MachineCSE.cpp 31.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
//===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs global common subexpression elimination on machine
// instructions using a scoped hash table based value numbering scheme. It
// must be run while the machine function is still in SSA form.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RecyclingAllocator.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "machine-cse"

STATISTIC(NumCoalesces, "Number of copies coalesced");
STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
STATISTIC(NumPREs,      "Number of partial redundant expression"
                        " transformed to fully redundant");
STATISTIC(NumPhysCSEs,
          "Number of physreg referencing common subexpr eliminated");
STATISTIC(NumCrossBBCSEs,
          "Number of cross-MBB physreg referencing CS eliminated");
STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");

namespace {

  class MachineCSE : public MachineFunctionPass {
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    AliasAnalysis *AA;
    MachineDominatorTree *DT;
    MachineRegisterInfo *MRI;
    MachineBlockFrequencyInfo *MBFI;

  public:
    static char ID; // Pass identification

    MachineCSE() : MachineFunctionPass(ID) {
      initializeMachineCSEPass(*PassRegistry::getPassRegistry());
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      MachineFunctionPass::getAnalysisUsage(AU);
      AU.addRequired<AAResultsWrapperPass>();
      AU.addPreservedID(MachineLoopInfoID);
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
      AU.addRequired<MachineBlockFrequencyInfo>();
      AU.addPreserved<MachineBlockFrequencyInfo>();
    }

    void releaseMemory() override {
      ScopeMap.clear();
      PREMap.clear();
      Exps.clear();
    }

  private:
    using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
                            ScopedHashTableVal<MachineInstr *, unsigned>>;
    using ScopedHTType =
        ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
                        AllocatorTy>;
    using ScopeType = ScopedHTType::ScopeTy;
    using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;

    unsigned LookAheadLimit = 0;
    DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
    DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
        PREMap;
    ScopedHTType VNT;
    SmallVector<MachineInstr *, 64> Exps;
    unsigned CurrVN = 0;

    bool PerformTrivialCopyPropagation(MachineInstr *MI,
                                       MachineBasicBlock *MBB);
    bool isPhysDefTriviallyDead(unsigned Reg,
                                MachineBasicBlock::const_iterator I,
                                MachineBasicBlock::const_iterator E) const;
    bool hasLivePhysRegDefUses(const MachineInstr *MI,
                               const MachineBasicBlock *MBB,
                               SmallSet<unsigned, 8> &PhysRefs,
                               PhysDefVector &PhysDefs, bool &PhysUseDef) const;
    bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
                          SmallSet<unsigned, 8> &PhysRefs,
                          PhysDefVector &PhysDefs, bool &NonLocal) const;
    bool isCSECandidate(MachineInstr *MI);
    bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
                           MachineBasicBlock *CSBB, MachineInstr *MI);
    void EnterScope(MachineBasicBlock *MBB);
    void ExitScope(MachineBasicBlock *MBB);
    bool ProcessBlockCSE(MachineBasicBlock *MBB);
    void ExitScopeIfDone(MachineDomTreeNode *Node,
                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
    bool PerformCSE(MachineDomTreeNode *Node);

    bool isPRECandidate(MachineInstr *MI);
    bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
    bool PerformSimplePRE(MachineDominatorTree *DT);
    /// Heuristics to see if it's profitable to move common computations of MBB
    /// and MBB1 to CandidateBB.
    bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
                                 MachineBasicBlock *MBB,
                                 MachineBasicBlock *MBB1);
  };

} // end anonymous namespace

char MachineCSE::ID = 0;

char &llvm::MachineCSEID = MachineCSE::ID;

INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
                      "Machine Common Subexpression Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
                    "Machine Common Subexpression Elimination", false, false)

/// The source register of a COPY machine instruction can be propagated to all
/// its users, and this propagation could increase the probability of finding
/// common subexpressions. If the COPY has only one user, the COPY itself can
/// be removed.
bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
                                               MachineBasicBlock *MBB) {
  bool Changed = false;
  for (MachineOperand &MO : MI->operands()) {
    if (!MO.isReg() || !MO.isUse())
      continue;
    Register Reg = MO.getReg();
    if (!Register::isVirtualRegister(Reg))
      continue;
    bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
    MachineInstr *DefMI = MRI->getVRegDef(Reg);
    if (!DefMI->isCopy())
      continue;
    Register SrcReg = DefMI->getOperand(1).getReg();
    if (!Register::isVirtualRegister(SrcReg))
      continue;
    if (DefMI->getOperand(0).getSubReg())
      continue;
    // FIXME: We should trivially coalesce subregister copies to expose CSE
    // opportunities on instructions with truncated operands (see
    // cse-add-with-overflow.ll). This can be done here as follows:
    // if (SrcSubReg)
    //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
    //                                     SrcSubReg);
    // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
    //
    // The 2-addr pass has been updated to handle coalesced subregs. However,
    // some machine-specific code still can't handle it.
    // To handle it properly we also need a way find a constrained subregister
    // class given a super-reg class and subreg index.
    if (DefMI->getOperand(1).getSubReg())
      continue;
    if (!MRI->constrainRegAttrs(SrcReg, Reg))
      continue;
    LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
    LLVM_DEBUG(dbgs() << "***     to: " << *MI);

    // Propagate SrcReg of copies to MI.
    MO.setReg(SrcReg);
    MRI->clearKillFlags(SrcReg);
    // Coalesce single use copies.
    if (OnlyOneUse) {
      // If (and only if) we've eliminated all uses of the copy, also
      // copy-propagate to any debug-users of MI, or they'll be left using
      // an undefined value.
      DefMI->changeDebugValuesDefReg(SrcReg);

      DefMI->eraseFromParent();
      ++NumCoalesces;
    }
    Changed = true;
  }

  return Changed;
}

bool
MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
                                   MachineBasicBlock::const_iterator I,
                                   MachineBasicBlock::const_iterator E) const {
  unsigned LookAheadLeft = LookAheadLimit;
  while (LookAheadLeft) {
    // Skip over dbg_value's.
    I = skipDebugInstructionsForward(I, E);

    if (I == E)
      // Reached end of block, we don't know if register is dead or not.
      return false;

    bool SeenDef = false;
    for (const MachineOperand &MO : I->operands()) {
      if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
        SeenDef = true;
      if (!MO.isReg() || !MO.getReg())
        continue;
      if (!TRI->regsOverlap(MO.getReg(), Reg))
        continue;
      if (MO.isUse())
        // Found a use!
        return false;
      SeenDef = true;
    }
    if (SeenDef)
      // See a def of Reg (or an alias) before encountering any use, it's
      // trivially dead.
      return true;

    --LookAheadLeft;
    ++I;
  }
  return false;
}

static bool isCallerPreservedOrConstPhysReg(unsigned Reg,
                                            const MachineFunction &MF,
                                            const TargetRegisterInfo &TRI) {
  // MachineRegisterInfo::isConstantPhysReg directly called by
  // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
  // reserved registers to be frozen. That doesn't cause a problem  post-ISel as
  // most (if not all) targets freeze reserved registers right after ISel.
  //
  // It does cause issues mid-GlobalISel, however, hence the additional
  // reservedRegsFrozen check.
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  return TRI.isCallerPreservedPhysReg(Reg, MF) ||
         (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
}

/// hasLivePhysRegDefUses - Return true if the specified instruction read/write
/// physical registers (except for dead defs of physical registers). It also
/// returns the physical register def by reference if it's the only one and the
/// instruction does not uses a physical register.
bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
                                       const MachineBasicBlock *MBB,
                                       SmallSet<unsigned, 8> &PhysRefs,
                                       PhysDefVector &PhysDefs,
                                       bool &PhysUseDef) const {
  // First, add all uses to PhysRefs.
  for (const MachineOperand &MO : MI->operands()) {
    if (!MO.isReg() || MO.isDef())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    if (Register::isVirtualRegister(Reg))
      continue;
    // Reading either caller preserved or constant physregs is ok.
    if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI))
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
        PhysRefs.insert(*AI);
  }

  // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
  // (which currently contains only uses), set the PhysUseDef flag.
  PhysUseDef = false;
  MachineBasicBlock::const_iterator I = MI; I = std::next(I);
  for (const auto &MOP : llvm::enumerate(MI->operands())) {
    const MachineOperand &MO = MOP.value();
    if (!MO.isReg() || !MO.isDef())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    if (Register::isVirtualRegister(Reg))
      continue;
    // Check against PhysRefs even if the def is "dead".
    if (PhysRefs.count(Reg))
      PhysUseDef = true;
    // If the def is dead, it's ok. But the def may not marked "dead". That's
    // common since this pass is run before livevariables. We can scan
    // forward a few instructions and check if it is obviously dead.
    if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
      PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
  }

  // Finally, add all defs to PhysRefs as well.
  for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
    for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
         ++AI)
      PhysRefs.insert(*AI);

  return !PhysRefs.empty();
}

bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
                                  SmallSet<unsigned, 8> &PhysRefs,
                                  PhysDefVector &PhysDefs,
                                  bool &NonLocal) const {
  // For now conservatively returns false if the common subexpression is
  // not in the same basic block as the given instruction. The only exception
  // is if the common subexpression is in the sole predecessor block.
  const MachineBasicBlock *MBB = MI->getParent();
  const MachineBasicBlock *CSMBB = CSMI->getParent();

  bool CrossMBB = false;
  if (CSMBB != MBB) {
    if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
      return false;

    for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
      if (MRI->isAllocatable(PhysDefs[i].second) ||
          MRI->isReserved(PhysDefs[i].second))
        // Avoid extending live range of physical registers if they are
        //allocatable or reserved.
        return false;
    }
    CrossMBB = true;
  }
  MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
  MachineBasicBlock::const_iterator E = MI;
  MachineBasicBlock::const_iterator EE = CSMBB->end();
  unsigned LookAheadLeft = LookAheadLimit;
  while (LookAheadLeft) {
    // Skip over dbg_value's.
    while (I != E && I != EE && I->isDebugInstr())
      ++I;

    if (I == EE) {
      assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
      (void)CrossMBB;
      CrossMBB = false;
      NonLocal = true;
      I = MBB->begin();
      EE = MBB->end();
      continue;
    }

    if (I == E)
      return true;

    for (const MachineOperand &MO : I->operands()) {
      // RegMasks go on instructions like calls that clobber lots of physregs.
      // Don't attempt to CSE across such an instruction.
      if (MO.isRegMask())
        return false;
      if (!MO.isReg() || !MO.isDef())
        continue;
      Register MOReg = MO.getReg();
      if (Register::isVirtualRegister(MOReg))
        continue;
      if (PhysRefs.count(MOReg))
        return false;
    }

    --LookAheadLeft;
    ++I;
  }

  return false;
}

bool MachineCSE::isCSECandidate(MachineInstr *MI) {
  if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
      MI->isInlineAsm() || MI->isDebugInstr())
    return false;

  // Ignore copies.
  if (MI->isCopyLike())
    return false;

  // Ignore stuff that we obviously can't move.
  if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
      MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
    return false;

  if (MI->mayLoad()) {
    // Okay, this instruction does a load. As a refinement, we allow the target
    // to decide whether the loaded value is actually a constant. If so, we can
    // actually use it as a load.
    if (!MI->isDereferenceableInvariantLoad(AA))
      // FIXME: we should be able to hoist loads with no other side effects if
      // there are no other instructions which can change memory in this loop.
      // This is a trivial form of alias analysis.
      return false;
  }

  // Ignore stack guard loads, otherwise the register that holds CSEed value may
  // be spilled and get loaded back with corrupted data.
  if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
    return false;

  return true;
}

/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
/// common expression that defines Reg. CSBB is basic block where CSReg is
/// defined.
bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
                                   MachineBasicBlock *CSBB, MachineInstr *MI) {
  // FIXME: Heuristics that works around the lack the live range splitting.

  // If CSReg is used at all uses of Reg, CSE should not increase register
  // pressure of CSReg.
  bool MayIncreasePressure = true;
  if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) {
    MayIncreasePressure = false;
    SmallPtrSet<MachineInstr*, 8> CSUses;
    for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
      CSUses.insert(&MI);
    }
    for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
      if (!CSUses.count(&MI)) {
        MayIncreasePressure = true;
        break;
      }
    }
  }
  if (!MayIncreasePressure) return true;

  // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
  // an immediate predecessor. We don't want to increase register pressure and
  // end up causing other computation to be spilled.
  if (TII->isAsCheapAsAMove(*MI)) {
    MachineBasicBlock *BB = MI->getParent();
    if (CSBB != BB && !CSBB->isSuccessor(BB))
      return false;
  }

  // Heuristics #2: If the expression doesn't not use a vr and the only use
  // of the redundant computation are copies, do not cse.
  bool HasVRegUse = false;
  for (const MachineOperand &MO : MI->operands()) {
    if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) {
      HasVRegUse = true;
      break;
    }
  }
  if (!HasVRegUse) {
    bool HasNonCopyUse = false;
    for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
      // Ignore copies.
      if (!MI.isCopyLike()) {
        HasNonCopyUse = true;
        break;
      }
    }
    if (!HasNonCopyUse)
      return false;
  }

  // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
  // it unless the defined value is already used in the BB of the new use.
  bool HasPHI = false;
  for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
    HasPHI |= UseMI.isPHI();
    if (UseMI.getParent() == MI->getParent())
      return true;
  }

  return !HasPHI;
}

void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
  LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
  ScopeType *Scope = new ScopeType(VNT);
  ScopeMap[MBB] = Scope;
}

void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
  LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
  DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
  assert(SI != ScopeMap.end());
  delete SI->second;
  ScopeMap.erase(SI);
}

bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) {
  bool Changed = false;

  SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
  SmallVector<unsigned, 2> ImplicitDefsToUpdate;
  SmallVector<unsigned, 2> ImplicitDefs;
  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
    MachineInstr *MI = &*I;
    ++I;

    if (!isCSECandidate(MI))
      continue;

    bool FoundCSE = VNT.count(MI);
    if (!FoundCSE) {
      // Using trivial copy propagation to find more CSE opportunities.
      if (PerformTrivialCopyPropagation(MI, MBB)) {
        Changed = true;

        // After coalescing MI itself may become a copy.
        if (MI->isCopyLike())
          continue;

        // Try again to see if CSE is possible.
        FoundCSE = VNT.count(MI);
      }
    }

    // Commute commutable instructions.
    bool Commuted = false;
    if (!FoundCSE && MI->isCommutable()) {
      if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
        Commuted = true;
        FoundCSE = VNT.count(NewMI);
        if (NewMI != MI) {
          // New instruction. It doesn't need to be kept.
          NewMI->eraseFromParent();
          Changed = true;
        } else if (!FoundCSE)
          // MI was changed but it didn't help, commute it back!
          (void)TII->commuteInstruction(*MI);
      }
    }

    // If the instruction defines physical registers and the values *may* be
    // used, then it's not safe to replace it with a common subexpression.
    // It's also not safe if the instruction uses physical registers.
    bool CrossMBBPhysDef = false;
    SmallSet<unsigned, 8> PhysRefs;
    PhysDefVector PhysDefs;
    bool PhysUseDef = false;
    if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
                                          PhysDefs, PhysUseDef)) {
      FoundCSE = false;

      // ... Unless the CS is local or is in the sole predecessor block
      // and it also defines the physical register which is not clobbered
      // in between and the physical register uses were not clobbered.
      // This can never be the case if the instruction both uses and
      // defines the same physical register, which was detected above.
      if (!PhysUseDef) {
        unsigned CSVN = VNT.lookup(MI);
        MachineInstr *CSMI = Exps[CSVN];
        if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
          FoundCSE = true;
      }
    }

    if (!FoundCSE) {
      VNT.insert(MI, CurrVN++);
      Exps.push_back(MI);
      continue;
    }

    // Found a common subexpression, eliminate it.
    unsigned CSVN = VNT.lookup(MI);
    MachineInstr *CSMI = Exps[CSVN];
    LLVM_DEBUG(dbgs() << "Examining: " << *MI);
    LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);

    // Check if it's profitable to perform this CSE.
    bool DoCSE = true;
    unsigned NumDefs = MI->getNumDefs();

    for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isDef())
        continue;
      Register OldReg = MO.getReg();
      Register NewReg = CSMI->getOperand(i).getReg();

      // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
      // we should make sure it is not dead at CSMI.
      if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
        ImplicitDefsToUpdate.push_back(i);

      // Keep track of implicit defs of CSMI and MI, to clear possibly
      // made-redundant kill flags.
      if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
        ImplicitDefs.push_back(OldReg);

      if (OldReg == NewReg) {
        --NumDefs;
        continue;
      }

      assert(Register::isVirtualRegister(OldReg) &&
             Register::isVirtualRegister(NewReg) &&
             "Do not CSE physical register defs!");

      if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), MI)) {
        LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
        DoCSE = false;
        break;
      }

      // Don't perform CSE if the result of the new instruction cannot exist
      // within the constraints (register class, bank, or low-level type) of
      // the old instruction.
      if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
        LLVM_DEBUG(
            dbgs() << "*** Not the same register constraints, avoid CSE!\n");
        DoCSE = false;
        break;
      }

      CSEPairs.push_back(std::make_pair(OldReg, NewReg));
      --NumDefs;
    }

    // Actually perform the elimination.
    if (DoCSE) {
      for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
        unsigned OldReg = CSEPair.first;
        unsigned NewReg = CSEPair.second;
        // OldReg may have been unused but is used now, clear the Dead flag
        MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
        assert(Def != nullptr && "CSEd register has no unique definition?");
        Def->clearRegisterDeads(NewReg);
        // Replace with NewReg and clear kill flags which may be wrong now.
        MRI->replaceRegWith(OldReg, NewReg);
        MRI->clearKillFlags(NewReg);
      }

      // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
      // we should make sure it is not dead at CSMI.
      for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
        CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
      for (auto PhysDef : PhysDefs)
        if (!MI->getOperand(PhysDef.first).isDead())
          CSMI->getOperand(PhysDef.first).setIsDead(false);

      // Go through implicit defs of CSMI and MI, and clear the kill flags on
      // their uses in all the instructions between CSMI and MI.
      // We might have made some of the kill flags redundant, consider:
      //   subs  ... implicit-def %nzcv    <- CSMI
      //   csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
      //   subs  ... implicit-def %nzcv    <- MI, to be eliminated
      //   csinc ... implicit killed %nzcv
      // Since we eliminated MI, and reused a register imp-def'd by CSMI
      // (here %nzcv), that register, if it was killed before MI, should have
      // that kill flag removed, because it's lifetime was extended.
      if (CSMI->getParent() == MI->getParent()) {
        for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
          for (auto ImplicitDef : ImplicitDefs)
            if (MachineOperand *MO = II->findRegisterUseOperand(
                    ImplicitDef, /*isKill=*/true, TRI))
              MO->setIsKill(false);
      } else {
        // If the instructions aren't in the same BB, bail out and clear the
        // kill flag on all uses of the imp-def'd register.
        for (auto ImplicitDef : ImplicitDefs)
          MRI->clearKillFlags(ImplicitDef);
      }

      if (CrossMBBPhysDef) {
        // Add physical register defs now coming in from a predecessor to MBB
        // livein list.
        while (!PhysDefs.empty()) {
          auto LiveIn = PhysDefs.pop_back_val();
          if (!MBB->isLiveIn(LiveIn.second))
            MBB->addLiveIn(LiveIn.second);
        }
        ++NumCrossBBCSEs;
      }

      MI->eraseFromParent();
      ++NumCSEs;
      if (!PhysRefs.empty())
        ++NumPhysCSEs;
      if (Commuted)
        ++NumCommutes;
      Changed = true;
    } else {
      VNT.insert(MI, CurrVN++);
      Exps.push_back(MI);
    }
    CSEPairs.clear();
    ImplicitDefsToUpdate.clear();
    ImplicitDefs.clear();
  }

  return Changed;
}

/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
/// dominator tree node if its a leaf or all of its children are done. Walk
/// up the dominator tree to destroy ancestors which are now done.
void
MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
                        DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
  if (OpenChildren[Node])
    return;

  // Pop scope.
  ExitScope(Node->getBlock());

  // Now traverse upwards to pop ancestors whose offsprings are all done.
  while (MachineDomTreeNode *Parent = Node->getIDom()) {
    unsigned Left = --OpenChildren[Parent];
    if (Left != 0)
      break;
    ExitScope(Parent->getBlock());
    Node = Parent;
  }
}

bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
  SmallVector<MachineDomTreeNode*, 32> Scopes;
  SmallVector<MachineDomTreeNode*, 8> WorkList;
  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;

  CurrVN = 0;

  // Perform a DFS walk to determine the order of visit.
  WorkList.push_back(Node);
  do {
    Node = WorkList.pop_back_val();
    Scopes.push_back(Node);
    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
    OpenChildren[Node] = Children.size();
    for (MachineDomTreeNode *Child : Children)
      WorkList.push_back(Child);
  } while (!WorkList.empty());

  // Now perform CSE.
  bool Changed = false;
  for (MachineDomTreeNode *Node : Scopes) {
    MachineBasicBlock *MBB = Node->getBlock();
    EnterScope(MBB);
    Changed |= ProcessBlockCSE(MBB);
    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
    ExitScopeIfDone(Node, OpenChildren);
  }

  return Changed;
}

// We use stronger checks for PRE candidate rather than for CSE ones to embrace
// checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
// to exclude instrs created by PRE that won't be CSEed later.
bool MachineCSE::isPRECandidate(MachineInstr *MI) {
  if (!isCSECandidate(MI) ||
      MI->isNotDuplicable() ||
      MI->mayLoad() ||
      MI->isAsCheapAsAMove() ||
      MI->getNumDefs() != 1 ||
      MI->getNumExplicitDefs() != 1)
    return false;

  for (auto def : MI->defs())
    if (!Register::isVirtualRegister(def.getReg()))
      return false;

  for (auto use : MI->uses())
    if (use.isReg() && !Register::isVirtualRegister(use.getReg()))
      return false;

  return true;
}

bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT,
                                 MachineBasicBlock *MBB) {
  bool Changed = false;
  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
    MachineInstr *MI = &*I;
    ++I;

    if (!isPRECandidate(MI))
      continue;

    if (!PREMap.count(MI)) {
      PREMap[MI] = MBB;
      continue;
    }

    auto MBB1 = PREMap[MI];
    assert(
        !DT->properlyDominates(MBB, MBB1) &&
        "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
    auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
    if (!CMBB->isLegalToHoistInto())
      continue;

    if (!isProfitableToHoistInto(CMBB, MBB, MBB1))
      continue;

    // Two instrs are partial redundant if their basic blocks are reachable
    // from one to another but one doesn't dominate another.
    if (CMBB != MBB1) {
      auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
      if (BB != nullptr && BB1 != nullptr &&
          (isPotentiallyReachable(BB1, BB) ||
           isPotentiallyReachable(BB, BB1))) {

        assert(MI->getOperand(0).isDef() &&
               "First operand of instr with one explicit def must be this def");
        Register VReg = MI->getOperand(0).getReg();
        Register NewReg = MRI->cloneVirtualRegister(VReg);
        if (!isProfitableToCSE(NewReg, VReg, CMBB, MI))
          continue;
        MachineInstr &NewMI =
            TII->duplicate(*CMBB, CMBB->getFirstTerminator(), *MI);
        NewMI.getOperand(0).setReg(NewReg);

        PREMap[MI] = CMBB;
        ++NumPREs;
        Changed = true;
      }
    }
  }
  return Changed;
}

// This simple PRE (partial redundancy elimination) pass doesn't actually
// eliminate partial redundancy but transforms it to full redundancy,
// anticipating that the next CSE step will eliminate this created redundancy.
// If CSE doesn't eliminate this, than created instruction will remain dead
// and eliminated later by Remove Dead Machine Instructions pass.
bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) {
  SmallVector<MachineDomTreeNode *, 32> BBs;

  PREMap.clear();
  bool Changed = false;
  BBs.push_back(DT->getRootNode());
  do {
    auto Node = BBs.pop_back_val();
    const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
    for (MachineDomTreeNode *Child : Children)
      BBs.push_back(Child);

    MachineBasicBlock *MBB = Node->getBlock();
    Changed |= ProcessBlockPRE(DT, MBB);

  } while (!BBs.empty());

  return Changed;
}

bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
                                         MachineBasicBlock *MBB,
                                         MachineBasicBlock *MBB1) {
  if (CandidateBB->getParent()->getFunction().hasMinSize())
    return true;
  assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
  assert(DT->dominates(CandidateBB, MBB1) &&
         "CandidateBB should dominate MBB1");
  return MBFI->getBlockFreq(CandidateBB) <=
         MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
}

bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  TII = MF.getSubtarget().getInstrInfo();
  TRI = MF.getSubtarget().getRegisterInfo();
  MRI = &MF.getRegInfo();
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  DT = &getAnalysis<MachineDominatorTree>();
  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
  LookAheadLimit = TII->getMachineCSELookAheadLimit();
  bool ChangedPRE, ChangedCSE;
  ChangedPRE = PerformSimplePRE(DT);
  ChangedCSE = PerformCSE(DT->getRootNode());
  return ChangedPRE || ChangedCSE;
}