LiveRangeEdit.cpp 17 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The LiveRangeEdit class represents changes done to a virtual register when it
// is spilled or split.
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");

void LiveRangeEdit::Delegate::anchor() { }

LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg,
                                                     bool createSubRanges) {
  Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
  if (VRM)
    VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));

  LiveInterval &LI = LIS.createEmptyInterval(VReg);
  if (Parent && !Parent->isSpillable())
    LI.markNotSpillable();
  if (createSubRanges) {
    // Create empty subranges if the OldReg's interval has them. Do not create
    // the main range here---it will be constructed later after the subranges
    // have been finalized.
    LiveInterval &OldLI = LIS.getInterval(OldReg);
    VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
    for (LiveInterval::SubRange &S : OldLI.subranges())
      LI.createSubRange(Alloc, S.LaneMask);
  }
  return LI;
}

unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
  Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
  if (VRM) {
    VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
  }
  // FIXME: Getting the interval here actually computes it.
  // In theory, this may not be what we want, but in practice
  // the createEmptyIntervalFrom API is used when this is not
  // the case. Generally speaking we just want to annotate the
  // LiveInterval when it gets created but we cannot do that at
  // the moment.
  if (Parent && !Parent->isSpillable())
    LIS.getInterval(VReg).markNotSpillable();
  return VReg;
}

bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
                                          const MachineInstr *DefMI,
                                          AliasAnalysis *aa) {
  assert(DefMI && "Missing instruction");
  ScannedRemattable = true;
  if (!TII.isTriviallyReMaterializable(*DefMI, aa))
    return false;
  Remattable.insert(VNI);
  return true;
}

void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
  for (VNInfo *VNI : getParent().valnos) {
    if (VNI->isUnused())
      continue;
    unsigned Original = VRM->getOriginal(getReg());
    LiveInterval &OrigLI = LIS.getInterval(Original);
    VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
    if (!OrigVNI)
      continue;
    MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
    if (!DefMI)
      continue;
    checkRematerializable(OrigVNI, DefMI, aa);
  }
  ScannedRemattable = true;
}

bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
  if (!ScannedRemattable)
    scanRemattable(aa);
  return !Remattable.empty();
}

/// allUsesAvailableAt - Return true if all registers used by OrigMI at
/// OrigIdx are also available with the same value at UseIdx.
bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
                                       SlotIndex OrigIdx,
                                       SlotIndex UseIdx) const {
  OrigIdx = OrigIdx.getRegSlot(true);
  UseIdx = UseIdx.getRegSlot(true);
  for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = OrigMI->getOperand(i);
    if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
      continue;

    // We can't remat physreg uses, unless it is a constant.
    if (Register::isPhysicalRegister(MO.getReg())) {
      if (MRI.isConstantPhysReg(MO.getReg()))
        continue;
      return false;
    }

    LiveInterval &li = LIS.getInterval(MO.getReg());
    const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
    if (!OVNI)
      continue;

    // Don't allow rematerialization immediately after the original def.
    // It would be incorrect if OrigMI redefines the register.
    // See PR14098.
    if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
      return false;

    if (OVNI != li.getVNInfoAt(UseIdx))
      return false;
  }
  return true;
}

bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
                                       SlotIndex UseIdx, bool cheapAsAMove) {
  assert(ScannedRemattable && "Call anyRematerializable first");

  // Use scanRemattable info.
  if (!Remattable.count(OrigVNI))
    return false;

  // No defining instruction provided.
  SlotIndex DefIdx;
  assert(RM.OrigMI && "No defining instruction for remattable value");
  DefIdx = LIS.getInstructionIndex(*RM.OrigMI);

  // If only cheap remats were requested, bail out early.
  if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
    return false;

  // Verify that all used registers are available with the same values.
  if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
    return false;

  return true;
}

SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
                                         MachineBasicBlock::iterator MI,
                                         unsigned DestReg,
                                         const Remat &RM,
                                         const TargetRegisterInfo &tri,
                                         bool Late) {
  assert(RM.OrigMI && "Invalid remat");
  TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
  // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
  // to false anyway in case the isDead flag of RM.OrigMI's dest register
  // is true.
  (*--MI).getOperand(0).setIsDead(false);
  Rematted.insert(RM.ParentVNI);
  return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
}

void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
  if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
    LIS.removeInterval(Reg);
}

bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
                               SmallVectorImpl<MachineInstr*> &Dead) {
  MachineInstr *DefMI = nullptr, *UseMI = nullptr;

  // Check that there is a single def and a single use.
  for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
    MachineInstr *MI = MO.getParent();
    if (MO.isDef()) {
      if (DefMI && DefMI != MI)
        return false;
      if (!MI->canFoldAsLoad())
        return false;
      DefMI = MI;
    } else if (!MO.isUndef()) {
      if (UseMI && UseMI != MI)
        return false;
      // FIXME: Targets don't know how to fold subreg uses.
      if (MO.getSubReg())
        return false;
      UseMI = MI;
    }
  }
  if (!DefMI || !UseMI)
    return false;

  // Since we're moving the DefMI load, make sure we're not extending any live
  // ranges.
  if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
                          LIS.getInstructionIndex(*UseMI)))
    return false;

  // We also need to make sure it is safe to move the load.
  // Assume there are stores between DefMI and UseMI.
  bool SawStore = true;
  if (!DefMI->isSafeToMove(nullptr, SawStore))
    return false;

  LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI
                    << "       into single use: " << *UseMI);

  SmallVector<unsigned, 8> Ops;
  if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
    return false;

  MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
  if (!FoldMI)
    return false;
  LLVM_DEBUG(dbgs() << "                folded: " << *FoldMI);
  LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
  if (UseMI->isCall())
    UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI);
  UseMI->eraseFromParent();
  DefMI->addRegisterDead(LI->reg, nullptr);
  Dead.push_back(DefMI);
  ++NumDCEFoldedLoads;
  return true;
}

bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
                              const MachineOperand &MO) const {
  const MachineInstr &MI = *MO.getParent();
  SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
  if (LI.Query(Idx).isKill())
    return true;
  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
  unsigned SubReg = MO.getSubReg();
  LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
  for (const LiveInterval::SubRange &S : LI.subranges()) {
    if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
      return true;
  }
  return false;
}

/// Find all live intervals that need to shrink, then remove the instruction.
void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
                                     AliasAnalysis *AA) {
  assert(MI->allDefsAreDead() && "Def isn't really dead");
  SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();

  // Never delete a bundled instruction.
  if (MI->isBundled()) {
    return;
  }
  // Never delete inline asm.
  if (MI->isInlineAsm()) {
    LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
    return;
  }

  // Use the same criteria as DeadMachineInstructionElim.
  bool SawStore = false;
  if (!MI->isSafeToMove(nullptr, SawStore)) {
    LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
    return;
  }

  LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);

  // Collect virtual registers to be erased after MI is gone.
  SmallVector<unsigned, 8> RegsToErase;
  bool ReadsPhysRegs = false;
  bool isOrigDef = false;
  unsigned Dest;
  // Only optimize rematerialize case when the instruction has one def, since
  // otherwise we could leave some dead defs in the code.  This case is
  // extremely rare.
  if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
      MI->getDesc().getNumDefs() == 1) {
    Dest = MI->getOperand(0).getReg();
    unsigned Original = VRM->getOriginal(Dest);
    LiveInterval &OrigLI = LIS.getInterval(Original);
    VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
    // The original live-range may have been shrunk to
    // an empty live-range. It happens when it is dead, but
    // we still keep it around to be able to rematerialize
    // other values that depend on it.
    if (OrigVNI)
      isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
  }

  // Check for live intervals that may shrink
  for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
         MOE = MI->operands_end(); MOI != MOE; ++MOI) {
    if (!MOI->isReg())
      continue;
    Register Reg = MOI->getReg();
    if (!Register::isVirtualRegister(Reg)) {
      // Check if MI reads any unreserved physregs.
      if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
        ReadsPhysRegs = true;
      else if (MOI->isDef())
        LIS.removePhysRegDefAt(Reg, Idx);
      continue;
    }
    LiveInterval &LI = LIS.getInterval(Reg);

    // Shrink read registers, unless it is likely to be expensive and
    // unlikely to change anything. We typically don't want to shrink the
    // PIC base register that has lots of uses everywhere.
    // Always shrink COPY uses that probably come from live range splitting.
    if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) ||
        (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI))))
      ToShrink.insert(&LI);

    // Remove defined value.
    if (MOI->isDef()) {
      if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
        TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
      LIS.removeVRegDefAt(LI, Idx);
      if (LI.empty())
        RegsToErase.push_back(Reg);
    }
  }

  // Currently, we don't support DCE of physreg live ranges. If MI reads
  // any unreserved physregs, don't erase the instruction, but turn it into
  // a KILL instead. This way, the physreg live ranges don't end up
  // dangling.
  // FIXME: It would be better to have something like shrinkToUses() for
  // physregs. That could potentially enable more DCE and it would free up
  // the physreg. It would not happen often, though.
  if (ReadsPhysRegs) {
    MI->setDesc(TII.get(TargetOpcode::KILL));
    // Remove all operands that aren't physregs.
    for (unsigned i = MI->getNumOperands(); i; --i) {
      const MachineOperand &MO = MI->getOperand(i-1);
      if (MO.isReg() && Register::isPhysicalRegister(MO.getReg()))
        continue;
      MI->RemoveOperand(i-1);
    }
    LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
  } else {
    // If the dest of MI is an original reg and MI is reMaterializable,
    // don't delete the inst. Replace the dest with a new reg, and keep
    // the inst for remat of other siblings. The inst is saved in
    // LiveRangeEdit::DeadRemats and will be deleted after all the
    // allocations of the func are done.
    if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
      LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false);
      VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
      NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
      pop_back();
      DeadRemats->insert(MI);
      const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
      MI->substituteRegister(Dest, NewLI.reg, 0, TRI);
      MI->getOperand(0).setIsDead(true);
    } else {
      if (TheDelegate)
        TheDelegate->LRE_WillEraseInstruction(MI);
      LIS.RemoveMachineInstrFromMaps(*MI);
      MI->eraseFromParent();
      ++NumDCEDeleted;
    }
  }

  // Erase any virtregs that are now empty and unused. There may be <undef>
  // uses around. Keep the empty live range in that case.
  for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
    unsigned Reg = RegsToErase[i];
    if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
      ToShrink.remove(&LIS.getInterval(Reg));
      eraseVirtReg(Reg);
    }
  }
}

void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
                                      ArrayRef<unsigned> RegsBeingSpilled,
                                      AliasAnalysis *AA) {
  ToShrinkSet ToShrink;

  for (;;) {
    // Erase all dead defs.
    while (!Dead.empty())
      eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA);

    if (ToShrink.empty())
      break;

    // Shrink just one live interval. Then delete new dead defs.
    LiveInterval *LI = ToShrink.back();
    ToShrink.pop_back();
    if (foldAsLoad(LI, Dead))
      continue;
    unsigned VReg = LI->reg;
    if (TheDelegate)
      TheDelegate->LRE_WillShrinkVirtReg(VReg);
    if (!LIS.shrinkToUses(LI, &Dead))
      continue;

    // Don't create new intervals for a register being spilled.
    // The new intervals would have to be spilled anyway so its not worth it.
    // Also they currently aren't spilled so creating them and not spilling
    // them results in incorrect code.
    bool BeingSpilled = false;
    for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
      if (VReg == RegsBeingSpilled[i]) {
        BeingSpilled = true;
        break;
      }
    }

    if (BeingSpilled) continue;

    // LI may have been separated, create new intervals.
    LI->RenumberValues();
    SmallVector<LiveInterval*, 8> SplitLIs;
    LIS.splitSeparateComponents(*LI, SplitLIs);
    if (!SplitLIs.empty())
      ++NumFracRanges;

    unsigned Original = VRM ? VRM->getOriginal(VReg) : 0;
    for (const LiveInterval *SplitLI : SplitLIs) {
      // If LI is an original interval that hasn't been split yet, make the new
      // intervals their own originals instead of referring to LI. The original
      // interval must contain all the split products, and LI doesn't.
      if (Original != VReg && Original != 0)
        VRM->setIsSplitFromReg(SplitLI->reg, Original);
      if (TheDelegate)
        TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg);
    }
  }
}

// Keep track of new virtual registers created via
// MachineRegisterInfo::createVirtualRegister.
void
LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
{
  if (VRM)
    VRM->grow();

  NewRegs.push_back(VReg);
}

void
LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
                                        const MachineLoopInfo &Loops,
                                        const MachineBlockFrequencyInfo &MBFI) {
  VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI);
  for (unsigned I = 0, Size = size(); I < Size; ++I) {
    LiveInterval &LI = LIS.getInterval(get(I));
    if (MRI.recomputeRegClass(LI.reg))
      LLVM_DEBUG({
        const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
        dbgs() << "Inflated " << printReg(LI.reg) << " to "
               << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n';
      });
    VRAI.calculateSpillWeightAndHint(LI);
  }
}