IfConversion.cpp 89.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
//===- IfConversion.cpp - Machine code if conversion pass -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level if-conversion pass, which
// tries to convert conditional branches into predicated instructions.
//
//===----------------------------------------------------------------------===//

#include "BranchFolding.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <iterator>
#include <memory>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "if-converter"

// Hidden options for help debugging.
static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
                                   cl::init(false), cl::Hidden);
static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
                                    cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
                                     cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
                                      cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
                                      cl::init(false), cl::Hidden);
static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
                                       cl::init(false), cl::Hidden);
static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
                                    cl::init(false), cl::Hidden);
static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
                                        cl::init(false), cl::Hidden);
static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
                                     cl::init(true), cl::Hidden);

STATISTIC(NumSimple,       "Number of simple if-conversions performed");
STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed");
STATISTIC(NumTriangle,     "Number of triangle if-conversions performed");
STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed");
STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed");
STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
STATISTIC(NumIfConvBBs,    "Number of if-converted blocks");
STATISTIC(NumDupBBs,       "Number of duplicated blocks");
STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated");

namespace {

  class IfConverter : public MachineFunctionPass {
    enum IfcvtKind {
      ICNotClassfied,  // BB data valid, but not classified.
      ICSimpleFalse,   // Same as ICSimple, but on the false path.
      ICSimple,        // BB is entry of an one split, no rejoin sub-CFG.
      ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition.
      ICTriangleRev,   // Same as ICTriangle, but true path rev condition.
      ICTriangleFalse, // Same as ICTriangle, but on the false path.
      ICTriangle,      // BB is entry of a triangle sub-CFG.
      ICDiamond,       // BB is entry of a diamond sub-CFG.
      ICForkedDiamond  // BB is entry of an almost diamond sub-CFG, with a
                       // common tail that can be shared.
    };

    /// One per MachineBasicBlock, this is used to cache the result
    /// if-conversion feasibility analysis. This includes results from
    /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
    /// classification, and common tail block of its successors (if it's a
    /// diamond shape), its size, whether it's predicable, and whether any
    /// instruction can clobber the 'would-be' predicate.
    ///
    /// IsDone          - True if BB is not to be considered for ifcvt.
    /// IsBeingAnalyzed - True if BB is currently being analyzed.
    /// IsAnalyzed      - True if BB has been analyzed (info is still valid).
    /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed.
    /// IsBrAnalyzable  - True if analyzeBranch() returns false.
    /// HasFallThrough  - True if BB may fallthrough to the following BB.
    /// IsUnpredicable  - True if BB is known to be unpredicable.
    /// ClobbersPred    - True if BB could modify predicates (e.g. has
    ///                   cmp, call, etc.)
    /// NonPredSize     - Number of non-predicated instructions.
    /// ExtraCost       - Extra cost for multi-cycle instructions.
    /// ExtraCost2      - Some instructions are slower when predicated
    /// BB              - Corresponding MachineBasicBlock.
    /// TrueBB / FalseBB- See analyzeBranch().
    /// BrCond          - Conditions for end of block conditional branches.
    /// Predicate       - Predicate used in the BB.
    struct BBInfo {
      bool IsDone          : 1;
      bool IsBeingAnalyzed : 1;
      bool IsAnalyzed      : 1;
      bool IsEnqueued      : 1;
      bool IsBrAnalyzable  : 1;
      bool IsBrReversible  : 1;
      bool HasFallThrough  : 1;
      bool IsUnpredicable  : 1;
      bool CannotBeCopied  : 1;
      bool ClobbersPred    : 1;
      unsigned NonPredSize = 0;
      unsigned ExtraCost = 0;
      unsigned ExtraCost2 = 0;
      MachineBasicBlock *BB = nullptr;
      MachineBasicBlock *TrueBB = nullptr;
      MachineBasicBlock *FalseBB = nullptr;
      SmallVector<MachineOperand, 4> BrCond;
      SmallVector<MachineOperand, 4> Predicate;

      BBInfo() : IsDone(false), IsBeingAnalyzed(false),
                 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
                 IsBrReversible(false), HasFallThrough(false),
                 IsUnpredicable(false), CannotBeCopied(false),
                 ClobbersPred(false) {}
    };

    /// Record information about pending if-conversions to attempt:
    /// BBI             - Corresponding BBInfo.
    /// Kind            - Type of block. See IfcvtKind.
    /// NeedSubsumption - True if the to-be-predicated BB has already been
    ///                   predicated.
    /// NumDups      - Number of instructions that would be duplicated due
    ///                   to this if-conversion. (For diamonds, the number of
    ///                   identical instructions at the beginnings of both
    ///                   paths).
    /// NumDups2     - For diamonds, the number of identical instructions
    ///                   at the ends of both paths.
    struct IfcvtToken {
      BBInfo &BBI;
      IfcvtKind Kind;
      unsigned NumDups;
      unsigned NumDups2;
      bool NeedSubsumption : 1;
      bool TClobbersPred : 1;
      bool FClobbersPred : 1;

      IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
                 bool tc = false, bool fc = false)
        : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
          TClobbersPred(tc), FClobbersPred(fc) {}
    };

    /// Results of if-conversion feasibility analysis indexed by basic block
    /// number.
    std::vector<BBInfo> BBAnalysis;
    TargetSchedModel SchedModel;

    const TargetLoweringBase *TLI;
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    const MachineBranchProbabilityInfo *MBPI;
    MachineRegisterInfo *MRI;

    LivePhysRegs Redefs;

    bool PreRegAlloc;
    bool MadeChange;
    int FnNum = -1;
    std::function<bool(const MachineFunction &)> PredicateFtor;

  public:
    static char ID;

    IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
        : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
      initializeIfConverterPass(*PassRegistry::getPassRegistry());
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineBlockFrequencyInfo>();
      AU.addRequired<MachineBranchProbabilityInfo>();
      AU.addRequired<ProfileSummaryInfoWrapperPass>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

  private:
    bool reverseBranchCondition(BBInfo &BBI) const;
    bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
                     BranchProbability Prediction) const;
    bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
                       bool FalseBranch, unsigned &Dups,
                       BranchProbability Prediction) const;
    bool CountDuplicatedInstructions(
        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
        unsigned &Dups1, unsigned &Dups2,
        MachineBasicBlock &TBB, MachineBasicBlock &FBB,
        bool SkipUnconditionalBranches) const;
    bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
                      unsigned &Dups1, unsigned &Dups2,
                      BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
    bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
                            unsigned &Dups1, unsigned &Dups2,
                            BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
    void AnalyzeBranches(BBInfo &BBI);
    void ScanInstructions(BBInfo &BBI,
                          MachineBasicBlock::iterator &Begin,
                          MachineBasicBlock::iterator &End,
                          bool BranchUnpredicable = false) const;
    bool RescanInstructions(
        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
        BBInfo &TrueBBI, BBInfo &FalseBBI) const;
    void AnalyzeBlock(MachineBasicBlock &MBB,
                      std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
    bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
                             bool isTriangle = false, bool RevBranch = false,
                             bool hasCommonTail = false);
    void AnalyzeBlocks(MachineFunction &MF,
                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
    void InvalidatePreds(MachineBasicBlock &MBB);
    bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
    bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
    bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
                                unsigned NumDups1, unsigned NumDups2,
                                bool TClobbersPred, bool FClobbersPred,
                                bool RemoveBranch, bool MergeAddEdges);
    bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
                          unsigned NumDups1, unsigned NumDups2,
                          bool TClobbers, bool FClobbers);
    bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
                              unsigned NumDups1, unsigned NumDups2,
                              bool TClobbers, bool FClobbers);
    void PredicateBlock(BBInfo &BBI,
                        MachineBasicBlock::iterator E,
                        SmallVectorImpl<MachineOperand> &Cond,
                        SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
    void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
                               SmallVectorImpl<MachineOperand> &Cond,
                               bool IgnoreBr = false);
    void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);

    bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
                            unsigned Cycle, unsigned Extra,
                            BranchProbability Prediction) const {
      return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
                                                   Prediction);
    }

    bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo,
                            MachineBasicBlock &CommBB, unsigned Dups,
                            BranchProbability Prediction, bool Forked) const {
      const MachineFunction &MF = *TBBInfo.BB->getParent();
      if (MF.getFunction().hasMinSize()) {
        MachineBasicBlock::iterator TIB = TBBInfo.BB->begin();
        MachineBasicBlock::iterator FIB = FBBInfo.BB->begin();
        MachineBasicBlock::iterator TIE = TBBInfo.BB->end();
        MachineBasicBlock::iterator FIE = FBBInfo.BB->end();

        unsigned Dups1, Dups2;
        if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
                                         *TBBInfo.BB, *FBBInfo.BB,
                                         /*SkipUnconditionalBranches*/ true))
          llvm_unreachable("should already have been checked by ValidDiamond");

        unsigned BranchBytes = 0;
        unsigned CommonBytes = 0;

        // Count common instructions at the start of the true and false blocks.
        for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) {
          LLVM_DEBUG(dbgs() << "Common inst: " << I);
          CommonBytes += TII->getInstSizeInBytes(I);
        }
        for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) {
          LLVM_DEBUG(dbgs() << "Common inst: " << I);
          CommonBytes += TII->getInstSizeInBytes(I);
        }

        // Count instructions at the end of the true and false blocks, after
        // the ones we plan to predicate. Analyzable branches will be removed
        // (unless this is a forked diamond), and all other instructions are
        // common between the two blocks.
        for (auto &I : make_range(TIE, TBBInfo.BB->end())) {
          if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) {
            LLVM_DEBUG(dbgs() << "Saving branch: " << I);
            BranchBytes += TII->predictBranchSizeForIfCvt(I);
          } else {
            LLVM_DEBUG(dbgs() << "Common inst: " << I);
            CommonBytes += TII->getInstSizeInBytes(I);
          }
        }
        for (auto &I : make_range(FIE, FBBInfo.BB->end())) {
          if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) {
            LLVM_DEBUG(dbgs() << "Saving branch: " << I);
            BranchBytes += TII->predictBranchSizeForIfCvt(I);
          } else {
            LLVM_DEBUG(dbgs() << "Common inst: " << I);
            CommonBytes += TII->getInstSizeInBytes(I);
          }
        }
        for (auto &I : CommBB.terminators()) {
          if (I.isBranch()) {
            LLVM_DEBUG(dbgs() << "Saving branch: " << I);
            BranchBytes += TII->predictBranchSizeForIfCvt(I);
          }
        }

        // The common instructions in one branch will be eliminated, halving
        // their code size.
        CommonBytes /= 2;

        // Count the instructions which we need to predicate.
        unsigned NumPredicatedInstructions = 0;
        for (auto &I : make_range(TIB, TIE)) {
          if (!I.isDebugInstr()) {
            LLVM_DEBUG(dbgs() << "Predicating: " << I);
            NumPredicatedInstructions++;
          }
        }
        for (auto &I : make_range(FIB, FIE)) {
          if (!I.isDebugInstr()) {
            LLVM_DEBUG(dbgs() << "Predicating: " << I);
            NumPredicatedInstructions++;
          }
        }

        // Even though we're optimising for size at the expense of performance,
        // avoid creating really long predicated blocks.
        if (NumPredicatedInstructions > 15)
          return false;

        // Some targets (e.g. Thumb2) need to insert extra instructions to
        // start predicated blocks.
        unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions(
            MF, NumPredicatedInstructions);

        LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes
                          << ", CommonBytes=" << CommonBytes
                          << ", NumPredicatedInstructions="
                          << NumPredicatedInstructions
                          << ", ExtraPredicateBytes=" << ExtraPredicateBytes
                          << ")\n");
        return (BranchBytes + CommonBytes) > ExtraPredicateBytes;
      } else {
        unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups;
        unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups;
        bool Res = TCycle > 0 && FCycle > 0 &&
                   TII->isProfitableToIfCvt(
                       *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB,
                       FCycle, FBBInfo.ExtraCost2, Prediction);
        LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle
                          << ", FCycle=" << FCycle
                          << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra="
                          << FBBInfo.ExtraCost2 << ") = " << Res << "\n");
        return Res;
      }
    }

    /// Returns true if Block ends without a terminator.
    bool blockAlwaysFallThrough(BBInfo &BBI) const {
      return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
    }

    /// Used to sort if-conversion candidates.
    static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
                              const std::unique_ptr<IfcvtToken> &C2) {
      int Incr1 = (C1->Kind == ICDiamond)
        ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
      int Incr2 = (C2->Kind == ICDiamond)
        ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
      if (Incr1 > Incr2)
        return true;
      else if (Incr1 == Incr2) {
        // Favors subsumption.
        if (!C1->NeedSubsumption && C2->NeedSubsumption)
          return true;
        else if (C1->NeedSubsumption == C2->NeedSubsumption) {
          // Favors diamond over triangle, etc.
          if ((unsigned)C1->Kind < (unsigned)C2->Kind)
            return true;
          else if (C1->Kind == C2->Kind)
            return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
        }
      }
      return false;
    }
  };

} // end anonymous namespace

char IfConverter::ID = 0;

char &llvm::IfConverterID = IfConverter::ID;

INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)

bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
    return false;

  const TargetSubtargetInfo &ST = MF.getSubtarget();
  TLI = ST.getTargetLowering();
  TII = ST.getInstrInfo();
  TRI = ST.getRegisterInfo();
  BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
  ProfileSummaryInfo *PSI =
      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  MRI = &MF.getRegInfo();
  SchedModel.init(&ST);

  if (!TII) return false;

  PreRegAlloc = MRI->isSSA();

  bool BFChange = false;
  if (!PreRegAlloc) {
    // Tail merge tend to expose more if-conversion opportunities.
    BranchFolder BF(true, false, MBFI, *MBPI, PSI);
    auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
    BFChange = BF.OptimizeFunction(
        MF, TII, ST.getRegisterInfo(),
        MMIWP ? &MMIWP->getMMI() : nullptr);
  }

  LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
                    << MF.getName() << "\'");

  if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
    LLVM_DEBUG(dbgs() << " skipped\n");
    return false;
  }
  LLVM_DEBUG(dbgs() << "\n");

  MF.RenumberBlocks();
  BBAnalysis.resize(MF.getNumBlockIDs());

  std::vector<std::unique_ptr<IfcvtToken>> Tokens;
  MadeChange = false;
  unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
    NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
  while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
    // Do an initial analysis for each basic block and find all the potential
    // candidates to perform if-conversion.
    bool Change = false;
    AnalyzeBlocks(MF, Tokens);
    while (!Tokens.empty()) {
      std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
      Tokens.pop_back();
      BBInfo &BBI = Token->BBI;
      IfcvtKind Kind = Token->Kind;
      unsigned NumDups = Token->NumDups;
      unsigned NumDups2 = Token->NumDups2;

      // If the block has been evicted out of the queue or it has already been
      // marked dead (due to it being predicated), then skip it.
      if (BBI.IsDone)
        BBI.IsEnqueued = false;
      if (!BBI.IsEnqueued)
        continue;

      BBI.IsEnqueued = false;

      bool RetVal = false;
      switch (Kind) {
      default: llvm_unreachable("Unexpected!");
      case ICSimple:
      case ICSimpleFalse: {
        bool isFalse = Kind == ICSimpleFalse;
        if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
        LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
                          << (Kind == ICSimpleFalse ? " false" : "")
                          << "): " << printMBBReference(*BBI.BB) << " ("
                          << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
                                                      : BBI.TrueBB->getNumber())
                          << ") ");
        RetVal = IfConvertSimple(BBI, Kind);
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
        if (RetVal) {
          if (isFalse) ++NumSimpleFalse;
          else         ++NumSimple;
        }
       break;
      }
      case ICTriangle:
      case ICTriangleRev:
      case ICTriangleFalse:
      case ICTriangleFRev: {
        bool isFalse = Kind == ICTriangleFalse;
        bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
        if (DisableTriangle && !isFalse && !isRev) break;
        if (DisableTriangleR && !isFalse && isRev) break;
        if (DisableTriangleF && isFalse && !isRev) break;
        if (DisableTriangleFR && isFalse && isRev) break;
        LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
        if (isFalse)
          LLVM_DEBUG(dbgs() << " false");
        if (isRev)
          LLVM_DEBUG(dbgs() << " rev");
        LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
                          << " (T:" << BBI.TrueBB->getNumber()
                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
        RetVal = IfConvertTriangle(BBI, Kind);
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
        if (RetVal) {
          if (isFalse) {
            if (isRev) ++NumTriangleFRev;
            else       ++NumTriangleFalse;
          } else {
            if (isRev) ++NumTriangleRev;
            else       ++NumTriangle;
          }
        }
        break;
      }
      case ICDiamond:
        if (DisableDiamond) break;
        LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
                          << " (T:" << BBI.TrueBB->getNumber()
                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
        RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
                                  Token->TClobbersPred,
                                  Token->FClobbersPred);
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
        if (RetVal) ++NumDiamonds;
        break;
      case ICForkedDiamond:
        if (DisableForkedDiamond) break;
        LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
                          << printMBBReference(*BBI.BB)
                          << " (T:" << BBI.TrueBB->getNumber()
                          << ",F:" << BBI.FalseBB->getNumber() << ") ");
        RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
                                      Token->TClobbersPred,
                                      Token->FClobbersPred);
        LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
        if (RetVal) ++NumForkedDiamonds;
        break;
      }

      if (RetVal && MRI->tracksLiveness())
        recomputeLivenessFlags(*BBI.BB);

      Change |= RetVal;

      NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
        NumTriangleFalse + NumTriangleFRev + NumDiamonds;
      if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
        break;
    }

    if (!Change)
      break;
    MadeChange |= Change;
  }

  Tokens.clear();
  BBAnalysis.clear();

  if (MadeChange && IfCvtBranchFold) {
    BranchFolder BF(false, false, MBFI, *MBPI, PSI);
    auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
    BF.OptimizeFunction(
        MF, TII, MF.getSubtarget().getRegisterInfo(),
        MMIWP ? &MMIWP->getMMI() : nullptr);
  }

  MadeChange |= BFChange;
  return MadeChange;
}

/// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
                                         MachineBasicBlock *TrueBB) {
  for (MachineBasicBlock *SuccBB : BB->successors()) {
    if (SuccBB != TrueBB)
      return SuccBB;
  }
  return nullptr;
}

/// Reverse the condition of the end of the block branch. Swap block's 'true'
/// and 'false' successors.
bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
  DebugLoc dl;  // FIXME: this is nowhere
  if (!TII->reverseBranchCondition(BBI.BrCond)) {
    TII->removeBranch(*BBI.BB);
    TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
    std::swap(BBI.TrueBB, BBI.FalseBB);
    return true;
  }
  return false;
}

/// Returns the next block in the function blocks ordering. If it is the end,
/// returns NULL.
static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
  MachineFunction::iterator I = MBB.getIterator();
  MachineFunction::iterator E = MBB.getParent()->end();
  if (++I == E)
    return nullptr;
  return &*I;
}

/// Returns true if the 'true' block (along with its predecessor) forms a valid
/// simple shape for ifcvt. It also returns the number of instructions that the
/// ifcvt would need to duplicate if performed in Dups.
bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
                              BranchProbability Prediction) const {
  Dups = 0;
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
    return false;

  if (TrueBBI.IsBrAnalyzable)
    return false;

  if (TrueBBI.BB->pred_size() > 1) {
    if (TrueBBI.CannotBeCopied ||
        !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
                                        Prediction))
      return false;
    Dups = TrueBBI.NonPredSize;
  }

  return true;
}

/// Returns true if the 'true' and 'false' blocks (along with their common
/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
/// true, it checks if 'true' block's false branch branches to the 'false' block
/// rather than the other way around. It also returns the number of instructions
/// that the ifcvt would need to duplicate if performed in 'Dups'.
bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
                                bool FalseBranch, unsigned &Dups,
                                BranchProbability Prediction) const {
  Dups = 0;
  if (TrueBBI.BB == FalseBBI.BB)
    return false;

  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
    return false;

  if (TrueBBI.BB->pred_size() > 1) {
    if (TrueBBI.CannotBeCopied)
      return false;

    unsigned Size = TrueBBI.NonPredSize;
    if (TrueBBI.IsBrAnalyzable) {
      if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
        // Ends with an unconditional branch. It will be removed.
        --Size;
      else {
        MachineBasicBlock *FExit = FalseBranch
          ? TrueBBI.TrueBB : TrueBBI.FalseBB;
        if (FExit)
          // Require a conditional branch
          ++Size;
      }
    }
    if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
      return false;
    Dups = Size;
  }

  MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
  if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
    MachineFunction::iterator I = TrueBBI.BB->getIterator();
    if (++I == TrueBBI.BB->getParent()->end())
      return false;
    TExit = &*I;
  }
  return TExit && TExit == FalseBBI.BB;
}

/// Count duplicated instructions and move the iterators to show where they
/// are.
/// @param TIB True Iterator Begin
/// @param FIB False Iterator Begin
/// These two iterators initially point to the first instruction of the two
/// blocks, and finally point to the first non-shared instruction.
/// @param TIE True Iterator End
/// @param FIE False Iterator End
/// These two iterators initially point to End() for the two blocks() and
/// finally point to the first shared instruction in the tail.
/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
/// two blocks.
/// @param Dups1 count of duplicated instructions at the beginning of the 2
/// blocks.
/// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
/// @param SkipUnconditionalBranches if true, Don't make sure that
/// unconditional branches at the end of the blocks are the same. True is
/// passed when the blocks are analyzable to allow for fallthrough to be
/// handled.
/// @return false if the shared portion prevents if conversion.
bool IfConverter::CountDuplicatedInstructions(
    MachineBasicBlock::iterator &TIB,
    MachineBasicBlock::iterator &FIB,
    MachineBasicBlock::iterator &TIE,
    MachineBasicBlock::iterator &FIE,
    unsigned &Dups1, unsigned &Dups2,
    MachineBasicBlock &TBB, MachineBasicBlock &FBB,
    bool SkipUnconditionalBranches) const {
  while (TIB != TIE && FIB != FIE) {
    // Skip dbg_value instructions. These do not count.
    TIB = skipDebugInstructionsForward(TIB, TIE);
    FIB = skipDebugInstructionsForward(FIB, FIE);
    if (TIB == TIE || FIB == FIE)
      break;
    if (!TIB->isIdenticalTo(*FIB))
      break;
    // A pred-clobbering instruction in the shared portion prevents
    // if-conversion.
    std::vector<MachineOperand> PredDefs;
    if (TII->DefinesPredicate(*TIB, PredDefs))
      return false;
    // If we get all the way to the branch instructions, don't count them.
    if (!TIB->isBranch())
      ++Dups1;
    ++TIB;
    ++FIB;
  }

  // Check for already containing all of the block.
  if (TIB == TIE || FIB == FIE)
    return true;
  // Now, in preparation for counting duplicate instructions at the ends of the
  // blocks, switch to reverse_iterators. Note that getReverse() returns an
  // iterator that points to the same instruction, unlike std::reverse_iterator.
  // We have to do our own shifting so that we get the same range.
  MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
  MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
  const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
  const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());

  if (!TBB.succ_empty() || !FBB.succ_empty()) {
    if (SkipUnconditionalBranches) {
      while (RTIE != RTIB && RTIE->isUnconditionalBranch())
        ++RTIE;
      while (RFIE != RFIB && RFIE->isUnconditionalBranch())
        ++RFIE;
    }
  }

  // Count duplicate instructions at the ends of the blocks.
  while (RTIE != RTIB && RFIE != RFIB) {
    // Skip dbg_value instructions. These do not count.
    // Note that these are reverse iterators going forward.
    RTIE = skipDebugInstructionsForward(RTIE, RTIB);
    RFIE = skipDebugInstructionsForward(RFIE, RFIB);
    if (RTIE == RTIB || RFIE == RFIB)
      break;
    if (!RTIE->isIdenticalTo(*RFIE))
      break;
    // We have to verify that any branch instructions are the same, and then we
    // don't count them toward the # of duplicate instructions.
    if (!RTIE->isBranch())
      ++Dups2;
    ++RTIE;
    ++RFIE;
  }
  TIE = std::next(RTIE.getReverse());
  FIE = std::next(RFIE.getReverse());
  return true;
}

/// RescanInstructions - Run ScanInstructions on a pair of blocks.
/// @param TIB - True Iterator Begin, points to first non-shared instruction
/// @param FIB - False Iterator Begin, points to first non-shared instruction
/// @param TIE - True Iterator End, points past last non-shared instruction
/// @param FIE - False Iterator End, points past last non-shared instruction
/// @param TrueBBI  - BBInfo to update for the true block.
/// @param FalseBBI - BBInfo to update for the false block.
/// @returns - false if either block cannot be predicated or if both blocks end
///   with a predicate-clobbering instruction.
bool IfConverter::RescanInstructions(
    MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
    MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
    BBInfo &TrueBBI, BBInfo &FalseBBI) const {
  bool BranchUnpredicable = true;
  TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
  ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
  if (TrueBBI.IsUnpredicable)
    return false;
  ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
  if (FalseBBI.IsUnpredicable)
    return false;
  if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
    return false;
  return true;
}

#ifndef NDEBUG
static void verifySameBranchInstructions(
    MachineBasicBlock *MBB1,
    MachineBasicBlock *MBB2) {
  const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
  const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
  MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
  MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
  while (E1 != B1 && E2 != B2) {
    skipDebugInstructionsForward(E1, B1);
    skipDebugInstructionsForward(E2, B2);
    if (E1 == B1 && E2 == B2)
      break;

    if (E1 == B1) {
      assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
      break;
    }
    if (E2 == B2) {
      assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
      break;
    }

    if (E1->isBranch() || E2->isBranch())
      assert(E1->isIdenticalTo(*E2) &&
             "Branch mis-match, branch instructions don't match.");
    else
      break;
    ++E1;
    ++E2;
  }
}
#endif

/// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
/// with their common predecessor) form a diamond if a common tail block is
/// extracted.
/// While not strictly a diamond, this pattern would form a diamond if
/// tail-merging had merged the shared tails.
///           EBB
///         _/   \_
///         |     |
///        TBB   FBB
///        /  \ /   \
///  FalseBB TrueBB FalseBB
/// Currently only handles analyzable branches.
/// Specifically excludes actual diamonds to avoid overlap.
bool IfConverter::ValidForkedDiamond(
    BBInfo &TrueBBI, BBInfo &FalseBBI,
    unsigned &Dups1, unsigned &Dups2,
    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
  Dups1 = Dups2 = 0;
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
    return false;

  if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
    return false;
  // Don't IfConvert blocks that can't be folded into their predecessor.
  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
    return false;

  // This function is specifically looking for conditional tails, as
  // unconditional tails are already handled by the standard diamond case.
  if (TrueBBI.BrCond.size() == 0 ||
      FalseBBI.BrCond.size() == 0)
    return false;

  MachineBasicBlock *TT = TrueBBI.TrueBB;
  MachineBasicBlock *TF = TrueBBI.FalseBB;
  MachineBasicBlock *FT = FalseBBI.TrueBB;
  MachineBasicBlock *FF = FalseBBI.FalseBB;

  if (!TT)
    TT = getNextBlock(*TrueBBI.BB);
  if (!TF)
    TF = getNextBlock(*TrueBBI.BB);
  if (!FT)
    FT = getNextBlock(*FalseBBI.BB);
  if (!FF)
    FF = getNextBlock(*FalseBBI.BB);

  if (!TT || !TF)
    return false;

  // Check successors. If they don't match, bail.
  if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
    return false;

  bool FalseReversed = false;
  if (TF == FT && TT == FF) {
    // If the branches are opposing, but we can't reverse, don't do it.
    if (!FalseBBI.IsBrReversible)
      return false;
    FalseReversed = true;
    reverseBranchCondition(FalseBBI);
  }
  auto UnReverseOnExit = make_scope_exit([&]() {
    if (FalseReversed)
      reverseBranchCondition(FalseBBI);
  });

  // Count duplicate instructions at the beginning of the true and false blocks.
  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
                                  *TrueBBI.BB, *FalseBBI.BB,
                                  /* SkipUnconditionalBranches */ true))
    return false;

  TrueBBICalc.BB = TrueBBI.BB;
  FalseBBICalc.BB = FalseBBI.BB;
  TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
  FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
    return false;

  // The size is used to decide whether to if-convert, and the shared portions
  // are subtracted off. Because of the subtraction, we just use the size that
  // was calculated by the original ScanInstructions, as it is correct.
  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
  return true;
}

/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
/// with their common predecessor) forms a valid diamond shape for ifcvt.
bool IfConverter::ValidDiamond(
    BBInfo &TrueBBI, BBInfo &FalseBBI,
    unsigned &Dups1, unsigned &Dups2,
    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
  Dups1 = Dups2 = 0;
  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
    return false;

  MachineBasicBlock *TT = TrueBBI.TrueBB;
  MachineBasicBlock *FT = FalseBBI.TrueBB;

  if (!TT && blockAlwaysFallThrough(TrueBBI))
    TT = getNextBlock(*TrueBBI.BB);
  if (!FT && blockAlwaysFallThrough(FalseBBI))
    FT = getNextBlock(*FalseBBI.BB);
  if (TT != FT)
    return false;
  if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
    return false;
  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
    return false;

  // FIXME: Allow true block to have an early exit?
  if (TrueBBI.FalseBB || FalseBBI.FalseBB)
    return false;

  // Count duplicate instructions at the beginning and end of the true and
  // false blocks.
  // Skip unconditional branches only if we are considering an analyzable
  // diamond. Otherwise the branches must be the same.
  bool SkipUnconditionalBranches =
      TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
  MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
  MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
                                  *TrueBBI.BB, *FalseBBI.BB,
                                  SkipUnconditionalBranches))
    return false;

  TrueBBICalc.BB = TrueBBI.BB;
  FalseBBICalc.BB = FalseBBI.BB;
  TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
  FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
    return false;
  // The size is used to decide whether to if-convert, and the shared portions
  // are subtracted off. Because of the subtraction, we just use the size that
  // was calculated by the original ScanInstructions, as it is correct.
  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
  return true;
}

/// AnalyzeBranches - Look at the branches at the end of a block to determine if
/// the block is predicable.
void IfConverter::AnalyzeBranches(BBInfo &BBI) {
  if (BBI.IsDone)
    return;

  BBI.TrueBB = BBI.FalseBB = nullptr;
  BBI.BrCond.clear();
  BBI.IsBrAnalyzable =
      !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
  if (!BBI.IsBrAnalyzable) {
    BBI.TrueBB = nullptr;
    BBI.FalseBB = nullptr;
    BBI.BrCond.clear();
  }

  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
  BBI.IsBrReversible = (RevCond.size() == 0) ||
      !TII->reverseBranchCondition(RevCond);
  BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;

  if (BBI.BrCond.size()) {
    // No false branch. This BB must end with a conditional branch and a
    // fallthrough.
    if (!BBI.FalseBB)
      BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
    if (!BBI.FalseBB) {
      // Malformed bcc? True and false blocks are the same?
      BBI.IsUnpredicable = true;
    }
  }
}

/// ScanInstructions - Scan all the instructions in the block to determine if
/// the block is predicable. In most cases, that means all the instructions
/// in the block are isPredicable(). Also checks if the block contains any
/// instruction which can clobber a predicate (e.g. condition code register).
/// If so, the block is not predicable unless it's the last instruction.
void IfConverter::ScanInstructions(BBInfo &BBI,
                                   MachineBasicBlock::iterator &Begin,
                                   MachineBasicBlock::iterator &End,
                                   bool BranchUnpredicable) const {
  if (BBI.IsDone || BBI.IsUnpredicable)
    return;

  bool AlreadyPredicated = !BBI.Predicate.empty();

  BBI.NonPredSize = 0;
  BBI.ExtraCost = 0;
  BBI.ExtraCost2 = 0;
  BBI.ClobbersPred = false;
  for (MachineInstr &MI : make_range(Begin, End)) {
    if (MI.isDebugInstr())
      continue;

    // It's unsafe to duplicate convergent instructions in this context, so set
    // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the
    // following CFG, which is subject to our "simple" transformation.
    //
    //    BB0     // if (c1) goto BB1; else goto BB2;
    //   /   \
    //  BB1   |
    //   |   BB2  // if (c2) goto TBB; else goto FBB;
    //   |   / |
    //   |  /  |
    //   TBB   |
    //    |    |
    //    |   FBB
    //    |
    //    exit
    //
    // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
    // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
    // TBB contains a convergent instruction.  This is safe iff doing so does
    // not add a control-flow dependency to the convergent instruction -- i.e.,
    // it's safe iff the set of control flows that leads us to the convergent
    // instruction does not get smaller after the transformation.
    //
    // Originally we executed TBB if c1 || c2.  After the transformation, there
    // are two copies of TBB's instructions.  We get to the first if c1, and we
    // get to the second if !c1 && c2.
    //
    // There are clearly fewer ways to satisfy the condition "c1" than
    // "c1 || c2".  Since we've shrunk the set of control flows which lead to
    // our convergent instruction, the transformation is unsafe.
    if (MI.isNotDuplicable() || MI.isConvergent())
      BBI.CannotBeCopied = true;

    bool isPredicated = TII->isPredicated(MI);
    bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();

    if (BranchUnpredicable && MI.isBranch()) {
      BBI.IsUnpredicable = true;
      return;
    }

    // A conditional branch is not predicable, but it may be eliminated.
    if (isCondBr)
      continue;

    if (!isPredicated) {
      BBI.NonPredSize++;
      unsigned ExtraPredCost = TII->getPredicationCost(MI);
      unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
      if (NumCycles > 1)
        BBI.ExtraCost += NumCycles-1;
      BBI.ExtraCost2 += ExtraPredCost;
    } else if (!AlreadyPredicated) {
      // FIXME: This instruction is already predicated before the
      // if-conversion pass. It's probably something like a conditional move.
      // Mark this block unpredicable for now.
      BBI.IsUnpredicable = true;
      return;
    }

    if (BBI.ClobbersPred && !isPredicated) {
      // Predicate modification instruction should end the block (except for
      // already predicated instructions and end of block branches).
      // Predicate may have been modified, the subsequent (currently)
      // unpredicated instructions cannot be correctly predicated.
      BBI.IsUnpredicable = true;
      return;
    }

    // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
    // still potentially predicable.
    std::vector<MachineOperand> PredDefs;
    if (TII->DefinesPredicate(MI, PredDefs))
      BBI.ClobbersPred = true;

    if (!TII->isPredicable(MI)) {
      BBI.IsUnpredicable = true;
      return;
    }
  }
}

/// Determine if the block is a suitable candidate to be predicated by the
/// specified predicate.
/// @param BBI BBInfo for the block to check
/// @param Pred Predicate array for the branch that leads to BBI
/// @param isTriangle true if the Analysis is for a triangle
/// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
///        case
/// @param hasCommonTail true if BBI shares a tail with a sibling block that
///        contains any instruction that would make the block unpredicable.
bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
                                      SmallVectorImpl<MachineOperand> &Pred,
                                      bool isTriangle, bool RevBranch,
                                      bool hasCommonTail) {
  // If the block is dead or unpredicable, then it cannot be predicated.
  // Two blocks may share a common unpredicable tail, but this doesn't prevent
  // them from being if-converted. The non-shared portion is assumed to have
  // been checked
  if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
    return false;

  // If it is already predicated but we couldn't analyze its terminator, the
  // latter might fallthrough, but we can't determine where to.
  // Conservatively avoid if-converting again.
  if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
    return false;

  // If it is already predicated, check if the new predicate subsumes
  // its predicate.
  if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
    return false;

  if (!hasCommonTail && BBI.BrCond.size()) {
    if (!isTriangle)
      return false;

    // Test predicate subsumption.
    SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
    SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
    if (RevBranch) {
      if (TII->reverseBranchCondition(Cond))
        return false;
    }
    if (TII->reverseBranchCondition(RevPred) ||
        !TII->SubsumesPredicate(Cond, RevPred))
      return false;
  }

  return true;
}

/// Analyze the structure of the sub-CFG starting from the specified block.
/// Record its successors and whether it looks like an if-conversion candidate.
void IfConverter::AnalyzeBlock(
    MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
  struct BBState {
    BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
    MachineBasicBlock *MBB;

    /// This flag is true if MBB's successors have been analyzed.
    bool SuccsAnalyzed;
  };

  // Push MBB to the stack.
  SmallVector<BBState, 16> BBStack(1, MBB);

  while (!BBStack.empty()) {
    BBState &State = BBStack.back();
    MachineBasicBlock *BB = State.MBB;
    BBInfo &BBI = BBAnalysis[BB->getNumber()];

    if (!State.SuccsAnalyzed) {
      if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
        BBStack.pop_back();
        continue;
      }

      BBI.BB = BB;
      BBI.IsBeingAnalyzed = true;

      AnalyzeBranches(BBI);
      MachineBasicBlock::iterator Begin = BBI.BB->begin();
      MachineBasicBlock::iterator End = BBI.BB->end();
      ScanInstructions(BBI, Begin, End);

      // Unanalyzable or ends with fallthrough or unconditional branch, or if is
      // not considered for ifcvt anymore.
      if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
        BBI.IsBeingAnalyzed = false;
        BBI.IsAnalyzed = true;
        BBStack.pop_back();
        continue;
      }

      // Do not ifcvt if either path is a back edge to the entry block.
      if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
        BBI.IsBeingAnalyzed = false;
        BBI.IsAnalyzed = true;
        BBStack.pop_back();
        continue;
      }

      // Do not ifcvt if true and false fallthrough blocks are the same.
      if (!BBI.FalseBB) {
        BBI.IsBeingAnalyzed = false;
        BBI.IsAnalyzed = true;
        BBStack.pop_back();
        continue;
      }

      // Push the False and True blocks to the stack.
      State.SuccsAnalyzed = true;
      BBStack.push_back(*BBI.FalseBB);
      BBStack.push_back(*BBI.TrueBB);
      continue;
    }

    BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
    BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];

    if (TrueBBI.IsDone && FalseBBI.IsDone) {
      BBI.IsBeingAnalyzed = false;
      BBI.IsAnalyzed = true;
      BBStack.pop_back();
      continue;
    }

    SmallVector<MachineOperand, 4>
        RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
    bool CanRevCond = !TII->reverseBranchCondition(RevCond);

    unsigned Dups = 0;
    unsigned Dups2 = 0;
    bool TNeedSub = !TrueBBI.Predicate.empty();
    bool FNeedSub = !FalseBBI.Predicate.empty();
    bool Enqueued = false;

    BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);

    if (CanRevCond) {
      BBInfo TrueBBICalc, FalseBBICalc;
      auto feasibleDiamond = [&](bool Forked) {
        bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB,
                                            Dups + Dups2, Prediction, Forked);
        bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
                                                /* IsTriangle */ false, /* RevCond */ false,
                                                /* hasCommonTail */ true);
        bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
                                                 /* IsTriangle */ false, /* RevCond */ false,
                                                 /* hasCommonTail */ true);
        return MeetsSize && TrueFeasible && FalseFeasible;
      };

      if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
                       TrueBBICalc, FalseBBICalc)) {
        if (feasibleDiamond(false)) {
          // Diamond:
          //   EBB
          //   / \_
          //  |   |
          // TBB FBB
          //   \ /
          //  TailBB
          // Note TailBB can be empty.
          Tokens.push_back(std::make_unique<IfcvtToken>(
              BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
          Enqueued = true;
        }
      } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
                                    TrueBBICalc, FalseBBICalc)) {
        if (feasibleDiamond(true)) {
          // ForkedDiamond:
          // if TBB and FBB have a common tail that includes their conditional
          // branch instructions, then we can If Convert this pattern.
          //          EBB
          //         _/ \_
          //         |   |
          //        TBB  FBB
          //        / \ /   \
          //  FalseBB TrueBB FalseBB
          //
          Tokens.push_back(std::make_unique<IfcvtToken>(
              BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
          Enqueued = true;
        }
      }
    }

    if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
                           TrueBBI.ExtraCost2, Prediction) &&
        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
      // Triangle:
      //   EBB
      //   | \_
      //   |  |
      //   | TBB
      //   |  /
      //   FBB
      Tokens.push_back(
          std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
      Enqueued = true;
    }

    if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
                           TrueBBI.ExtraCost2, Prediction) &&
        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
      Tokens.push_back(
          std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
      Enqueued = true;
    }

    if (ValidSimple(TrueBBI, Dups, Prediction) &&
        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
                           TrueBBI.ExtraCost2, Prediction) &&
        FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
      // Simple (split, no rejoin):
      //   EBB
      //   | \_
      //   |  |
      //   | TBB---> exit
      //   |
      //   FBB
      Tokens.push_back(
          std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
      Enqueued = true;
    }

    if (CanRevCond) {
      // Try the other path...
      if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
                        Prediction.getCompl()) &&
          MeetIfcvtSizeLimit(*FalseBBI.BB,
                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
          FeasibilityAnalysis(FalseBBI, RevCond, true)) {
        Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
                                                       FNeedSub, Dups));
        Enqueued = true;
      }

      if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
                        Prediction.getCompl()) &&
          MeetIfcvtSizeLimit(*FalseBBI.BB,
                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
                           FalseBBI.ExtraCost2, Prediction.getCompl()) &&
        FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
        Tokens.push_back(
            std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
        Enqueued = true;
      }

      if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
          MeetIfcvtSizeLimit(*FalseBBI.BB,
                             FalseBBI.NonPredSize + FalseBBI.ExtraCost,
                             FalseBBI.ExtraCost2, Prediction.getCompl()) &&
          FeasibilityAnalysis(FalseBBI, RevCond)) {
        Tokens.push_back(
            std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
        Enqueued = true;
      }
    }

    BBI.IsEnqueued = Enqueued;
    BBI.IsBeingAnalyzed = false;
    BBI.IsAnalyzed = true;
    BBStack.pop_back();
  }
}

/// Analyze all blocks and find entries for all if-conversion candidates.
void IfConverter::AnalyzeBlocks(
    MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
  for (MachineBasicBlock &MBB : MF)
    AnalyzeBlock(MBB, Tokens);

  // Sort to favor more complex ifcvt scheme.
  llvm::stable_sort(Tokens, IfcvtTokenCmp);
}

/// Returns true either if ToMBB is the next block after MBB or that all the
/// intervening blocks are empty (given MBB can fall through to its next block).
static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
  MachineFunction::iterator PI = MBB.getIterator();
  MachineFunction::iterator I = std::next(PI);
  MachineFunction::iterator TI = ToMBB.getIterator();
  MachineFunction::iterator E = MBB.getParent()->end();
  while (I != TI) {
    // Check isSuccessor to avoid case where the next block is empty, but
    // it's not a successor.
    if (I == E || !I->empty() || !PI->isSuccessor(&*I))
      return false;
    PI = I++;
  }
  // Finally see if the last I is indeed a successor to PI.
  return PI->isSuccessor(&*I);
}

/// Invalidate predecessor BB info so it would be re-analyzed to determine if it
/// can be if-converted. If predecessor is already enqueued, dequeue it!
void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
  for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
    BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
    if (PBBI.IsDone || PBBI.BB == &MBB)
      continue;
    PBBI.IsAnalyzed = false;
    PBBI.IsEnqueued = false;
  }
}

/// Inserts an unconditional branch from \p MBB to \p ToMBB.
static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
                               const TargetInstrInfo *TII) {
  DebugLoc dl;  // FIXME: this is nowhere
  SmallVector<MachineOperand, 0> NoCond;
  TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
}

/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
/// values defined in MI which are also live/used by MI.
static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
  const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();

  // Before stepping forward past MI, remember which regs were live
  // before MI. This is needed to set the Undef flag only when reg is
  // dead.
  SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
  LiveBeforeMI.setUniverse(TRI->getNumRegs());
  for (unsigned Reg : Redefs)
    LiveBeforeMI.insert(Reg);

  SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
  Redefs.stepForward(MI, Clobbers);

  // Now add the implicit uses for each of the clobbered values.
  for (auto Clobber : Clobbers) {
    // FIXME: Const cast here is nasty, but better than making StepForward
    // take a mutable instruction instead of const.
    unsigned Reg = Clobber.first;
    MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
    MachineInstr *OpMI = Op.getParent();
    MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
    if (Op.isRegMask()) {
      // First handle regmasks.  They clobber any entries in the mask which
      // means that we need a def for those registers.
      if (LiveBeforeMI.count(Reg))
        MIB.addReg(Reg, RegState::Implicit);

      // We also need to add an implicit def of this register for the later
      // use to read from.
      // For the register allocator to have allocated a register clobbered
      // by the call which is used later, it must be the case that
      // the call doesn't return.
      MIB.addReg(Reg, RegState::Implicit | RegState::Define);
      continue;
    }
    if (LiveBeforeMI.count(Reg))
      MIB.addReg(Reg, RegState::Implicit);
    else {
      bool HasLiveSubReg = false;
      for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
        if (!LiveBeforeMI.count(*S))
          continue;
        HasLiveSubReg = true;
        break;
      }
      if (HasLiveSubReg)
        MIB.addReg(Reg, RegState::Implicit);
    }
  }
}

/// If convert a simple (split, no rejoin) sub-CFG.
bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
  BBInfo *CvtBBI = &TrueBBI;
  BBInfo *NextBBI = &FalseBBI;

  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
  if (Kind == ICSimpleFalse)
    std::swap(CvtBBI, NextBBI);

  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
  MachineBasicBlock &NextMBB = *NextBBI->BB;
  if (CvtBBI->IsDone ||
      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
    // Something has changed. It's no longer safe to predicate this block.
    BBI.IsAnalyzed = false;
    CvtBBI->IsAnalyzed = false;
    return false;
  }

  if (CvtMBB.hasAddressTaken())
    // Conservatively abort if-conversion if BB's address is taken.
    return false;

  if (Kind == ICSimpleFalse)
    if (TII->reverseBranchCondition(Cond))
      llvm_unreachable("Unable to reverse branch condition!");

  Redefs.init(*TRI);

  if (MRI->tracksLiveness()) {
    // Initialize liveins to the first BB. These are potentially redefined by
    // predicated instructions.
    Redefs.addLiveIns(CvtMBB);
    Redefs.addLiveIns(NextMBB);
  }

  // Remove the branches from the entry so we can add the contents of the true
  // block to it.
  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);

  if (CvtMBB.pred_size() > 1) {
    // Copy instructions in the true block, predicate them, and add them to
    // the entry block.
    CopyAndPredicateBlock(BBI, *CvtBBI, Cond);

    // Keep the CFG updated.
    BBI.BB->removeSuccessor(&CvtMBB, true);
  } else {
    // Predicate the instructions in the true block.
    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);

    // Merge converted block into entry block. The BB to Cvt edge is removed
    // by MergeBlocks.
    MergeBlocks(BBI, *CvtBBI);
  }

  bool IterIfcvt = true;
  if (!canFallThroughTo(*BBI.BB, NextMBB)) {
    InsertUncondBranch(*BBI.BB, NextMBB, TII);
    BBI.HasFallThrough = false;
    // Now ifcvt'd block will look like this:
    // BB:
    // ...
    // t, f = cmp
    // if t op
    // b BBf
    //
    // We cannot further ifcvt this block because the unconditional branch
    // will have to be predicated on the new condition, that will not be
    // available if cmp executes.
    IterIfcvt = false;
  }

  // Update block info. BB can be iteratively if-converted.
  if (!IterIfcvt)
    BBI.IsDone = true;
  InvalidatePreds(*BBI.BB);
  CvtBBI->IsDone = true;

  // FIXME: Must maintain LiveIns.
  return true;
}

/// If convert a triangle sub-CFG.
bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
  BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
  BBInfo *CvtBBI = &TrueBBI;
  BBInfo *NextBBI = &FalseBBI;
  DebugLoc dl;  // FIXME: this is nowhere

  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
    std::swap(CvtBBI, NextBBI);

  MachineBasicBlock &CvtMBB = *CvtBBI->BB;
  MachineBasicBlock &NextMBB = *NextBBI->BB;
  if (CvtBBI->IsDone ||
      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
    // Something has changed. It's no longer safe to predicate this block.
    BBI.IsAnalyzed = false;
    CvtBBI->IsAnalyzed = false;
    return false;
  }

  if (CvtMBB.hasAddressTaken())
    // Conservatively abort if-conversion if BB's address is taken.
    return false;

  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
    if (TII->reverseBranchCondition(Cond))
      llvm_unreachable("Unable to reverse branch condition!");

  if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
    if (reverseBranchCondition(*CvtBBI)) {
      // BB has been changed, modify its predecessors (except for this
      // one) so they don't get ifcvt'ed based on bad intel.
      for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
        if (PBB == BBI.BB)
          continue;
        BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
        if (PBBI.IsEnqueued) {
          PBBI.IsAnalyzed = false;
          PBBI.IsEnqueued = false;
        }
      }
    }
  }

  // Initialize liveins to the first BB. These are potentially redefined by
  // predicated instructions.
  Redefs.init(*TRI);
  if (MRI->tracksLiveness()) {
    Redefs.addLiveIns(CvtMBB);
    Redefs.addLiveIns(NextMBB);
  }

  bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
  BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;

  if (HasEarlyExit) {
    // Get probabilities before modifying CvtMBB and BBI.BB.
    CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
    CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
    BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
    BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
  }

  // Remove the branches from the entry so we can add the contents of the true
  // block to it.
  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);

  if (CvtMBB.pred_size() > 1) {
    // Copy instructions in the true block, predicate them, and add them to
    // the entry block.
    CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
  } else {
    // Predicate the 'true' block after removing its branch.
    CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);

    // Now merge the entry of the triangle with the true block.
    MergeBlocks(BBI, *CvtBBI, false);
  }

  // Keep the CFG updated.
  BBI.BB->removeSuccessor(&CvtMBB, true);

  // If 'true' block has a 'false' successor, add an exit branch to it.
  if (HasEarlyExit) {
    SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
                                           CvtBBI->BrCond.end());
    if (TII->reverseBranchCondition(RevCond))
      llvm_unreachable("Unable to reverse branch condition!");

    // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
    // NewNext = New_Prob(BBI.BB, NextMBB) =
    //   Prob(BBI.BB, NextMBB) +
    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
    // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
    auto NewTrueBB = getNextBlock(*BBI.BB);
    auto NewNext = BBNext + BBCvt * CvtNext;
    auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
    if (NewTrueBBIter != BBI.BB->succ_end())
      BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);

    auto NewFalse = BBCvt * CvtFalse;
    TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
    BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
  }

  // Merge in the 'false' block if the 'false' block has no other
  // predecessors. Otherwise, add an unconditional branch to 'false'.
  bool FalseBBDead = false;
  bool IterIfcvt = true;
  bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
  if (!isFallThrough) {
    // Only merge them if the true block does not fallthrough to the false
    // block. By not merging them, we make it possible to iteratively
    // ifcvt the blocks.
    if (!HasEarlyExit &&
        NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
        !NextMBB.hasAddressTaken()) {
      MergeBlocks(BBI, *NextBBI);
      FalseBBDead = true;
    } else {
      InsertUncondBranch(*BBI.BB, NextMBB, TII);
      BBI.HasFallThrough = false;
    }
    // Mixed predicated and unpredicated code. This cannot be iteratively
    // predicated.
    IterIfcvt = false;
  }

  // Update block info. BB can be iteratively if-converted.
  if (!IterIfcvt)
    BBI.IsDone = true;
  InvalidatePreds(*BBI.BB);
  CvtBBI->IsDone = true;
  if (FalseBBDead)
    NextBBI->IsDone = true;

  // FIXME: Must maintain LiveIns.
  return true;
}

/// Common code shared between diamond conversions.
/// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
/// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
///               and FalseBBI
/// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
///               and \p FalseBBI
/// \p RemoveBranch - Remove the common branch of the two blocks before
///                   predicating. Only false for unanalyzable fallthrough
///                   cases. The caller will replace the branch if necessary.
/// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
///                    unanalyzable fallthrough
bool IfConverter::IfConvertDiamondCommon(
    BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
    unsigned NumDups1, unsigned NumDups2,
    bool TClobbersPred, bool FClobbersPred,
    bool RemoveBranch, bool MergeAddEdges) {

  if (TrueBBI.IsDone || FalseBBI.IsDone ||
      TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
    // Something has changed. It's no longer safe to predicate these blocks.
    BBI.IsAnalyzed = false;
    TrueBBI.IsAnalyzed = false;
    FalseBBI.IsAnalyzed = false;
    return false;
  }

  if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
    // Conservatively abort if-conversion if either BB has its address taken.
    return false;

  // Put the predicated instructions from the 'true' block before the
  // instructions from the 'false' block, unless the true block would clobber
  // the predicate, in which case, do the opposite.
  BBInfo *BBI1 = &TrueBBI;
  BBInfo *BBI2 = &FalseBBI;
  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
  if (TII->reverseBranchCondition(RevCond))
    llvm_unreachable("Unable to reverse branch condition!");
  SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
  SmallVector<MachineOperand, 4> *Cond2 = &RevCond;

  // Figure out the more profitable ordering.
  bool DoSwap = false;
  if (TClobbersPred && !FClobbersPred)
    DoSwap = true;
  else if (!TClobbersPred && !FClobbersPred) {
    if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
      DoSwap = true;
  } else if (TClobbersPred && FClobbersPred)
    llvm_unreachable("Predicate info cannot be clobbered by both sides.");
  if (DoSwap) {
    std::swap(BBI1, BBI2);
    std::swap(Cond1, Cond2);
  }

  // Remove the conditional branch from entry to the blocks.
  BBI.NonPredSize -= TII->removeBranch(*BBI.BB);

  MachineBasicBlock &MBB1 = *BBI1->BB;
  MachineBasicBlock &MBB2 = *BBI2->BB;

  // Initialize the Redefs:
  // - BB2 live-in regs need implicit uses before being redefined by BB1
  //   instructions.
  // - BB1 live-out regs need implicit uses before being redefined by BB2
  //   instructions. We start with BB1 live-ins so we have the live-out regs
  //   after tracking the BB1 instructions.
  Redefs.init(*TRI);
  if (MRI->tracksLiveness()) {
    Redefs.addLiveIns(MBB1);
    Redefs.addLiveIns(MBB2);
  }

  // Remove the duplicated instructions at the beginnings of both paths.
  // Skip dbg_value instructions.
  MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
  MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
  BBI1->NonPredSize -= NumDups1;
  BBI2->NonPredSize -= NumDups1;

  // Skip past the dups on each side separately since there may be
  // differing dbg_value entries. NumDups1 can include a "return"
  // instruction, if it's not marked as "branch".
  for (unsigned i = 0; i < NumDups1; ++DI1) {
    if (DI1 == MBB1.end())
      break;
    if (!DI1->isDebugInstr())
      ++i;
  }
  while (NumDups1 != 0) {
    // Since this instruction is going to be deleted, update call
    // site info state if the instruction is call instruction.
    if (DI2->isCall(MachineInstr::IgnoreBundle))
      MBB2.getParent()->eraseCallSiteInfo(&*DI2);

    ++DI2;
    if (DI2 == MBB2.end())
      break;
    if (!DI2->isDebugInstr())
      --NumDups1;
  }

  if (MRI->tracksLiveness()) {
    for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
      SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
      Redefs.stepForward(MI, Dummy);
    }
  }

  BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
  MBB2.erase(MBB2.begin(), DI2);

  // The branches have been checked to match, so it is safe to remove the
  // branch in BB1 and rely on the copy in BB2. The complication is that
  // the blocks may end with a return instruction, which may or may not
  // be marked as "branch". If it's not, then it could be included in
  // "dups1", leaving the blocks potentially empty after moving the common
  // duplicates.
#ifndef NDEBUG
  // Unanalyzable branches must match exactly. Check that now.
  if (!BBI1->IsBrAnalyzable)
    verifySameBranchInstructions(&MBB1, &MBB2);
#endif
  // Remove duplicated instructions from the tail of MBB1: any branch
  // instructions, and the common instructions counted by NumDups2.
  DI1 = MBB1.end();
  while (DI1 != MBB1.begin()) {
    MachineBasicBlock::iterator Prev = std::prev(DI1);
    if (!Prev->isBranch() && !Prev->isDebugInstr())
      break;
    DI1 = Prev;
  }
  for (unsigned i = 0; i != NumDups2; ) {
    // NumDups2 only counted non-dbg_value instructions, so this won't
    // run off the head of the list.
    assert(DI1 != MBB1.begin());

    --DI1;

    // Since this instruction is going to be deleted, update call
    // site info state if the instruction is call instruction.
    if (DI1->isCall(MachineInstr::IgnoreBundle))
      MBB1.getParent()->eraseCallSiteInfo(&*DI1);

    // skip dbg_value instructions
    if (!DI1->isDebugInstr())
      ++i;
  }
  MBB1.erase(DI1, MBB1.end());

  DI2 = BBI2->BB->end();
  // The branches have been checked to match. Skip over the branch in the false
  // block so that we don't try to predicate it.
  if (RemoveBranch)
    BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
  else {
    // Make DI2 point to the end of the range where the common "tail"
    // instructions could be found.
    while (DI2 != MBB2.begin()) {
      MachineBasicBlock::iterator Prev = std::prev(DI2);
      if (!Prev->isBranch() && !Prev->isDebugInstr())
        break;
      DI2 = Prev;
    }
  }
  while (NumDups2 != 0) {
    // NumDups2 only counted non-dbg_value instructions, so this won't
    // run off the head of the list.
    assert(DI2 != MBB2.begin());
    --DI2;
    // skip dbg_value instructions
    if (!DI2->isDebugInstr())
      --NumDups2;
  }

  // Remember which registers would later be defined by the false block.
  // This allows us not to predicate instructions in the true block that would
  // later be re-defined. That is, rather than
  //   subeq  r0, r1, #1
  //   addne  r0, r1, #1
  // generate:
  //   sub    r0, r1, #1
  //   addne  r0, r1, #1
  SmallSet<MCPhysReg, 4> RedefsByFalse;
  SmallSet<MCPhysReg, 4> ExtUses;
  if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
    for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
      if (FI.isDebugInstr())
        continue;
      SmallVector<MCPhysReg, 4> Defs;
      for (const MachineOperand &MO : FI.operands()) {
        if (!MO.isReg())
          continue;
        Register Reg = MO.getReg();
        if (!Reg)
          continue;
        if (MO.isDef()) {
          Defs.push_back(Reg);
        } else if (!RedefsByFalse.count(Reg)) {
          // These are defined before ctrl flow reach the 'false' instructions.
          // They cannot be modified by the 'true' instructions.
          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
               SubRegs.isValid(); ++SubRegs)
            ExtUses.insert(*SubRegs);
        }
      }

      for (MCPhysReg Reg : Defs) {
        if (!ExtUses.count(Reg)) {
          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
               SubRegs.isValid(); ++SubRegs)
            RedefsByFalse.insert(*SubRegs);
        }
      }
    }
  }

  // Predicate the 'true' block.
  PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);

  // After predicating BBI1, if there is a predicated terminator in BBI1 and
  // a non-predicated in BBI2, then we don't want to predicate the one from
  // BBI2. The reason is that if we merged these blocks, we would end up with
  // two predicated terminators in the same block.
  // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
  // predicate them either. They were checked to be identical, and so the
  // same branch would happen regardless of which path was taken.
  if (!MBB2.empty() && (DI2 == MBB2.end())) {
    MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
    MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
    bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
    bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
    if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
      --DI2;
  }

  // Predicate the 'false' block.
  PredicateBlock(*BBI2, DI2, *Cond2);

  // Merge the true block into the entry of the diamond.
  MergeBlocks(BBI, *BBI1, MergeAddEdges);
  MergeBlocks(BBI, *BBI2, MergeAddEdges);
  return true;
}

/// If convert an almost-diamond sub-CFG where the true
/// and false blocks share a common tail.
bool IfConverter::IfConvertForkedDiamond(
    BBInfo &BBI, IfcvtKind Kind,
    unsigned NumDups1, unsigned NumDups2,
    bool TClobbersPred, bool FClobbersPred) {
  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];

  // Save the debug location for later.
  DebugLoc dl;
  MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
  if (TIE != TrueBBI.BB->end())
    dl = TIE->getDebugLoc();
  // Removing branches from both blocks is safe, because we have already
  // determined that both blocks have the same branch instructions. The branch
  // will be added back at the end, unpredicated.
  if (!IfConvertDiamondCommon(
      BBI, TrueBBI, FalseBBI,
      NumDups1, NumDups2,
      TClobbersPred, FClobbersPred,
      /* RemoveBranch */ true, /* MergeAddEdges */ true))
    return false;

  // Add back the branch.
  // Debug location saved above when removing the branch from BBI2
  TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
                    TrueBBI.BrCond, dl);

  // Update block info.
  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
  InvalidatePreds(*BBI.BB);

  // FIXME: Must maintain LiveIns.
  return true;
}

/// If convert a diamond sub-CFG.
bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
                                   unsigned NumDups1, unsigned NumDups2,
                                   bool TClobbersPred, bool FClobbersPred) {
  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()];
  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
  MachineBasicBlock *TailBB = TrueBBI.TrueBB;

  // True block must fall through or end with an unanalyzable terminator.
  if (!TailBB) {
    if (blockAlwaysFallThrough(TrueBBI))
      TailBB = FalseBBI.TrueBB;
    assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
  }

  if (!IfConvertDiamondCommon(
      BBI, TrueBBI, FalseBBI,
      NumDups1, NumDups2,
      TClobbersPred, FClobbersPred,
      /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
      /* MergeAddEdges */ TailBB == nullptr))
    return false;

  // If the if-converted block falls through or unconditionally branches into
  // the tail block, and the tail block does not have other predecessors, then
  // fold the tail block in as well. Otherwise, unless it falls through to the
  // tail, add a unconditional branch to it.
  if (TailBB) {
    // We need to remove the edges to the true and false blocks manually since
    // we didn't let IfConvertDiamondCommon update the CFG.
    BBI.BB->removeSuccessor(TrueBBI.BB);
    BBI.BB->removeSuccessor(FalseBBI.BB, true);

    BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
    bool CanMergeTail = !TailBBI.HasFallThrough &&
      !TailBBI.BB->hasAddressTaken();
    // The if-converted block can still have a predicated terminator
    // (e.g. a predicated return). If that is the case, we cannot merge
    // it with the tail block.
    MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
    if (TI != BBI.BB->end() && TII->isPredicated(*TI))
      CanMergeTail = false;
    // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
    // check if there are any other predecessors besides those.
    unsigned NumPreds = TailBB->pred_size();
    if (NumPreds > 1)
      CanMergeTail = false;
    else if (NumPreds == 1 && CanMergeTail) {
      MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
      if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
        CanMergeTail = false;
    }
    if (CanMergeTail) {
      MergeBlocks(BBI, TailBBI);
      TailBBI.IsDone = true;
    } else {
      BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
      InsertUncondBranch(*BBI.BB, *TailBB, TII);
      BBI.HasFallThrough = false;
    }
  }

  // Update block info.
  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
  InvalidatePreds(*BBI.BB);

  // FIXME: Must maintain LiveIns.
  return true;
}

static bool MaySpeculate(const MachineInstr &MI,
                         SmallSet<MCPhysReg, 4> &LaterRedefs) {
  bool SawStore = true;
  if (!MI.isSafeToMove(nullptr, SawStore))
    return false;

  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    if (MO.isDef() && !LaterRedefs.count(Reg))
      return false;
  }

  return true;
}

/// Predicate instructions from the start of the block to the specified end with
/// the specified condition.
void IfConverter::PredicateBlock(BBInfo &BBI,
                                 MachineBasicBlock::iterator E,
                                 SmallVectorImpl<MachineOperand> &Cond,
                                 SmallSet<MCPhysReg, 4> *LaterRedefs) {
  bool AnyUnpred = false;
  bool MaySpec = LaterRedefs != nullptr;
  for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
    if (I.isDebugInstr() || TII->isPredicated(I))
      continue;
    // It may be possible not to predicate an instruction if it's the 'true'
    // side of a diamond and the 'false' side may re-define the instruction's
    // defs.
    if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
      AnyUnpred = true;
      continue;
    }
    // If any instruction is predicated, then every instruction after it must
    // be predicated.
    MaySpec = false;
    if (!TII->PredicateInstruction(I, Cond)) {
#ifndef NDEBUG
      dbgs() << "Unable to predicate " << I << "!\n";
#endif
      llvm_unreachable(nullptr);
    }

    // If the predicated instruction now redefines a register as the result of
    // if-conversion, add an implicit kill.
    UpdatePredRedefs(I, Redefs);
  }

  BBI.Predicate.append(Cond.begin(), Cond.end());

  BBI.IsAnalyzed = false;
  BBI.NonPredSize = 0;

  ++NumIfConvBBs;
  if (AnyUnpred)
    ++NumUnpred;
}

/// Copy and predicate instructions from source BB to the destination block.
/// Skip end of block branches if IgnoreBr is true.
void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
                                        SmallVectorImpl<MachineOperand> &Cond,
                                        bool IgnoreBr) {
  MachineFunction &MF = *ToBBI.BB->getParent();

  MachineBasicBlock &FromMBB = *FromBBI.BB;
  for (MachineInstr &I : FromMBB) {
    // Do not copy the end of the block branches.
    if (IgnoreBr && I.isBranch())
      break;

    MachineInstr *MI = MF.CloneMachineInstr(&I);
    // Make a copy of the call site info.
    if (MI->isCall(MachineInstr::IgnoreBundle))
      MF.copyCallSiteInfo(&I,MI);

    ToBBI.BB->insert(ToBBI.BB->end(), MI);
    ToBBI.NonPredSize++;
    unsigned ExtraPredCost = TII->getPredicationCost(I);
    unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
    if (NumCycles > 1)
      ToBBI.ExtraCost += NumCycles-1;
    ToBBI.ExtraCost2 += ExtraPredCost;

    if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
      if (!TII->PredicateInstruction(*MI, Cond)) {
#ifndef NDEBUG
        dbgs() << "Unable to predicate " << I << "!\n";
#endif
        llvm_unreachable(nullptr);
      }
    }

    // If the predicated instruction now redefines a register as the result of
    // if-conversion, add an implicit kill.
    UpdatePredRedefs(*MI, Redefs);
  }

  if (!IgnoreBr) {
    std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
                                           FromMBB.succ_end());
    MachineBasicBlock *NBB = getNextBlock(FromMBB);
    MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;

    for (MachineBasicBlock *Succ : Succs) {
      // Fallthrough edge can't be transferred.
      if (Succ == FallThrough)
        continue;
      ToBBI.BB->addSuccessor(Succ);
    }
  }

  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
  ToBBI.Predicate.append(Cond.begin(), Cond.end());

  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
  ToBBI.IsAnalyzed = false;

  ++NumDupBBs;
}

/// Move all instructions from FromBB to the end of ToBB.  This will leave
/// FromBB as an empty block, so remove all of its successor edges except for
/// the fall-through edge.  If AddEdges is true, i.e., when FromBBI's branch is
/// being moved, add those successor edges to ToBBI and remove the old edge
/// from ToBBI to FromBBI.
void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
  MachineBasicBlock &FromMBB = *FromBBI.BB;
  assert(!FromMBB.hasAddressTaken() &&
         "Removing a BB whose address is taken!");

  // In case FromMBB contains terminators (e.g. return instruction),
  // first move the non-terminator instructions, then the terminators.
  MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
  MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
  ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);

  // If FromBB has non-predicated terminator we should copy it at the end.
  if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
    ToTI = ToBBI.BB->end();
  ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());

  // Force normalizing the successors' probabilities of ToBBI.BB to convert all
  // unknown probabilities into known ones.
  // FIXME: This usage is too tricky and in the future we would like to
  // eliminate all unknown probabilities in MBB.
  if (ToBBI.IsBrAnalyzable)
    ToBBI.BB->normalizeSuccProbs();

  SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
                                                FromMBB.succ_end());
  MachineBasicBlock *NBB = getNextBlock(FromMBB);
  MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
  // The edge probability from ToBBI.BB to FromMBB, which is only needed when
  // AddEdges is true and FromMBB is a successor of ToBBI.BB.
  auto To2FromProb = BranchProbability::getZero();
  if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
    // Remove the old edge but remember the edge probability so we can calculate
    // the correct weights on the new edges being added further down.
    To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
    ToBBI.BB->removeSuccessor(&FromMBB);
  }

  for (MachineBasicBlock *Succ : FromSuccs) {
    // Fallthrough edge can't be transferred.
    if (Succ == FallThrough)
      continue;

    auto NewProb = BranchProbability::getZero();
    if (AddEdges) {
      // Calculate the edge probability for the edge from ToBBI.BB to Succ,
      // which is a portion of the edge probability from FromMBB to Succ. The
      // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
      // FromBBI is a successor of ToBBI.BB. See comment below for exception).
      NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);

      // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
      // only happens when if-converting a diamond CFG and FromMBB is the
      // tail BB.  In this case FromMBB post-dominates ToBBI.BB and hence we
      // could just use the probabilities on FromMBB's out-edges when adding
      // new successors.
      if (!To2FromProb.isZero())
        NewProb *= To2FromProb;
    }

    FromMBB.removeSuccessor(Succ);

    if (AddEdges) {
      // If the edge from ToBBI.BB to Succ already exists, update the
      // probability of this edge by adding NewProb to it. An example is shown
      // below, in which A is ToBBI.BB and B is FromMBB. In this case we
      // don't have to set C as A's successor as it already is. We only need to
      // update the edge probability on A->C. Note that B will not be
      // immediately removed from A's successors. It is possible that B->D is
      // not removed either if D is a fallthrough of B. Later the edge A->D
      // (generated here) and B->D will be combined into one edge. To maintain
      // correct edge probability of this combined edge, we need to set the edge
      // probability of A->B to zero, which is already done above. The edge
      // probability on A->D is calculated by scaling the original probability
      // on A->B by the probability of B->D.
      //
      // Before ifcvt:      After ifcvt (assume B->D is kept):
      //
      //       A                A
      //      /|               /|\
      //     / B              / B|
      //    | /|             |  ||
      //    |/ |             |  |/
      //    C  D             C  D
      //
      if (ToBBI.BB->isSuccessor(Succ))
        ToBBI.BB->setSuccProbability(
            find(ToBBI.BB->successors(), Succ),
            MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
      else
        ToBBI.BB->addSuccessor(Succ, NewProb);
    }
  }

  // Move the now empty FromMBB out of the way to the end of the function so
  // it doesn't interfere with fallthrough checks done by canFallThroughTo().
  MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
  if (Last != &FromMBB)
    FromMBB.moveAfter(Last);

  // Normalize the probabilities of ToBBI.BB's successors with all adjustment
  // we've done above.
  if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
    ToBBI.BB->normalizeSuccProbs();

  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
  FromBBI.Predicate.clear();

  ToBBI.NonPredSize += FromBBI.NonPredSize;
  ToBBI.ExtraCost += FromBBI.ExtraCost;
  ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
  FromBBI.NonPredSize = 0;
  FromBBI.ExtraCost = 0;
  FromBBI.ExtraCost2 = 0;

  ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
  ToBBI.HasFallThrough = FromBBI.HasFallThrough;
  ToBBI.IsAnalyzed = false;
  FromBBI.IsAnalyzed = false;
}

FunctionPass *
llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
  return new IfConverter(std::move(Ftor));
}