl<MachineOperand>& Cond) {
    unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
    int NewBrSize = 0;
    TII->insertBranch(*MBB, TBB, FBB, Cond, DL, &NewBrSize);
    BBSize += NewBrSize;
  };
  auto removeBranch = [&](MachineBasicBlock *MBB) {
    unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
    int RemovedSize = 0;
    TII->removeBranch(*MBB, &RemovedSize);
    BBSize -= RemovedSize;
  };

  auto finalizeBlockChanges = [&](MachineBasicBlock *MBB,
                                  MachineBasicBlock *NewBB) {
    // Keep the block offsets up to date.
    adjustBlockOffsets(*MBB);

    // Need to fix live-in lists if we track liveness.
    if (NewBB && TRI->trackLivenessAfterRegAlloc(*MF))
      computeAndAddLiveIns(LiveRegs, *NewBB);
  };

  bool Fail = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
  assert(!Fail && "branches to be relaxed must be analyzable");
  (void)Fail;

  // Add an unconditional branch to the destination and invert the branch
  // condition to jump over it:
  // tbz L1
  // =>
  // tbnz L2
  // b   L1
  // L2:

  bool ReversedCond = !TII->reverseBranchCondition(Cond);
  if (ReversedCond) {
    if (FBB && isBlockInRange(MI, *FBB)) {
      // Last MI in the BB is an unconditional branch. We can simply invert the
      // condition and swap destinations:
      // beq L1
      // b   L2
      // =>
      // bne L2
      // b   L1
      LLVM_DEBUG(dbgs() << "  Invert condition and swap "
                           "its destination with "
                        << MBB->back());

      removeBranch(MBB);
      insertBranch(MBB, FBB, TBB, Cond);
      finalizeBlockChanges(MBB, nullptr);
      return true;
    }
    if (FBB) {
      // We need to split the basic block here to obtain two long-range
      // unconditional branches.
      NewBB = createNewBlockAfter(*MBB);

      insertUncondBranch(NewBB, FBB);
      // Update the succesor lists according to the transformation to follow.
      // Do it here since if there's no split, no update is needed.
      MBB->replaceSuccessor(FBB, NewBB);
      NewBB->addSuccessor(FBB);
    }

    // We now have an appropriate fall-through block in place (either naturally or
    // just created), so we can use the inverted the condition.
    MachineBasicBlock &NextBB = *std::next(MachineFunction::iterator(MBB));

    LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*TBB)
                      << ", invert condition and change dest. to "
                      << printMBBReference(NextBB) << '\n');

    removeBranch(MBB);
    // Insert a new conditional branch and a new unconditional branch.
    insertBranch(MBB, &NextBB, TBB, Cond);

    finalizeBlockChanges(MBB, NewBB);
    return true;
  }
  // Branch cond can't be inverted.
  // In this case we always add a block after the MBB.
  LLVM_DEBUG(dbgs() << "  The branch condition can't be inverted. "
                    << "  Insert a new BB after " << MBB->back());

  if (!FBB)
    FBB = &(*std::next(MachineFunction::iterator(MBB)));

  // This is the block with cond. branch and the distance to TBB is too long.
  //    beq L1
  // L2:

  // We do the following transformation:
  //    beq NewBB
  //    b L2
  // NewBB:
  //    b L1
  // L2:

  NewBB = createNewBlockAfter(*MBB);
  insertUncondBranch(NewBB, TBB);

  LLVM_DEBUG(dbgs() << "  Insert cond B to the new BB "
                    << printMBBReference(*NewBB)
                    << "  Keep the exiting condition.\n"
                    << "  Insert B to " << printMBBReference(*FBB) << ".\n"
                    << "  In the new BB: Insert B to "
                    << printMBBReference(*TBB) << ".\n");

  // Update the successor lists according to the transformation to follow.
  MBB->replaceSuccessor(TBB, NewBB);
  NewBB->addSuccessor(TBB);

  // Replace branch in the current (MBB) block.
  removeBranch(MBB);
  insertBranch(MBB, NewBB, FBB, Cond);

  finalizeBlockChanges(MBB, NewBB);
  return true;
}

bool BranchRelaxation::fixupUnconditionalBranch(MachineInstr &MI) {
  MachineBasicBlock *MBB = MI.getParent();

  unsigned OldBrSize = TII->getInstSizeInBytes(MI);
  MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);

  int64_t DestOffset = BlockInfo[DestBB->getNumber()].Offset;
  int64_t SrcOffset = getInstrOffset(MI);

  assert(!TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - SrcOffset));

  BlockInfo[MBB->getNumber()].Size -= OldBrSize;

  MachineBasicBlock *BranchBB = MBB;

  // If this was an expanded conditional branch, there is already a single
  // unconditional branch in a block.
  if (!MBB->empty()) {
    BranchBB = createNewBlockAfter(*MBB);

    // Add live outs.
    for (const MachineBasicBlock *Succ : MBB->successors()) {
      for (const MachineBasicBlock::RegisterMaskPair &LiveIn : Succ->liveins())
        BranchBB->addLiveIn(LiveIn);
    }

    BranchBB->sortUniqueLiveIns();
    BranchBB->addSuccessor(DestBB);
    MBB->replaceSuccessor(DestBB, BranchBB);
  }

  DebugLoc DL = MI.getDebugLoc();
  MI.eraseFromParent();
  BlockInfo[BranchBB->getNumber()].Size += TII->insertIndirectBranch(
    *BranchBB, *DestBB, DL, DestOffset - SrcOffset, RS.get());

  adjustBlockOffsets(*MBB);
  return true;
}

bool BranchRelaxation::relaxBranchInstructions() {
  bool Changed = false;

  // Relaxing branches involves creating new basic blocks, so re-eval
  // end() for termination.
  for (MachineFunction::iterator I = MF->begin(); I != MF->end(); ++I) {
    MachineBasicBlock &MBB = *I;

    // Empty block?
    MachineBasicBlock::iterator Last = MBB.getLastNonDebugInstr();
    if (Last == MBB.end())
      continue;

    // Expand the unconditional branch first if necessary. If there is a
    // conditional branch, this will end up changing the branch destination of
    // it to be over the newly inserted indirect branch block, which may avoid
    // the need to try expanding the conditional branch first, saving an extra
    // jump.
    if (Last->isUnconditionalBranch()) {
      // Unconditional branch destination might be unanalyzable, assume these
      // are OK.
      if (MachineBasicBlock *DestBB = TII->getBranchDestBlock(*Last)) {
        if (!isBlockInRange(*Last, *DestBB)) {
          fixupUnconditionalBranch(*Last);
          ++NumUnconditionalRelaxed;
          Changed = true;
        }
      }
    }

    // Loop over the conditional branches.
    MachineBasicBlock::iterator Next;
    for (MachineBasicBlock::iterator J = MBB.getFirstTerminator();
         J != MBB.end(); J = Next) {
      Next = std::next(J);
      MachineInstr &MI = *J;

      if (MI.isConditionalBranch()) {
        MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
        if (!isBlockInRange(MI, *DestBB)) {
          if (Next != MBB.end() && Next->isConditionalBranch()) {
            // If there are multiple conditional branches, this isn't an
            // analyzable block. Split later terminators into a new block so
            // each one will be analyzable.

            splitBlockBeforeInstr(*Next, DestBB);
          } else {
            fixupConditionalBranch(MI);
            ++NumConditionalRelaxed;
          }

          Changed = true;

          // This may have modified all of the terminators, so start over.
          Next = MBB.getFirstTerminator();
        }
      }
    }
  }

  return Changed;
}

bool BranchRelaxation::runOnMachineFunction(MachineFunction &mf) {
  MF = &mf;

  LLVM_DEBUG(dbgs() << "***** BranchRelaxation *****\n");

  const TargetSubtargetInfo &ST = MF->getSubtarget();
  TII = ST.getInstrInfo();

  TRI = ST.getRegisterInfo();
  if (TRI->trackLivenessAfterRegAlloc(*MF))
    RS.reset(new RegScavenger());

  // Renumber all of the machine basic blocks in the function, guaranteeing that
  // the numbers agree with the position of the block in the function.
  MF->RenumberBlocks();

  // Do the initial scan of the function, building up information about the
  // sizes of each block.
  scanFunction();

  LLVM_DEBUG(dbgs() << "  Basic blocks before relaxation\n"; dumpBBs(););

  bool MadeChange = false;
  while (relaxBranchInstructions())
    MadeChange = true;

  // After a while, this might be made debug-only, but it is not expensive.
  verify();

  LLVM_DEBUG(dbgs() << "  Basic blocks after relaxation\n\n"; dumpBBs());

  BlockInfo.clear();

  return MadeChange;
}