GISelKnownBits.cpp 16.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
//===- lib/CodeGen/GlobalISel/GISelKnownBits.cpp --------------*- C++ *-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Provides analysis for querying information about KnownBits during GISel
/// passes.
//
//===------------------
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"

#define DEBUG_TYPE "gisel-known-bits"

using namespace llvm;

char llvm::GISelKnownBitsAnalysis::ID = 0;

INITIALIZE_PASS_BEGIN(GISelKnownBitsAnalysis, DEBUG_TYPE,
                      "Analysis for ComputingKnownBits", false, true)
INITIALIZE_PASS_END(GISelKnownBitsAnalysis, DEBUG_TYPE,
                    "Analysis for ComputingKnownBits", false, true)

GISelKnownBits::GISelKnownBits(MachineFunction &MF)
    : MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()),
      DL(MF.getFunction().getParent()->getDataLayout()) {}

Align GISelKnownBits::inferAlignmentForFrameIdx(int FrameIdx, int Offset,
                                                const MachineFunction &MF) {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  return commonAlignment(Align(MFI.getObjectAlignment(FrameIdx)), Offset);
  // TODO: How to handle cases with Base + Offset?
}

MaybeAlign GISelKnownBits::inferPtrAlignment(const MachineInstr &MI) {
  if (MI.getOpcode() == TargetOpcode::G_FRAME_INDEX) {
    int FrameIdx = MI.getOperand(1).getIndex();
    return inferAlignmentForFrameIdx(FrameIdx, 0, *MI.getMF());
  }
  return None;
}

void GISelKnownBits::computeKnownBitsForFrameIndex(Register R, KnownBits &Known,
                                                   const APInt &DemandedElts,
                                                   unsigned Depth) {
  const MachineInstr &MI = *MRI.getVRegDef(R);
  computeKnownBitsForAlignment(Known, inferPtrAlignment(MI));
}

void GISelKnownBits::computeKnownBitsForAlignment(KnownBits &Known,
                                                  MaybeAlign Alignment) {
  if (Alignment)
    // The low bits are known zero if the pointer is aligned.
    Known.Zero.setLowBits(Log2(Alignment));
}

KnownBits GISelKnownBits::getKnownBits(MachineInstr &MI) {
  return getKnownBits(MI.getOperand(0).getReg());
}

KnownBits GISelKnownBits::getKnownBits(Register R) {
  KnownBits Known;
  LLT Ty = MRI.getType(R);
  APInt DemandedElts =
      Ty.isVector() ? APInt::getAllOnesValue(Ty.getNumElements()) : APInt(1, 1);
  computeKnownBitsImpl(R, Known, DemandedElts);
  return Known;
}

bool GISelKnownBits::signBitIsZero(Register R) {
  LLT Ty = MRI.getType(R);
  unsigned BitWidth = Ty.getScalarSizeInBits();
  return maskedValueIsZero(R, APInt::getSignMask(BitWidth));
}

APInt GISelKnownBits::getKnownZeroes(Register R) {
  return getKnownBits(R).Zero;
}

APInt GISelKnownBits::getKnownOnes(Register R) { return getKnownBits(R).One; }

void GISelKnownBits::computeKnownBitsImpl(Register R, KnownBits &Known,
                                          const APInt &DemandedElts,
                                          unsigned Depth) {
  MachineInstr &MI = *MRI.getVRegDef(R);
  unsigned Opcode = MI.getOpcode();
  LLT DstTy = MRI.getType(R);

  // Handle the case where this is called on a register that does not have a
  // type constraint (i.e. it has a register class constraint instead). This is
  // unlikely to occur except by looking through copies but it is possible for
  // the initial register being queried to be in this state.
  if (!DstTy.isValid()) {
    Known = KnownBits();
    return;
  }

  unsigned BitWidth = DstTy.getSizeInBits();
  Known = KnownBits(BitWidth); // Don't know anything

  if (DstTy.isVector())
    return; // TODO: Handle vectors.

  if (Depth == getMaxDepth())
    return;

  if (!DemandedElts)
    return; // No demanded elts, better to assume we don't know anything.

  KnownBits Known2;

  switch (Opcode) {
  default:
    TL.computeKnownBitsForTargetInstr(*this, R, Known, DemandedElts, MRI,
                                      Depth);
    break;
  case TargetOpcode::COPY: {
    MachineOperand Dst = MI.getOperand(0);
    MachineOperand Src = MI.getOperand(1);
    // Look through trivial copies but don't look through trivial copies of the
    // form `%1:(s32) = OP %0:gpr32` known-bits analysis is currently unable to
    // determine the bit width of a register class.
    //
    // We can't use NoSubRegister by name as it's defined by each target but
    // it's always defined to be 0 by tablegen.
    if (Dst.getSubReg() == 0 /*NoSubRegister*/ && Src.getReg().isVirtual() &&
        Src.getSubReg() == 0 /*NoSubRegister*/ &&
        MRI.getType(Src.getReg()).isValid()) {
      // Don't increment Depth for this one since we didn't do any work.
      computeKnownBitsImpl(Src.getReg(), Known, DemandedElts, Depth);
    }
    break;
  }
  case TargetOpcode::G_CONSTANT: {
    auto CstVal = getConstantVRegVal(R, MRI);
    if (!CstVal)
      break;
    Known.One = *CstVal;
    Known.Zero = ~Known.One;
    break;
  }
  case TargetOpcode::G_FRAME_INDEX: {
    computeKnownBitsForFrameIndex(R, Known, DemandedElts);
    break;
  }
  case TargetOpcode::G_SUB: {
    // If low bits are known to be zero in both operands, then we know they are
    // going to be 0 in the result. Both addition and complement operations
    // preserve the low zero bits.
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);
    unsigned KnownZeroLow = Known2.countMinTrailingZeros();
    if (KnownZeroLow == 0)
      break;
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
                         Depth + 1);
    KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
    Known.Zero.setLowBits(KnownZeroLow);
    break;
  }
  case TargetOpcode::G_XOR: {
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);

    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
    Known.Zero = KnownZeroOut;
    break;
  }
  case TargetOpcode::G_PTR_ADD: {
    // G_PTR_ADD is like G_ADD. FIXME: Is this true for all targets?
    LLT Ty = MRI.getType(MI.getOperand(1).getReg());
    if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
      break;
    LLVM_FALLTHROUGH;
  }
  case TargetOpcode::G_ADD: {
    // Output known-0 bits are known if clear or set in both the low clear bits
    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
    // low 3 bits clear.
    // Output known-0 bits are also known if the top bits of each input are
    // known to be clear. For example, if one input has the top 10 bits clear
    // and the other has the top 8 bits clear, we know the top 7 bits of the
    // output must be clear.
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);
    unsigned KnownZeroHigh = Known2.countMinLeadingZeros();
    unsigned KnownZeroLow = Known2.countMinTrailingZeros();
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
                         Depth + 1);
    KnownZeroHigh = std::min(KnownZeroHigh, Known2.countMinLeadingZeros());
    KnownZeroLow = std::min(KnownZeroLow, Known2.countMinTrailingZeros());
    Known.Zero.setLowBits(KnownZeroLow);
    if (KnownZeroHigh > 1)
      Known.Zero.setHighBits(KnownZeroHigh - 1);
    break;
  }
  case TargetOpcode::G_AND: {
    // If either the LHS or the RHS are Zero, the result is zero.
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);

    // Output known-1 bits are only known if set in both the LHS & RHS.
    Known.One &= Known2.One;
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
    Known.Zero |= Known2.Zero;
    break;
  }
  case TargetOpcode::G_OR: {
    // If either the LHS or the RHS are Zero, the result is zero.
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);

    // Output known-0 bits are only known if clear in both the LHS & RHS.
    Known.Zero &= Known2.Zero;
    // Output known-1 are known to be set if set in either the LHS | RHS.
    Known.One |= Known2.One;
    break;
  }
  case TargetOpcode::G_MUL: {
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);
    // If low bits are zero in either operand, output low known-0 bits.
    // Also compute a conservative estimate for high known-0 bits.
    // More trickiness is possible, but this is sufficient for the
    // interesting case of alignment computation.
    unsigned TrailZ =
        Known.countMinTrailingZeros() + Known2.countMinTrailingZeros();
    unsigned LeadZ =
        std::max(Known.countMinLeadingZeros() + Known2.countMinLeadingZeros(),
                 BitWidth) -
        BitWidth;

    Known.resetAll();
    Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
    Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
    break;
  }
  case TargetOpcode::G_SELECT: {
    computeKnownBitsImpl(MI.getOperand(3).getReg(), Known, DemandedElts,
                         Depth + 1);
    // If we don't know any bits, early out.
    if (Known.isUnknown())
      break;
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
                         Depth + 1);
    // Only known if known in both the LHS and RHS.
    Known.One &= Known2.One;
    Known.Zero &= Known2.Zero;
    break;
  }
  case TargetOpcode::G_FCMP:
  case TargetOpcode::G_ICMP: {
    if (TL.getBooleanContents(DstTy.isVector(),
                              Opcode == TargetOpcode::G_FCMP) ==
            TargetLowering::ZeroOrOneBooleanContent &&
        BitWidth > 1)
      Known.Zero.setBitsFrom(1);
    break;
  }
  case TargetOpcode::G_SEXT: {
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
                         Depth + 1);
    // If the sign bit is known to be zero or one, then sext will extend
    // it to the top bits, else it will just zext.
    Known = Known.sext(BitWidth);
    break;
  }
  case TargetOpcode::G_ANYEXT: {
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
                         Depth + 1);
    Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
    break;
  }
  case TargetOpcode::G_LOAD: {
    if (MI.hasOneMemOperand()) {
      const MachineMemOperand *MMO = *MI.memoperands_begin();
      if (const MDNode *Ranges = MMO->getRanges()) {
        computeKnownBitsFromRangeMetadata(*Ranges, Known);
      }
    }
    break;
  }
  case TargetOpcode::G_ZEXTLOAD: {
    // Everything above the retrieved bits is zero
    if (MI.hasOneMemOperand())
      Known.Zero.setBitsFrom((*MI.memoperands_begin())->getSizeInBits());
    break;
  }
  case TargetOpcode::G_ASHR:
  case TargetOpcode::G_LSHR:
  case TargetOpcode::G_SHL: {
    KnownBits RHSKnown;
    computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
                         Depth + 1);
    if (!RHSKnown.isConstant()) {
      LLVM_DEBUG(
          MachineInstr *RHSMI = MRI.getVRegDef(MI.getOperand(2).getReg());
          dbgs() << '[' << Depth << "] Shift not known constant: " << *RHSMI);
      break;
    }
    uint64_t Shift = RHSKnown.getConstant().getZExtValue();
    LLVM_DEBUG(dbgs() << '[' << Depth << "] Shift is " << Shift << '\n');

    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
                         Depth + 1);

    switch (Opcode) {
    case TargetOpcode::G_ASHR:
      Known.Zero = Known.Zero.ashr(Shift);
      Known.One = Known.One.ashr(Shift);
      break;
    case TargetOpcode::G_LSHR:
      Known.Zero = Known.Zero.lshr(Shift);
      Known.One = Known.One.lshr(Shift);
      Known.Zero.setBitsFrom(Known.Zero.getBitWidth() - Shift);
      break;
    case TargetOpcode::G_SHL:
      Known.Zero = Known.Zero.shl(Shift);
      Known.One = Known.One.shl(Shift);
      Known.Zero.setBits(0, Shift);
      break;
    }
    break;
  }
  case TargetOpcode::G_INTTOPTR:
  case TargetOpcode::G_PTRTOINT:
    // Fall through and handle them the same as zext/trunc.
    LLVM_FALLTHROUGH;
  case TargetOpcode::G_ZEXT:
  case TargetOpcode::G_TRUNC: {
    Register SrcReg = MI.getOperand(1).getReg();
    LLT SrcTy = MRI.getType(SrcReg);
    unsigned SrcBitWidth = SrcTy.isPointer()
                               ? DL.getIndexSizeInBits(SrcTy.getAddressSpace())
                               : SrcTy.getSizeInBits();
    assert(SrcBitWidth && "SrcBitWidth can't be zero");
    Known = Known.zextOrTrunc(SrcBitWidth, true);
    computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
    Known = Known.zextOrTrunc(BitWidth, true);
    if (BitWidth > SrcBitWidth)
      Known.Zero.setBitsFrom(SrcBitWidth);
    break;
  }
  }

  assert(!Known.hasConflict() && "Bits known to be one AND zero?");
  LLVM_DEBUG(dbgs() << "[" << Depth << "] Compute known bits: " << MI << "["
                    << Depth << "] Computed for: " << MI << "[" << Depth
                    << "] Known: 0x"
                    << (Known.Zero | Known.One).toString(16, false) << "\n"
                    << "[" << Depth << "] Zero: 0x"
                    << Known.Zero.toString(16, false) << "\n"
                    << "[" << Depth << "] One:  0x"
                    << Known.One.toString(16, false) << "\n");
}

unsigned GISelKnownBits::computeNumSignBits(Register R,
                                            const APInt &DemandedElts,
                                            unsigned Depth) {
  MachineInstr &MI = *MRI.getVRegDef(R);
  unsigned Opcode = MI.getOpcode();

  if (Opcode == TargetOpcode::G_CONSTANT)
    return MI.getOperand(1).getCImm()->getValue().getNumSignBits();

  if (Depth == getMaxDepth())
    return 1;

  if (!DemandedElts)
    return 1; // No demanded elts, better to assume we don't know anything.

  LLT DstTy = MRI.getType(R);

  // Handle the case where this is called on a register that does not have a
  // type constraint. This is unlikely to occur except by looking through copies
  // but it is possible for the initial register being queried to be in this
  // state.
  if (!DstTy.isValid())
    return 1;

  switch (Opcode) {
  case TargetOpcode::COPY: {
    MachineOperand &Src = MI.getOperand(1);
    if (Src.getReg().isVirtual() && Src.getSubReg() == 0 &&
        MRI.getType(Src.getReg()).isValid()) {
      // Don't increment Depth for this one since we didn't do any work.
      return computeNumSignBits(Src.getReg(), DemandedElts, Depth);
    }

    return 1;
  }
  case TargetOpcode::G_SEXT: {
    Register Src = MI.getOperand(1).getReg();
    LLT SrcTy = MRI.getType(Src);
    unsigned Tmp = DstTy.getScalarSizeInBits() - SrcTy.getScalarSizeInBits();
    return computeNumSignBits(Src, DemandedElts, Depth + 1) + Tmp;
  }
  case TargetOpcode::G_TRUNC: {
    Register Src = MI.getOperand(1).getReg();
    LLT SrcTy = MRI.getType(Src);

    // Check if the sign bits of source go down as far as the truncated value.
    unsigned DstTyBits = DstTy.getScalarSizeInBits();
    unsigned NumSrcBits = SrcTy.getScalarSizeInBits();
    unsigned NumSrcSignBits = computeNumSignBits(Src, DemandedElts, Depth + 1);
    if (NumSrcSignBits > (NumSrcBits - DstTyBits))
      return NumSrcSignBits - (NumSrcBits - DstTyBits);
    break;
  }
  default:
    break;
  }

  // TODO: Handle target instructions
  // TODO: Fall back to known bits
  return 1;
}

unsigned GISelKnownBits::computeNumSignBits(Register R, unsigned Depth) {
  LLT Ty = MRI.getType(R);
  APInt DemandedElts = Ty.isVector()
                           ? APInt::getAllOnesValue(Ty.getNumElements())
                           : APInt(1, 1);
  return computeNumSignBits(R, DemandedElts, Depth);
}

void GISelKnownBitsAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  MachineFunctionPass::getAnalysisUsage(AU);
}

bool GISelKnownBitsAnalysis::runOnMachineFunction(MachineFunction &MF) {
  return false;
}