InterleavedLoadCombinePass.cpp 42.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
//===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
//
// This file defines the interleaved-load-combine pass. The pass searches for
// ShuffleVectorInstruction that execute interleaving loads. If a matching
// pattern is found, it adds a combined load and further instructions in a
// pattern that is detectable by InterleavedAccesPass. The old instructions are
// left dead to be removed later. The pass is specifically designed to be
// executed just before InterleavedAccesPass to find any left-over instances
// that are not detected within former passes.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"

#include <algorithm>
#include <cassert>
#include <list>

using namespace llvm;

#define DEBUG_TYPE "interleaved-load-combine"

namespace {

/// Statistic counter
STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");

/// Option to disable the pass
static cl::opt<bool> DisableInterleavedLoadCombine(
    "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
    cl::desc("Disable combining of interleaved loads"));

struct VectorInfo;

struct InterleavedLoadCombineImpl {
public:
  InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
                             TargetMachine &TM)
      : F(F), DT(DT), MSSA(MSSA),
        TLI(*TM.getSubtargetImpl(F)->getTargetLowering()),
        TTI(TM.getTargetTransformInfo(F)) {}

  /// Scan the function for interleaved load candidates and execute the
  /// replacement if applicable.
  bool run();

private:
  /// Function this pass is working on
  Function &F;

  /// Dominator Tree Analysis
  DominatorTree &DT;

  /// Memory Alias Analyses
  MemorySSA &MSSA;

  /// Target Lowering Information
  const TargetLowering &TLI;

  /// Target Transform Information
  const TargetTransformInfo TTI;

  /// Find the instruction in sets LIs that dominates all others, return nullptr
  /// if there is none.
  LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);

  /// Replace interleaved load candidates. It does additional
  /// analyses if this makes sense. Returns true on success and false
  /// of nothing has been changed.
  bool combine(std::list<VectorInfo> &InterleavedLoad,
               OptimizationRemarkEmitter &ORE);

  /// Given a set of VectorInfo containing candidates for a given interleave
  /// factor, find a set that represents a 'factor' interleaved load.
  bool findPattern(std::list<VectorInfo> &Candidates,
                   std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
                   const DataLayout &DL);
}; // InterleavedLoadCombine

/// First Order Polynomial on an n-Bit Integer Value
///
/// Polynomial(Value) = Value * B + A + E*2^(n-e)
///
/// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
/// significant bits. It is introduced if an exact computation cannot be proven
/// (e.q. division by 2).
///
/// As part of this optimization multiple loads will be combined. It necessary
/// to prove that loads are within some relative offset to each other. This
/// class is used to prove relative offsets of values loaded from memory.
///
/// Representing an integer in this form is sound since addition in two's
/// complement is associative (trivial) and multiplication distributes over the
/// addition (see Proof(1) in Polynomial::mul). Further, both operations
/// commute.
//
// Example:
// declare @fn(i64 %IDX, <4 x float>* %PTR) {
//   %Pa1 = add i64 %IDX, 2
//   %Pa2 = lshr i64 %Pa1, 1
//   %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
//   %Va = load <4 x float>, <4 x float>* %Pa3
//
//   %Pb1 = add i64 %IDX, 4
//   %Pb2 = lshr i64 %Pb1, 1
//   %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
//   %Vb = load <4 x float>, <4 x float>* %Pb3
// ... }
//
// The goal is to prove that two loads load consecutive addresses.
//
// In this case the polynomials are constructed by the following
// steps.
//
// The number tag #e specifies the error bits.
//
// Pa_0 = %IDX              #0
// Pa_1 = %IDX + 2          #0 | add 2
// Pa_2 = %IDX/2 + 1        #1 | lshr 1
// Pa_3 = %IDX/2 + 1        #1 | GEP, step signext to i64
// Pa_4 = (%IDX/2)*16 + 16  #0 | GEP, multiply index by sizeof(4) for floats
// Pa_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
//
// Pb_0 = %IDX              #0
// Pb_1 = %IDX + 4          #0 | add 2
// Pb_2 = %IDX/2 + 2        #1 | lshr 1
// Pb_3 = %IDX/2 + 2        #1 | GEP, step signext to i64
// Pb_4 = (%IDX/2)*16 + 32  #0 | GEP, multiply index by sizeof(4) for floats
// Pb_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
//
// Pb_5 - Pa_5 = 16         #0 | subtract to get the offset
//
// Remark: %PTR is not maintained within this class. So in this instance the
// offset of 16 can only be assumed if the pointers are equal.
//
class Polynomial {
  /// Operations on B
  enum BOps {
    LShr,
    Mul,
    SExt,
    Trunc,
  };

  /// Number of Error Bits e
  unsigned ErrorMSBs;

  /// Value
  Value *V;

  /// Coefficient B
  SmallVector<std::pair<BOps, APInt>, 4> B;

  /// Coefficient A
  APInt A;

public:
  Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V), B(), A() {
    IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
    if (Ty) {
      ErrorMSBs = 0;
      this->V = V;
      A = APInt(Ty->getBitWidth(), 0);
    }
  }

  Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
      : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(A) {}

  Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
      : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(BitWidth, A) {}

  Polynomial() : ErrorMSBs((unsigned)-1), V(NULL), B(), A() {}

  /// Increment and clamp the number of undefined bits.
  void incErrorMSBs(unsigned amt) {
    if (ErrorMSBs == (unsigned)-1)
      return;

    ErrorMSBs += amt;
    if (ErrorMSBs > A.getBitWidth())
      ErrorMSBs = A.getBitWidth();
  }

  /// Decrement and clamp the number of undefined bits.
  void decErrorMSBs(unsigned amt) {
    if (ErrorMSBs == (unsigned)-1)
      return;

    if (ErrorMSBs > amt)
      ErrorMSBs -= amt;
    else
      ErrorMSBs = 0;
  }

  /// Apply an add on the polynomial
  Polynomial &add(const APInt &C) {
    // Note: Addition is associative in two's complement even when in case of
    // signed overflow.
    //
    // Error bits can only propagate into higher significant bits. As these are
    // already regarded as undefined, there is no change.
    //
    // Theorem: Adding a constant to a polynomial does not change the error
    // term.
    //
    // Proof:
    //
    //   Since the addition is associative and commutes:
    //
    //   (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
    // [qed]

    if (C.getBitWidth() != A.getBitWidth()) {
      ErrorMSBs = (unsigned)-1;
      return *this;
    }

    A += C;
    return *this;
  }

  /// Apply a multiplication onto the polynomial.
  Polynomial &mul(const APInt &C) {
    // Note: Multiplication distributes over the addition
    //
    // Theorem: Multiplication distributes over the addition
    //
    // Proof(1):
    //
    //   (B+A)*C =-
    //        = (B + A) + (B + A) + .. {C Times}
    //         addition is associative and commutes, hence
    //        = B + B + .. {C Times} .. + A + A + .. {C times}
    //        = B*C + A*C
    //   (see (function add) for signed values and overflows)
    // [qed]
    //
    // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
    // to the left.
    //
    // Proof(2):
    //
    //   Let B' and A' be the n-Bit inputs with some unknown errors EA,
    //   EB at e leading bits. B' and A' can be written down as:
    //
    //     B' = B + 2^(n-e)*EB
    //     A' = A + 2^(n-e)*EA
    //
    //   Let C' be an input with c trailing zero bits. C' can be written as
    //
    //     C' = C*2^c
    //
    //   Therefore we can compute the result by using distributivity and
    //   commutativity.
    //
    //     (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
    //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
    //                     = (B'+A') * C' =
    //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
    //                     = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
    //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
    //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
    //                     = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
    //
    //   Let EC be the final error with EC = C*(EB + EA)
    //
    //                     = (B + A)*C' + EC*2^(n-e)*2^c =
    //                     = (B + A)*C' + EC*2^(n-(e-c))
    //
    //   Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
    //   less error bits than the input. c bits are shifted out to the left.
    // [qed]

    if (C.getBitWidth() != A.getBitWidth()) {
      ErrorMSBs = (unsigned)-1;
      return *this;
    }

    // Multiplying by one is a no-op.
    if (C.isOneValue()) {
      return *this;
    }

    // Multiplying by zero removes the coefficient B and defines all bits.
    if (C.isNullValue()) {
      ErrorMSBs = 0;
      deleteB();
    }

    // See Proof(2): Trailing zero bits indicate a left shift. This removes
    // leading bits from the result even if they are undefined.
    decErrorMSBs(C.countTrailingZeros());

    A *= C;
    pushBOperation(Mul, C);
    return *this;
  }

  /// Apply a logical shift right on the polynomial
  Polynomial &lshr(const APInt &C) {
    // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
    //          where
    //             e' = e + 1,
    //             E is a e-bit number,
    //             E' is a e'-bit number,
    //   holds under the following precondition:
    //          pre(1): A % 2 = 0
    //          pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
    //   where >> expresses a logical shift to the right, with adding zeros.
    //
    //  We need to show that for every, E there is a E'
    //
    //  B = b_h * 2^(n-1) + b_m * 2 + b_l
    //  A = a_h * 2^(n-1) + a_m * 2         (pre(1))
    //
    //  where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
    //
    //  Let X = (B + A + E*2^(n-e)) >> 1
    //  Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
    //
    //    X = [B + A + E*2^(n-e)] >> 1 =
    //      = [  b_h * 2^(n-1) + b_m * 2 + b_l +
    //         + a_h * 2^(n-1) + a_m * 2 +
    //         + E * 2^(n-e) ] >> 1 =
    //
    //    The sum is built by putting the overflow of [a_m + b+n] into the term
    //    2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
    //    this bit is discarded. This is expressed by % 2.
    //
    //    The bit in position 0 cannot overflow into the term (b_m + a_m).
    //
    //      = [  ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
    //         + ((b_m + a_m) % 2^(n-2)) * 2 +
    //         + b_l + E * 2^(n-e) ] >> 1 =
    //
    //    The shift is computed by dividing the terms by 2 and by cutting off
    //    b_l.
    //
    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + E * 2^(n-(e+1)) =
    //
    //    by the definition in the Theorem e+1 = e'
    //
    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + E * 2^(n-e') =
    //
    //    Compute Y by applying distributivity first
    //
    //    Y =  (B >> 1) + (A >> 1) + E*2^(n-e') =
    //      =    (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
    //         + (a_h * 2^(n-1) + a_m * 2) >> 1 +
    //         + E * 2^(n-e) >> 1 =
    //
    //    Again, the shift is computed by dividing the terms by 2 and by cutting
    //    off b_l.
    //
    //      =     b_h * 2^(n-2) + b_m +
    //         +  a_h * 2^(n-2) + a_m +
    //         +  E * 2^(n-(e+1)) =
    //
    //    Again, the sum is built by putting the overflow of [a_m + b+n] into
    //    the term 2^(n-1). But this time there is room for a second bit in the
    //    term 2^(n-2) we add this bit to a new term and denote it o_h in a
    //    second step.
    //
    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
    //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + E * 2^(n-(e+1)) =
    //
    //    Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
    //    Further replace e+1 by e'.
    //
    //      =    o_h * 2^(n-1) +
    //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + E * 2^(n-e') =
    //
    //    Move o_h into the error term and construct E'. To ensure that there is
    //    no 2^x with negative x, this step requires pre(2) (e < n).
    //
    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + o_h * 2^(e'-1) * 2^(n-e') +               | pre(2), move 2^(e'-1)
    //                                                     | out of the old exponent
    //         + E * 2^(n-e') =
    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + [o_h * 2^(e'-1) + E] * 2^(n-e') +         | move 2^(e'-1) out of
    //                                                     | the old exponent
    //
    //    Let E' = o_h * 2^(e'-1) + E
    //
    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + E' * 2^(n-e')
    //
    //    Because X and Y are distinct only in there error terms and E' can be
    //    constructed as shown the theorem holds.
    // [qed]
    //
    // For completeness in case of the case e=n it is also required to show that
    // distributivity can be applied.
    //
    // In this case Theorem(1) transforms to (the pre-condition on A can also be
    // dropped)
    //
    // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
    //          where
    //             A, B, E, E' are two's complement numbers with the same bit
    //             width
    //
    //   Let A + B + E = X
    //   Let (B >> 1) + (A >> 1) = Y
    //
    //   Therefore we need to show that for every X and Y there is an E' which
    //   makes the equation
    //
    //     X = Y + E'
    //
    //   hold. This is trivially the case for E' = X - Y.
    //
    // [qed]
    //
    // Remark: Distributing lshr with and arbitrary number n can be expressed as
    //   ((((B + A) lshr 1) lshr 1) ... ) {n times}.
    // This construction induces n additional error bits at the left.

    if (C.getBitWidth() != A.getBitWidth()) {
      ErrorMSBs = (unsigned)-1;
      return *this;
    }

    if (C.isNullValue())
      return *this;

    // Test if the result will be zero
    unsigned shiftAmt = C.getZExtValue();
    if (shiftAmt >= C.getBitWidth())
      return mul(APInt(C.getBitWidth(), 0));

    // The proof that shiftAmt LSBs are zero for at least one summand is only
    // possible for the constant number.
    //
    // If this can be proven add shiftAmt to the error counter
    // `ErrorMSBs`. Otherwise set all bits as undefined.
    if (A.countTrailingZeros() < shiftAmt)
      ErrorMSBs = A.getBitWidth();
    else
      incErrorMSBs(shiftAmt);

    // Apply the operation.
    pushBOperation(LShr, C);
    A = A.lshr(shiftAmt);

    return *this;
  }

  /// Apply a sign-extend or truncate operation on the polynomial.
  Polynomial &sextOrTrunc(unsigned n) {
    if (n < A.getBitWidth()) {
      // Truncate: Clearly undefined Bits on the MSB side are removed
      // if there are any.
      decErrorMSBs(A.getBitWidth() - n);
      A = A.trunc(n);
      pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
    }
    if (n > A.getBitWidth()) {
      // Extend: Clearly extending first and adding later is different
      // to adding first and extending later in all extended bits.
      incErrorMSBs(n - A.getBitWidth());
      A = A.sext(n);
      pushBOperation(SExt, APInt(sizeof(n) * 8, n));
    }

    return *this;
  }

  /// Test if there is a coefficient B.
  bool isFirstOrder() const { return V != nullptr; }

  /// Test coefficient B of two Polynomials are equal.
  bool isCompatibleTo(const Polynomial &o) const {
    // The polynomial use different bit width.
    if (A.getBitWidth() != o.A.getBitWidth())
      return false;

    // If neither Polynomial has the Coefficient B.
    if (!isFirstOrder() && !o.isFirstOrder())
      return true;

    // The index variable is different.
    if (V != o.V)
      return false;

    // Check the operations.
    if (B.size() != o.B.size())
      return false;

    auto ob = o.B.begin();
    for (auto &b : B) {
      if (b != *ob)
        return false;
      ob++;
    }

    return true;
  }

  /// Subtract two polynomials, return an undefined polynomial if
  /// subtraction is not possible.
  Polynomial operator-(const Polynomial &o) const {
    // Return an undefined polynomial if incompatible.
    if (!isCompatibleTo(o))
      return Polynomial();

    // If the polynomials are compatible (meaning they have the same
    // coefficient on B), B is eliminated. Thus a polynomial solely
    // containing A is returned
    return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
  }

  /// Subtract a constant from a polynomial,
  Polynomial operator-(uint64_t C) const {
    Polynomial Result(*this);
    Result.A -= C;
    return Result;
  }

  /// Add a constant to a polynomial,
  Polynomial operator+(uint64_t C) const {
    Polynomial Result(*this);
    Result.A += C;
    return Result;
  }

  /// Returns true if it can be proven that two Polynomials are equal.
  bool isProvenEqualTo(const Polynomial &o) {
    // Subtract both polynomials and test if it is fully defined and zero.
    Polynomial r = *this - o;
    return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isNullValue());
  }

  /// Print the polynomial into a stream.
  void print(raw_ostream &OS) const {
    OS << "[{#ErrBits:" << ErrorMSBs << "} ";

    if (V) {
      for (auto b : B)
        OS << "(";
      OS << "(" << *V << ") ";

      for (auto b : B) {
        switch (b.first) {
        case LShr:
          OS << "LShr ";
          break;
        case Mul:
          OS << "Mul ";
          break;
        case SExt:
          OS << "SExt ";
          break;
        case Trunc:
          OS << "Trunc ";
          break;
        }

        OS << b.second << ") ";
      }
    }

    OS << "+ " << A << "]";
  }

private:
  void deleteB() {
    V = nullptr;
    B.clear();
  }

  void pushBOperation(const BOps Op, const APInt &C) {
    if (isFirstOrder()) {
      B.push_back(std::make_pair(Op, C));
      return;
    }
  }
};

#ifndef NDEBUG
static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
  S.print(OS);
  return OS;
}
#endif

/// VectorInfo stores abstract the following information for each vector
/// element:
///
/// 1) The the memory address loaded into the element as Polynomial
/// 2) a set of load instruction necessary to construct the vector,
/// 3) a set of all other instructions that are necessary to create the vector and
/// 4) a pointer value that can be used as relative base for all elements.
struct VectorInfo {
private:
  VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
    llvm_unreachable(
        "Copying VectorInfo is neither implemented nor necessary,");
  }

public:
  /// Information of a Vector Element
  struct ElementInfo {
    /// Offset Polynomial.
    Polynomial Ofs;

    /// The Load Instruction used to Load the entry. LI is null if the pointer
    /// of the load instruction does not point on to the entry
    LoadInst *LI;

    ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
        : Ofs(Offset), LI(LI) {}
  };

  /// Basic-block the load instructions are within
  BasicBlock *BB;

  /// Pointer value of all participation load instructions
  Value *PV;

  /// Participating load instructions
  std::set<LoadInst *> LIs;

  /// Participating instructions
  std::set<Instruction *> Is;

  /// Final shuffle-vector instruction
  ShuffleVectorInst *SVI;

  /// Information of the offset for each vector element
  ElementInfo *EI;

  /// Vector Type
  VectorType *const VTy;

  VectorInfo(VectorType *VTy)
      : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy) {
    EI = new ElementInfo[VTy->getNumElements()];
  }

  virtual ~VectorInfo() { delete[] EI; }

  unsigned getDimension() const { return VTy->getNumElements(); }

  /// Test if the VectorInfo can be part of an interleaved load with the
  /// specified factor.
  ///
  /// \param Factor of the interleave
  /// \param DL Targets Datalayout
  ///
  /// \returns true if this is possible and false if not
  bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
    unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
    for (unsigned i = 1; i < getDimension(); i++) {
      if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
        return false;
      }
    }
    return true;
  }

  /// Recursively computes the vector information stored in V.
  ///
  /// This function delegates the work to specialized implementations
  ///
  /// \param V Value to operate on
  /// \param Result Result of the computation
  ///
  /// \returns false if no sensible information can be gathered.
  static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
    ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
    if (SVI)
      return computeFromSVI(SVI, Result, DL);
    LoadInst *LI = dyn_cast<LoadInst>(V);
    if (LI)
      return computeFromLI(LI, Result, DL);
    BitCastInst *BCI = dyn_cast<BitCastInst>(V);
    if (BCI)
      return computeFromBCI(BCI, Result, DL);
    return false;
  }

  /// BitCastInst specialization to compute the vector information.
  ///
  /// \param BCI BitCastInst to operate on
  /// \param Result Result of the computation
  ///
  /// \returns false if no sensible information can be gathered.
  static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
                             const DataLayout &DL) {
    Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));

    if (!Op)
      return false;

    VectorType *VTy = dyn_cast<VectorType>(Op->getType());
    if (!VTy)
      return false;

    // We can only cast from large to smaller vectors
    if (Result.VTy->getNumElements() % VTy->getNumElements())
      return false;

    unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
    unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
    unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());

    if (NewSize * Factor != OldSize)
      return false;

    VectorInfo Old(VTy);
    if (!compute(Op, Old, DL))
      return false;

    for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
      for (unsigned j = 0; j < Factor; j++) {
        Result.EI[i + j] =
            ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
                        j == 0 ? Old.EI[i / Factor].LI : nullptr);
      }
    }

    Result.BB = Old.BB;
    Result.PV = Old.PV;
    Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
    Result.Is.insert(Old.Is.begin(), Old.Is.end());
    Result.Is.insert(BCI);
    Result.SVI = nullptr;

    return true;
  }

  /// ShuffleVectorInst specialization to compute vector information.
  ///
  /// \param SVI ShuffleVectorInst to operate on
  /// \param Result Result of the computation
  ///
  /// Compute the left and the right side vector information and merge them by
  /// applying the shuffle operation. This function also ensures that the left
  /// and right side have compatible loads. This means that all loads are with
  /// in the same basic block and are based on the same pointer.
  ///
  /// \returns false if no sensible information can be gathered.
  static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
                             const DataLayout &DL) {
    VectorType *ArgTy = dyn_cast<VectorType>(SVI->getOperand(0)->getType());
    assert(ArgTy && "ShuffleVector Operand is not a VectorType");

    // Compute the left hand vector information.
    VectorInfo LHS(ArgTy);
    if (!compute(SVI->getOperand(0), LHS, DL))
      LHS.BB = nullptr;

    // Compute the right hand vector information.
    VectorInfo RHS(ArgTy);
    if (!compute(SVI->getOperand(1), RHS, DL))
      RHS.BB = nullptr;

    // Neither operand produced sensible results?
    if (!LHS.BB && !RHS.BB)
      return false;
    // Only RHS produced sensible results?
    else if (!LHS.BB) {
      Result.BB = RHS.BB;
      Result.PV = RHS.PV;
    }
    // Only LHS produced sensible results?
    else if (!RHS.BB) {
      Result.BB = LHS.BB;
      Result.PV = LHS.PV;
    }
    // Both operands produced sensible results?
    else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
      Result.BB = LHS.BB;
      Result.PV = LHS.PV;
    }
    // Both operands produced sensible results but they are incompatible.
    else {
      return false;
    }

    // Merge and apply the operation on the offset information.
    if (LHS.BB) {
      Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
      Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
    }
    if (RHS.BB) {
      Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
      Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
    }
    Result.Is.insert(SVI);
    Result.SVI = SVI;

    int j = 0;
    for (int i : SVI->getShuffleMask()) {
      assert((i < 2 * (signed)ArgTy->getNumElements()) &&
             "Invalid ShuffleVectorInst (index out of bounds)");

      if (i < 0)
        Result.EI[j] = ElementInfo();
      else if (i < (signed)ArgTy->getNumElements()) {
        if (LHS.BB)
          Result.EI[j] = LHS.EI[i];
        else
          Result.EI[j] = ElementInfo();
      } else {
        if (RHS.BB)
          Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
        else
          Result.EI[j] = ElementInfo();
      }
      j++;
    }

    return true;
  }

  /// LoadInst specialization to compute vector information.
  ///
  /// This function also acts as abort condition to the recursion.
  ///
  /// \param LI LoadInst to operate on
  /// \param Result Result of the computation
  ///
  /// \returns false if no sensible information can be gathered.
  static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
                            const DataLayout &DL) {
    Value *BasePtr;
    Polynomial Offset;

    if (LI->isVolatile())
      return false;

    if (LI->isAtomic())
      return false;

    // Get the base polynomial
    computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);

    Result.BB = LI->getParent();
    Result.PV = BasePtr;
    Result.LIs.insert(LI);
    Result.Is.insert(LI);

    for (unsigned i = 0; i < Result.getDimension(); i++) {
      Value *Idx[2] = {
          ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
          ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
      };
      int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2));
      Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
    }

    return true;
  }

  /// Recursively compute polynomial of a value.
  ///
  /// \param BO Input binary operation
  /// \param Result Result polynomial
  static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
    Value *LHS = BO.getOperand(0);
    Value *RHS = BO.getOperand(1);

    // Find the RHS Constant if any
    ConstantInt *C = dyn_cast<ConstantInt>(RHS);
    if ((!C) && BO.isCommutative()) {
      C = dyn_cast<ConstantInt>(LHS);
      if (C)
        std::swap(LHS, RHS);
    }

    switch (BO.getOpcode()) {
    case Instruction::Add:
      if (!C)
        break;

      computePolynomial(*LHS, Result);
      Result.add(C->getValue());
      return;

    case Instruction::LShr:
      if (!C)
        break;

      computePolynomial(*LHS, Result);
      Result.lshr(C->getValue());
      return;

    default:
      break;
    }

    Result = Polynomial(&BO);
  }

  /// Recursively compute polynomial of a value
  ///
  /// \param V input value
  /// \param Result result polynomial
  static void computePolynomial(Value &V, Polynomial &Result) {
    if (auto *BO = dyn_cast<BinaryOperator>(&V))
      computePolynomialBinOp(*BO, Result);
    else
      Result = Polynomial(&V);
  }

  /// Compute the Polynomial representation of a Pointer type.
  ///
  /// \param Ptr input pointer value
  /// \param Result result polynomial
  /// \param BasePtr pointer the polynomial is based on
  /// \param DL Datalayout of the target machine
  static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
                                           Value *&BasePtr,
                                           const DataLayout &DL) {
    // Not a pointer type? Return an undefined polynomial
    PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
    if (!PtrTy) {
      Result = Polynomial();
      BasePtr = nullptr;
      return;
    }
    unsigned PointerBits =
        DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());

    /// Skip pointer casts. Return Zero polynomial otherwise
    if (isa<CastInst>(&Ptr)) {
      CastInst &CI = *cast<CastInst>(&Ptr);
      switch (CI.getOpcode()) {
      case Instruction::BitCast:
        computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
        break;
      default:
        BasePtr = &Ptr;
        Polynomial(PointerBits, 0);
        break;
      }
    }
    /// Resolve GetElementPtrInst.
    else if (isa<GetElementPtrInst>(&Ptr)) {
      GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);

      APInt BaseOffset(PointerBits, 0);

      // Check if we can compute the Offset with accumulateConstantOffset
      if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
        Result = Polynomial(BaseOffset);
        BasePtr = GEP.getPointerOperand();
        return;
      } else {
        // Otherwise we allow that the last index operand of the GEP is
        // non-constant.
        unsigned idxOperand, e;
        SmallVector<Value *, 4> Indices;
        for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
             idxOperand++) {
          ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
          if (!IDX)
            break;
          Indices.push_back(IDX);
        }

        // It must also be the last operand.
        if (idxOperand + 1 != e) {
          Result = Polynomial();
          BasePtr = nullptr;
          return;
        }

        // Compute the polynomial of the index operand.
        computePolynomial(*GEP.getOperand(idxOperand), Result);

        // Compute base offset from zero based index, excluding the last
        // variable operand.
        BaseOffset =
            DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);

        // Apply the operations of GEP to the polynomial.
        unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
        Result.sextOrTrunc(PointerBits);
        Result.mul(APInt(PointerBits, ResultSize));
        Result.add(BaseOffset);
        BasePtr = GEP.getPointerOperand();
      }
    }
    // All other instructions are handled by using the value as base pointer and
    // a zero polynomial.
    else {
      BasePtr = &Ptr;
      Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
    }
  }

#ifndef NDEBUG
  void print(raw_ostream &OS) const {
    if (PV)
      OS << *PV;
    else
      OS << "(none)";
    OS << " + ";
    for (unsigned i = 0; i < getDimension(); i++)
      OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
    OS << "]";
  }
#endif
};

} // anonymous namespace

bool InterleavedLoadCombineImpl::findPattern(
    std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
    unsigned Factor, const DataLayout &DL) {
  for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
    unsigned i;
    // Try to find an interleaved load using the front of Worklist as first line
    unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());

    // List containing iterators pointing to the VectorInfos of the candidates
    std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());

    for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
      if (C->VTy != C0->VTy)
        continue;
      if (C->BB != C0->BB)
        continue;
      if (C->PV != C0->PV)
        continue;

      // Check the current value matches any of factor - 1 remaining lines
      for (i = 1; i < Factor; i++) {
        if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
          Res[i] = C;
        }
      }

      for (i = 1; i < Factor; i++) {
        if (Res[i] == Candidates.end())
          break;
      }
      if (i == Factor) {
        Res[0] = C0;
        break;
      }
    }

    if (Res[0] != Candidates.end()) {
      // Move the result into the output
      for (unsigned i = 0; i < Factor; i++) {
        InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
      }

      return true;
    }
  }
  return false;
}

LoadInst *
InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
  assert(!LIs.empty() && "No load instructions given.");

  // All LIs are within the same BB. Select the first for a reference.
  BasicBlock *BB = (*LIs.begin())->getParent();
  BasicBlock::iterator FLI =
      std::find_if(BB->begin(), BB->end(), [&LIs](Instruction &I) -> bool {
        return is_contained(LIs, &I);
      });
  assert(FLI != BB->end());

  return cast<LoadInst>(FLI);
}

bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
                                         OptimizationRemarkEmitter &ORE) {
  LLVM_DEBUG(dbgs() << "Checking interleaved load\n");

  // The insertion point is the LoadInst which loads the first values. The
  // following tests are used to proof that the combined load can be inserted
  // just before InsertionPoint.
  LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;

  // Test if the offset is computed
  if (!InsertionPoint)
    return false;

  std::set<LoadInst *> LIs;
  std::set<Instruction *> Is;
  std::set<Instruction *> SVIs;

  unsigned InterleavedCost;
  unsigned InstructionCost = 0;

  // Get the interleave factor
  unsigned Factor = InterleavedLoad.size();

  // Merge all input sets used in analysis
  for (auto &VI : InterleavedLoad) {
    // Generate a set of all load instructions to be combined
    LIs.insert(VI.LIs.begin(), VI.LIs.end());

    // Generate a set of all instructions taking part in load
    // interleaved. This list excludes the instructions necessary for the
    // polynomial construction.
    Is.insert(VI.Is.begin(), VI.Is.end());

    // Generate the set of the final ShuffleVectorInst.
    SVIs.insert(VI.SVI);
  }

  // There is nothing to combine.
  if (LIs.size() < 2)
    return false;

  // Test if all participating instruction will be dead after the
  // transformation. If intermediate results are used, no performance gain can
  // be expected. Also sum the cost of the Instructions beeing left dead.
  for (auto &I : Is) {
    // Compute the old cost
    InstructionCost +=
        TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency);

    // The final SVIs are allowed not to be dead, all uses will be replaced
    if (SVIs.find(I) != SVIs.end())
      continue;

    // If there are users outside the set to be eliminated, we abort the
    // transformation. No gain can be expected.
    for (auto *U : I->users()) {
      if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
        return false;
    }
  }

  // We know that all LoadInst are within the same BB. This guarantees that
  // either everything or nothing is loaded.
  LoadInst *First = findFirstLoad(LIs);

  // To be safe that the loads can be combined, iterate over all loads and test
  // that the corresponding defining access dominates first LI. This guarantees
  // that there are no aliasing stores in between the loads.
  auto FMA = MSSA.getMemoryAccess(First);
  for (auto LI : LIs) {
    auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
    if (!MSSA.dominates(MADef, FMA))
      return false;
  }
  assert(!LIs.empty() && "There are no LoadInst to combine");

  // It is necessary that insertion point dominates all final ShuffleVectorInst.
  for (auto &VI : InterleavedLoad) {
    if (!DT.dominates(InsertionPoint, VI.SVI))
      return false;
  }

  // All checks are done. Add instructions detectable by InterleavedAccessPass
  // The old instruction will are left dead.
  IRBuilder<> Builder(InsertionPoint);
  Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
  unsigned ElementsPerSVI =
      InterleavedLoad.front().SVI->getType()->getNumElements();
  VectorType *ILTy = VectorType::get(ETy, Factor * ElementsPerSVI);

  SmallVector<unsigned, 4> Indices;
  for (unsigned i = 0; i < Factor; i++)
    Indices.push_back(i);
  InterleavedCost = TTI.getInterleavedMemoryOpCost(
      Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlignment(),
      InsertionPoint->getPointerAddressSpace());

  if (InterleavedCost >= InstructionCost) {
    return false;
  }

  // Create a pointer cast for the wide load.
  auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0),
                                      ILTy->getPointerTo(),
                                      "interleaved.wide.ptrcast");

  // Create the wide load and update the MemorySSA.
  auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlignment(),
                                      "interleaved.wide.load");
  auto MSSAU = MemorySSAUpdater(&MSSA);
  MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
      LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
  MSSAU.insertUse(MSSALoad);

  // Create the final SVIs and replace all uses.
  int i = 0;
  for (auto &VI : InterleavedLoad) {
    SmallVector<uint32_t, 4> Mask;
    for (unsigned j = 0; j < ElementsPerSVI; j++)
      Mask.push_back(i + j * Factor);

    Builder.SetInsertPoint(VI.SVI);
    auto SVI = Builder.CreateShuffleVector(LI, UndefValue::get(LI->getType()),
                                           Mask, "interleaved.shuffle");
    VI.SVI->replaceAllUsesWith(SVI);
    i++;
  }

  NumInterleavedLoadCombine++;
  ORE.emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
           << "Load interleaved combined with factor "
           << ore::NV("Factor", Factor);
  });

  return true;
}

bool InterleavedLoadCombineImpl::run() {
  OptimizationRemarkEmitter ORE(&F);
  bool changed = false;
  unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();

  auto &DL = F.getParent()->getDataLayout();

  // Start with the highest factor to avoid combining and recombining.
  for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
    std::list<VectorInfo> Candidates;

    for (BasicBlock &BB : F) {
      for (Instruction &I : BB) {
        if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {

          Candidates.emplace_back(SVI->getType());

          if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
            Candidates.pop_back();
            continue;
          }

          if (!Candidates.back().isInterleaved(Factor, DL)) {
            Candidates.pop_back();
          }
        }
      }
    }

    std::list<VectorInfo> InterleavedLoad;
    while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
      if (combine(InterleavedLoad, ORE)) {
        changed = true;
      } else {
        // Remove the first element of the Interleaved Load but put the others
        // back on the list and continue searching
        Candidates.splice(Candidates.begin(), InterleavedLoad,
                          std::next(InterleavedLoad.begin()),
                          InterleavedLoad.end());
      }
      InterleavedLoad.clear();
    }
  }

  return changed;
}

namespace {
/// This pass combines interleaved loads into a pattern detectable by
/// InterleavedAccessPass.
struct InterleavedLoadCombine : public FunctionPass {
  static char ID;

  InterleavedLoadCombine() : FunctionPass(ID) {
    initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override {
    return "Interleaved Load Combine Pass";
  }

  bool runOnFunction(Function &F) override {
    if (DisableInterleavedLoadCombine)
      return false;

    auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
    if (!TPC)
      return false;

    LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
                      << "\n");

    return InterleavedLoadCombineImpl(
               F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
               getAnalysis<MemorySSAWrapperPass>().getMSSA(),
               TPC->getTM<TargetMachine>())
        .run();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MemorySSAWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    FunctionPass::getAnalysisUsage(AU);
  }

private:
};
} // anonymous namespace

char InterleavedLoadCombine::ID = 0;

INITIALIZE_PASS_BEGIN(
    InterleavedLoadCombine, DEBUG_TYPE,
    "Combine interleaved loads into wide loads and shufflevector instructions",
    false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(
    InterleavedLoadCombine, DEBUG_TYPE,
    "Combine interleaved loads into wide loads and shufflevector instructions",
    false, false)

FunctionPass *
llvm::createInterleavedLoadCombinePass() {
  auto P = new InterleavedLoadCombine();
  return P;
}