MachineTraceMetrics.cpp 49.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
//===- lib/CodeGen/MachineTraceMetrics.cpp --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineTraceMetrics.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "machine-trace-metrics"

char MachineTraceMetrics::ID = 0;

char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID;

INITIALIZE_PASS_BEGIN(MachineTraceMetrics, DEBUG_TYPE,
                      "Machine Trace Metrics", false, true)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(MachineTraceMetrics, DEBUG_TYPE,
                    "Machine Trace Metrics", false, true)

MachineTraceMetrics::MachineTraceMetrics() : MachineFunctionPass(ID) {
  std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr);
}

void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<MachineBranchProbabilityInfo>();
  AU.addRequired<MachineLoopInfo>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) {
  MF = &Func;
  const TargetSubtargetInfo &ST = MF->getSubtarget();
  TII = ST.getInstrInfo();
  TRI = ST.getRegisterInfo();
  MRI = &MF->getRegInfo();
  Loops = &getAnalysis<MachineLoopInfo>();
  SchedModel.init(&ST);
  BlockInfo.resize(MF->getNumBlockIDs());
  ProcResourceCycles.resize(MF->getNumBlockIDs() *
                            SchedModel.getNumProcResourceKinds());
  return false;
}

void MachineTraceMetrics::releaseMemory() {
  MF = nullptr;
  BlockInfo.clear();
  for (unsigned i = 0; i != TS_NumStrategies; ++i) {
    delete Ensembles[i];
    Ensembles[i] = nullptr;
  }
}

//===----------------------------------------------------------------------===//
//                          Fixed block information
//===----------------------------------------------------------------------===//
//
// The number of instructions in a basic block and the CPU resources used by
// those instructions don't depend on any given trace strategy.

/// Compute the resource usage in basic block MBB.
const MachineTraceMetrics::FixedBlockInfo*
MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) {
  assert(MBB && "No basic block");
  FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()];
  if (FBI->hasResources())
    return FBI;

  // Compute resource usage in the block.
  FBI->HasCalls = false;
  unsigned InstrCount = 0;

  // Add up per-processor resource cycles as well.
  unsigned PRKinds = SchedModel.getNumProcResourceKinds();
  SmallVector<unsigned, 32> PRCycles(PRKinds);

  for (const auto &MI : *MBB) {
    if (MI.isTransient())
      continue;
    ++InstrCount;
    if (MI.isCall())
      FBI->HasCalls = true;

    // Count processor resources used.
    if (!SchedModel.hasInstrSchedModel())
      continue;
    const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI);
    if (!SC->isValid())
      continue;

    for (TargetSchedModel::ProcResIter
         PI = SchedModel.getWriteProcResBegin(SC),
         PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
      assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind");
      PRCycles[PI->ProcResourceIdx] += PI->Cycles;
    }
  }
  FBI->InstrCount = InstrCount;

  // Scale the resource cycles so they are comparable.
  unsigned PROffset = MBB->getNumber() * PRKinds;
  for (unsigned K = 0; K != PRKinds; ++K)
    ProcResourceCycles[PROffset + K] =
      PRCycles[K] * SchedModel.getResourceFactor(K);

  return FBI;
}

ArrayRef<unsigned>
MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const {
  assert(BlockInfo[MBBNum].hasResources() &&
         "getResources() must be called before getProcResourceCycles()");
  unsigned PRKinds = SchedModel.getNumProcResourceKinds();
  assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size());
  return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds);
}

//===----------------------------------------------------------------------===//
//                         Ensemble utility functions
//===----------------------------------------------------------------------===//

MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct)
  : MTM(*ct) {
  BlockInfo.resize(MTM.BlockInfo.size());
  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
  ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds);
  ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds);
}

// Virtual destructor serves as an anchor.
MachineTraceMetrics::Ensemble::~Ensemble() = default;

const MachineLoop*
MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const {
  return MTM.Loops->getLoopFor(MBB);
}

// Update resource-related information in the TraceBlockInfo for MBB.
// Only update resources related to the trace above MBB.
void MachineTraceMetrics::Ensemble::
computeDepthResources(const MachineBasicBlock *MBB) {
  TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
  unsigned PROffset = MBB->getNumber() * PRKinds;

  // Compute resources from trace above. The top block is simple.
  if (!TBI->Pred) {
    TBI->InstrDepth = 0;
    TBI->Head = MBB->getNumber();
    std::fill(ProcResourceDepths.begin() + PROffset,
              ProcResourceDepths.begin() + PROffset + PRKinds, 0);
    return;
  }

  // Compute from the block above. A post-order traversal ensures the
  // predecessor is always computed first.
  unsigned PredNum = TBI->Pred->getNumber();
  TraceBlockInfo *PredTBI = &BlockInfo[PredNum];
  assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet");
  const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred);
  TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount;
  TBI->Head = PredTBI->Head;

  // Compute per-resource depths.
  ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum);
  ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum);
  for (unsigned K = 0; K != PRKinds; ++K)
    ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K];
}

// Update resource-related information in the TraceBlockInfo for MBB.
// Only update resources related to the trace below MBB.
void MachineTraceMetrics::Ensemble::
computeHeightResources(const MachineBasicBlock *MBB) {
  TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
  unsigned PROffset = MBB->getNumber() * PRKinds;

  // Compute resources for the current block.
  TBI->InstrHeight = MTM.getResources(MBB)->InstrCount;
  ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber());

  // The trace tail is done.
  if (!TBI->Succ) {
    TBI->Tail = MBB->getNumber();
    llvm::copy(PRCycles, ProcResourceHeights.begin() + PROffset);
    return;
  }

  // Compute from the block below. A post-order traversal ensures the
  // predecessor is always computed first.
  unsigned SuccNum = TBI->Succ->getNumber();
  TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum];
  assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet");
  TBI->InstrHeight += SuccTBI->InstrHeight;
  TBI->Tail = SuccTBI->Tail;

  // Compute per-resource heights.
  ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum);
  for (unsigned K = 0; K != PRKinds; ++K)
    ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K];
}

// Check if depth resources for MBB are valid and return the TBI.
// Return NULL if the resources have been invalidated.
const MachineTraceMetrics::TraceBlockInfo*
MachineTraceMetrics::Ensemble::
getDepthResources(const MachineBasicBlock *MBB) const {
  const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
  return TBI->hasValidDepth() ? TBI : nullptr;
}

// Check if height resources for MBB are valid and return the TBI.
// Return NULL if the resources have been invalidated.
const MachineTraceMetrics::TraceBlockInfo*
MachineTraceMetrics::Ensemble::
getHeightResources(const MachineBasicBlock *MBB) const {
  const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
  return TBI->hasValidHeight() ? TBI : nullptr;
}

/// Get an array of processor resource depths for MBB. Indexed by processor
/// resource kind, this array contains the scaled processor resources consumed
/// by all blocks preceding MBB in its trace. It does not include instructions
/// in MBB.
///
/// Compare TraceBlockInfo::InstrDepth.
ArrayRef<unsigned>
MachineTraceMetrics::Ensemble::
getProcResourceDepths(unsigned MBBNum) const {
  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
  assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size());
  return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds);
}

/// Get an array of processor resource heights for MBB. Indexed by processor
/// resource kind, this array contains the scaled processor resources consumed
/// by this block and all blocks following it in its trace.
///
/// Compare TraceBlockInfo::InstrHeight.
ArrayRef<unsigned>
MachineTraceMetrics::Ensemble::
getProcResourceHeights(unsigned MBBNum) const {
  unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
  assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size());
  return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds);
}

//===----------------------------------------------------------------------===//
//                         Trace Selection Strategies
//===----------------------------------------------------------------------===//
//
// A trace selection strategy is implemented as a sub-class of Ensemble. The
// trace through a block B is computed by two DFS traversals of the CFG
// starting from B. One upwards, and one downwards. During the upwards DFS,
// pickTracePred() is called on the post-ordered blocks. During the downwards
// DFS, pickTraceSucc() is called in a post-order.
//

// We never allow traces that leave loops, but we do allow traces to enter
// nested loops. We also never allow traces to contain back-edges.
//
// This means that a loop header can never appear above the center block of a
// trace, except as the trace head. Below the center block, loop exiting edges
// are banned.
//
// Return true if an edge from the From loop to the To loop is leaving a loop.
// Either of To and From can be null.
static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) {
  return From && !From->contains(To);
}

// MinInstrCountEnsemble - Pick the trace that executes the least number of
// instructions.
namespace {

class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble {
  const char *getName() const override { return "MinInstr"; }
  const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override;
  const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override;

public:
  MinInstrCountEnsemble(MachineTraceMetrics *mtm)
    : MachineTraceMetrics::Ensemble(mtm) {}
};

} // end anonymous namespace

// Select the preferred predecessor for MBB.
const MachineBasicBlock*
MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) {
  if (MBB->pred_empty())
    return nullptr;
  const MachineLoop *CurLoop = getLoopFor(MBB);
  // Don't leave loops, and never follow back-edges.
  if (CurLoop && MBB == CurLoop->getHeader())
    return nullptr;
  unsigned CurCount = MTM.getResources(MBB)->InstrCount;
  const MachineBasicBlock *Best = nullptr;
  unsigned BestDepth = 0;
  for (const MachineBasicBlock *Pred : MBB->predecessors()) {
    const MachineTraceMetrics::TraceBlockInfo *PredTBI =
      getDepthResources(Pred);
    // Ignore cycles that aren't natural loops.
    if (!PredTBI)
      continue;
    // Pick the predecessor that would give this block the smallest InstrDepth.
    unsigned Depth = PredTBI->InstrDepth + CurCount;
    if (!Best || Depth < BestDepth) {
      Best = Pred;
      BestDepth = Depth;
    }
  }
  return Best;
}

// Select the preferred successor for MBB.
const MachineBasicBlock*
MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) {
  if (MBB->pred_empty())
    return nullptr;
  const MachineLoop *CurLoop = getLoopFor(MBB);
  const MachineBasicBlock *Best = nullptr;
  unsigned BestHeight = 0;
  for (const MachineBasicBlock *Succ : MBB->successors()) {
    // Don't consider back-edges.
    if (CurLoop && Succ == CurLoop->getHeader())
      continue;
    // Don't consider successors exiting CurLoop.
    if (isExitingLoop(CurLoop, getLoopFor(Succ)))
      continue;
    const MachineTraceMetrics::TraceBlockInfo *SuccTBI =
      getHeightResources(Succ);
    // Ignore cycles that aren't natural loops.
    if (!SuccTBI)
      continue;
    // Pick the successor that would give this block the smallest InstrHeight.
    unsigned Height = SuccTBI->InstrHeight;
    if (!Best || Height < BestHeight) {
      Best = Succ;
      BestHeight = Height;
    }
  }
  return Best;
}

// Get an Ensemble sub-class for the requested trace strategy.
MachineTraceMetrics::Ensemble *
MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) {
  assert(strategy < TS_NumStrategies && "Invalid trace strategy enum");
  Ensemble *&E = Ensembles[strategy];
  if (E)
    return E;

  // Allocate new Ensemble on demand.
  switch (strategy) {
  case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this));
  default: llvm_unreachable("Invalid trace strategy enum");
  }
}

void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) {
  LLVM_DEBUG(dbgs() << "Invalidate traces through " << printMBBReference(*MBB)
                    << '\n');
  BlockInfo[MBB->getNumber()].invalidate();
  for (unsigned i = 0; i != TS_NumStrategies; ++i)
    if (Ensembles[i])
      Ensembles[i]->invalidate(MBB);
}

void MachineTraceMetrics::verifyAnalysis() const {
  if (!MF)
    return;
#ifndef NDEBUG
  assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size");
  for (unsigned i = 0; i != TS_NumStrategies; ++i)
    if (Ensembles[i])
      Ensembles[i]->verify();
#endif
}

//===----------------------------------------------------------------------===//
//                               Trace building
//===----------------------------------------------------------------------===//
//
// Traces are built by two CFG traversals. To avoid recomputing too much, use a
// set abstraction that confines the search to the current loop, and doesn't
// revisit blocks.

namespace {

struct LoopBounds {
  MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks;
  SmallPtrSet<const MachineBasicBlock*, 8> Visited;
  const MachineLoopInfo *Loops;
  bool Downward = false;

  LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks,
             const MachineLoopInfo *loops) : Blocks(blocks), Loops(loops) {}
};

} // end anonymous namespace

// Specialize po_iterator_storage in order to prune the post-order traversal so
// it is limited to the current loop and doesn't traverse the loop back edges.
namespace llvm {

template<>
class po_iterator_storage<LoopBounds, true> {
  LoopBounds &LB;

public:
  po_iterator_storage(LoopBounds &lb) : LB(lb) {}

  void finishPostorder(const MachineBasicBlock*) {}

  bool insertEdge(Optional<const MachineBasicBlock *> From,
                  const MachineBasicBlock *To) {
    // Skip already visited To blocks.
    MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()];
    if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth())
      return false;
    // From is null once when To is the trace center block.
    if (From) {
      if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(*From)) {
        // Don't follow backedges, don't leave FromLoop when going upwards.
        if ((LB.Downward ? To : *From) == FromLoop->getHeader())
          return false;
        // Don't leave FromLoop.
        if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To)))
          return false;
      }
    }
    // To is a new block. Mark the block as visited in case the CFG has cycles
    // that MachineLoopInfo didn't recognize as a natural loop.
    return LB.Visited.insert(To).second;
  }
};

} // end namespace llvm

/// Compute the trace through MBB.
void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) {
  LLVM_DEBUG(dbgs() << "Computing " << getName() << " trace through "
                    << printMBBReference(*MBB) << '\n');
  // Set up loop bounds for the backwards post-order traversal.
  LoopBounds Bounds(BlockInfo, MTM.Loops);

  // Run an upwards post-order search for the trace start.
  Bounds.Downward = false;
  Bounds.Visited.clear();
  for (auto I : inverse_post_order_ext(MBB, Bounds)) {
    LLVM_DEBUG(dbgs() << "  pred for " << printMBBReference(*I) << ": ");
    TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
    // All the predecessors have been visited, pick the preferred one.
    TBI.Pred = pickTracePred(I);
    LLVM_DEBUG({
      if (TBI.Pred)
        dbgs() << printMBBReference(*TBI.Pred) << '\n';
      else
        dbgs() << "null\n";
    });
    // The trace leading to I is now known, compute the depth resources.
    computeDepthResources(I);
  }

  // Run a downwards post-order search for the trace end.
  Bounds.Downward = true;
  Bounds.Visited.clear();
  for (auto I : post_order_ext(MBB, Bounds)) {
    LLVM_DEBUG(dbgs() << "  succ for " << printMBBReference(*I) << ": ");
    TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
    // All the successors have been visited, pick the preferred one.
    TBI.Succ = pickTraceSucc(I);
    LLVM_DEBUG({
      if (TBI.Succ)
        dbgs() << printMBBReference(*TBI.Succ) << '\n';
      else
        dbgs() << "null\n";
    });
    // The trace leaving I is now known, compute the height resources.
    computeHeightResources(I);
  }
}

/// Invalidate traces through BadMBB.
void
MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) {
  SmallVector<const MachineBasicBlock*, 16> WorkList;
  TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()];

  // Invalidate height resources of blocks above MBB.
  if (BadTBI.hasValidHeight()) {
    BadTBI.invalidateHeight();
    WorkList.push_back(BadMBB);
    do {
      const MachineBasicBlock *MBB = WorkList.pop_back_val();
      LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' '
                        << getName() << " height.\n");
      // Find any MBB predecessors that have MBB as their preferred successor.
      // They are the only ones that need to be invalidated.
      for (const MachineBasicBlock *Pred : MBB->predecessors()) {
        TraceBlockInfo &TBI = BlockInfo[Pred->getNumber()];
        if (!TBI.hasValidHeight())
          continue;
        if (TBI.Succ == MBB) {
          TBI.invalidateHeight();
          WorkList.push_back(Pred);
          continue;
        }
        // Verify that TBI.Succ is actually a *I successor.
        assert((!TBI.Succ || Pred->isSuccessor(TBI.Succ)) && "CFG changed");
      }
    } while (!WorkList.empty());
  }

  // Invalidate depth resources of blocks below MBB.
  if (BadTBI.hasValidDepth()) {
    BadTBI.invalidateDepth();
    WorkList.push_back(BadMBB);
    do {
      const MachineBasicBlock *MBB = WorkList.pop_back_val();
      LLVM_DEBUG(dbgs() << "Invalidate " << printMBBReference(*MBB) << ' '
                        << getName() << " depth.\n");
      // Find any MBB successors that have MBB as their preferred predecessor.
      // They are the only ones that need to be invalidated.
      for (const MachineBasicBlock *Succ : MBB->successors()) {
        TraceBlockInfo &TBI = BlockInfo[Succ->getNumber()];
        if (!TBI.hasValidDepth())
          continue;
        if (TBI.Pred == MBB) {
          TBI.invalidateDepth();
          WorkList.push_back(Succ);
          continue;
        }
        // Verify that TBI.Pred is actually a *I predecessor.
        assert((!TBI.Pred || Succ->isPredecessor(TBI.Pred)) && "CFG changed");
      }
    } while (!WorkList.empty());
  }

  // Clear any per-instruction data. We only have to do this for BadMBB itself
  // because the instructions in that block may change. Other blocks may be
  // invalidated, but their instructions will stay the same, so there is no
  // need to erase the Cycle entries. They will be overwritten when we
  // recompute.
  for (const auto &I : *BadMBB)
    Cycles.erase(&I);
}

void MachineTraceMetrics::Ensemble::verify() const {
#ifndef NDEBUG
  assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() &&
         "Outdated BlockInfo size");
  for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) {
    const TraceBlockInfo &TBI = BlockInfo[Num];
    if (TBI.hasValidDepth() && TBI.Pred) {
      const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
      assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace");
      assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() &&
             "Trace is broken, depth should have been invalidated.");
      const MachineLoop *Loop = getLoopFor(MBB);
      assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge");
    }
    if (TBI.hasValidHeight() && TBI.Succ) {
      const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
      assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace");
      assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() &&
             "Trace is broken, height should have been invalidated.");
      const MachineLoop *Loop = getLoopFor(MBB);
      const MachineLoop *SuccLoop = getLoopFor(TBI.Succ);
      assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) &&
             "Trace contains backedge");
    }
  }
#endif
}

//===----------------------------------------------------------------------===//
//                             Data Dependencies
//===----------------------------------------------------------------------===//
//
// Compute the depth and height of each instruction based on data dependencies
// and instruction latencies. These cycle numbers assume that the CPU can issue
// an infinite number of instructions per cycle as long as their dependencies
// are ready.

// A data dependency is represented as a defining MI and operand numbers on the
// defining and using MI.
namespace {

struct DataDep {
  const MachineInstr *DefMI;
  unsigned DefOp;
  unsigned UseOp;

  DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp)
    : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {}

  /// Create a DataDep from an SSA form virtual register.
  DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp)
    : UseOp(UseOp) {
    assert(Register::isVirtualRegister(VirtReg));
    MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg);
    assert(!DefI.atEnd() && "Register has no defs");
    DefMI = DefI->getParent();
    DefOp = DefI.getOperandNo();
    assert((++DefI).atEnd() && "Register has multiple defs");
  }
};

} // end anonymous namespace

// Get the input data dependencies that must be ready before UseMI can issue.
// Return true if UseMI has any physreg operands.
static bool getDataDeps(const MachineInstr &UseMI,
                        SmallVectorImpl<DataDep> &Deps,
                        const MachineRegisterInfo *MRI) {
  // Debug values should not be included in any calculations.
  if (UseMI.isDebugInstr())
    return false;

  bool HasPhysRegs = false;
  for (MachineInstr::const_mop_iterator I = UseMI.operands_begin(),
       E = UseMI.operands_end(); I != E; ++I) {
    const MachineOperand &MO = *I;
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    if (Register::isPhysicalRegister(Reg)) {
      HasPhysRegs = true;
      continue;
    }
    // Collect virtual register reads.
    if (MO.readsReg())
      Deps.push_back(DataDep(MRI, Reg, UseMI.getOperandNo(I)));
  }
  return HasPhysRegs;
}

// Get the input data dependencies of a PHI instruction, using Pred as the
// preferred predecessor.
// This will add at most one dependency to Deps.
static void getPHIDeps(const MachineInstr &UseMI,
                       SmallVectorImpl<DataDep> &Deps,
                       const MachineBasicBlock *Pred,
                       const MachineRegisterInfo *MRI) {
  // No predecessor at the beginning of a trace. Ignore dependencies.
  if (!Pred)
    return;
  assert(UseMI.isPHI() && UseMI.getNumOperands() % 2 && "Bad PHI");
  for (unsigned i = 1; i != UseMI.getNumOperands(); i += 2) {
    if (UseMI.getOperand(i + 1).getMBB() == Pred) {
      Register Reg = UseMI.getOperand(i).getReg();
      Deps.push_back(DataDep(MRI, Reg, i));
      return;
    }
  }
}

// Identify physreg dependencies for UseMI, and update the live regunit
// tracking set when scanning instructions downwards.
static void updatePhysDepsDownwards(const MachineInstr *UseMI,
                                    SmallVectorImpl<DataDep> &Deps,
                                    SparseSet<LiveRegUnit> &RegUnits,
                                    const TargetRegisterInfo *TRI) {
  SmallVector<unsigned, 8> Kills;
  SmallVector<unsigned, 8> LiveDefOps;

  for (MachineInstr::const_mop_iterator MI = UseMI->operands_begin(),
       ME = UseMI->operands_end(); MI != ME; ++MI) {
    const MachineOperand &MO = *MI;
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Register::isPhysicalRegister(Reg))
      continue;
    // Track live defs and kills for updating RegUnits.
    if (MO.isDef()) {
      if (MO.isDead())
        Kills.push_back(Reg);
      else
        LiveDefOps.push_back(UseMI->getOperandNo(MI));
    } else if (MO.isKill())
      Kills.push_back(Reg);
    // Identify dependencies.
    if (!MO.readsReg())
      continue;
    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
      SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
      if (I == RegUnits.end())
        continue;
      Deps.push_back(DataDep(I->MI, I->Op, UseMI->getOperandNo(MI)));
      break;
    }
  }

  // Update RegUnits to reflect live registers after UseMI.
  // First kills.
  for (unsigned Kill : Kills)
    for (MCRegUnitIterator Units(Kill, TRI); Units.isValid(); ++Units)
      RegUnits.erase(*Units);

  // Second, live defs.
  for (unsigned DefOp : LiveDefOps) {
    for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI);
         Units.isValid(); ++Units) {
      LiveRegUnit &LRU = RegUnits[*Units];
      LRU.MI = UseMI;
      LRU.Op = DefOp;
    }
  }
}

/// The length of the critical path through a trace is the maximum of two path
/// lengths:
///
/// 1. The maximum height+depth over all instructions in the trace center block.
///
/// 2. The longest cross-block dependency chain. For small blocks, it is
///    possible that the critical path through the trace doesn't include any
///    instructions in the block.
///
/// This function computes the second number from the live-in list of the
/// center block.
unsigned MachineTraceMetrics::Ensemble::
computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) {
  assert(TBI.HasValidInstrDepths && "Missing depth info");
  assert(TBI.HasValidInstrHeights && "Missing height info");
  unsigned MaxLen = 0;
  for (const LiveInReg &LIR : TBI.LiveIns) {
    if (!Register::isVirtualRegister(LIR.Reg))
      continue;
    const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
    // Ignore dependencies outside the current trace.
    const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()];
    if (!DefTBI.isUsefulDominator(TBI))
      continue;
    unsigned Len = LIR.Height + Cycles[DefMI].Depth;
    MaxLen = std::max(MaxLen, Len);
  }
  return MaxLen;
}

void MachineTraceMetrics::Ensemble::
updateDepth(MachineTraceMetrics::TraceBlockInfo &TBI, const MachineInstr &UseMI,
            SparseSet<LiveRegUnit> &RegUnits) {
  SmallVector<DataDep, 8> Deps;
  // Collect all data dependencies.
  if (UseMI.isPHI())
    getPHIDeps(UseMI, Deps, TBI.Pred, MTM.MRI);
  else if (getDataDeps(UseMI, Deps, MTM.MRI))
    updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI);

  // Filter and process dependencies, computing the earliest issue cycle.
  unsigned Cycle = 0;
  for (const DataDep &Dep : Deps) {
    const TraceBlockInfo&DepTBI =
      BlockInfo[Dep.DefMI->getParent()->getNumber()];
    // Ignore dependencies from outside the current trace.
    if (!DepTBI.isUsefulDominator(TBI))
      continue;
    assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency");
    unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth;
    // Add latency if DefMI is a real instruction. Transients get latency 0.
    if (!Dep.DefMI->isTransient())
      DepCycle += MTM.SchedModel
        .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp);
    Cycle = std::max(Cycle, DepCycle);
  }
  // Remember the instruction depth.
  InstrCycles &MICycles = Cycles[&UseMI];
  MICycles.Depth = Cycle;

  if (TBI.HasValidInstrHeights) {
    // Update critical path length.
    TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height);
    LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI);
  } else {
    LLVM_DEBUG(dbgs() << Cycle << '\t' << UseMI);
  }
}

void MachineTraceMetrics::Ensemble::
updateDepth(const MachineBasicBlock *MBB, const MachineInstr &UseMI,
            SparseSet<LiveRegUnit> &RegUnits) {
  updateDepth(BlockInfo[MBB->getNumber()], UseMI, RegUnits);
}

void MachineTraceMetrics::Ensemble::
updateDepths(MachineBasicBlock::iterator Start,
             MachineBasicBlock::iterator End,
             SparseSet<LiveRegUnit> &RegUnits) {
    for (; Start != End; Start++)
      updateDepth(Start->getParent(), *Start, RegUnits);
}

/// Compute instruction depths for all instructions above or in MBB in its
/// trace. This assumes that the trace through MBB has already been computed.
void MachineTraceMetrics::Ensemble::
computeInstrDepths(const MachineBasicBlock *MBB) {
  // The top of the trace may already be computed, and HasValidInstrDepths
  // implies Head->HasValidInstrDepths, so we only need to start from the first
  // block in the trace that needs to be recomputed.
  SmallVector<const MachineBasicBlock*, 8> Stack;
  do {
    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    assert(TBI.hasValidDepth() && "Incomplete trace");
    if (TBI.HasValidInstrDepths)
      break;
    Stack.push_back(MBB);
    MBB = TBI.Pred;
  } while (MBB);

  // FIXME: If MBB is non-null at this point, it is the last pre-computed block
  // in the trace. We should track any live-out physregs that were defined in
  // the trace. This is quite rare in SSA form, typically created by CSE
  // hoisting a compare.
  SparseSet<LiveRegUnit> RegUnits;
  RegUnits.setUniverse(MTM.TRI->getNumRegUnits());

  // Go through trace blocks in top-down order, stopping after the center block.
  while (!Stack.empty()) {
    MBB = Stack.pop_back_val();
    LLVM_DEBUG(dbgs() << "\nDepths for " << printMBBReference(*MBB) << ":\n");
    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    TBI.HasValidInstrDepths = true;
    TBI.CriticalPath = 0;

    // Print out resource depths here as well.
    LLVM_DEBUG({
      dbgs() << format("%7u Instructions\n", TBI.InstrDepth);
      ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber());
      for (unsigned K = 0; K != PRDepths.size(); ++K)
        if (PRDepths[K]) {
          unsigned Factor = MTM.SchedModel.getResourceFactor(K);
          dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K]))
                 << MTM.SchedModel.getProcResource(K)->Name << " ("
                 << PRDepths[K]/Factor << " ops x" << Factor << ")\n";
        }
    });

    // Also compute the critical path length through MBB when possible.
    if (TBI.HasValidInstrHeights)
      TBI.CriticalPath = computeCrossBlockCriticalPath(TBI);

    for (const auto &UseMI : *MBB) {
      updateDepth(TBI, UseMI, RegUnits);
    }
  }
}

// Identify physreg dependencies for MI when scanning instructions upwards.
// Return the issue height of MI after considering any live regunits.
// Height is the issue height computed from virtual register dependencies alone.
static unsigned updatePhysDepsUpwards(const MachineInstr &MI, unsigned Height,
                                      SparseSet<LiveRegUnit> &RegUnits,
                                      const TargetSchedModel &SchedModel,
                                      const TargetInstrInfo *TII,
                                      const TargetRegisterInfo *TRI) {
  SmallVector<unsigned, 8> ReadOps;

  for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
                                        MOE = MI.operands_end();
       MOI != MOE; ++MOI) {
    const MachineOperand &MO = *MOI;
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Register::isPhysicalRegister(Reg))
      continue;
    if (MO.readsReg())
      ReadOps.push_back(MI.getOperandNo(MOI));
    if (!MO.isDef())
      continue;
    // This is a def of Reg. Remove corresponding entries from RegUnits, and
    // update MI Height to consider the physreg dependencies.
    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
      SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
      if (I == RegUnits.end())
        continue;
      unsigned DepHeight = I->Cycle;
      if (!MI.isTransient()) {
        // We may not know the UseMI of this dependency, if it came from the
        // live-in list. SchedModel can handle a NULL UseMI.
        DepHeight += SchedModel.computeOperandLatency(&MI, MI.getOperandNo(MOI),
                                                      I->MI, I->Op);
      }
      Height = std::max(Height, DepHeight);
      // This regunit is dead above MI.
      RegUnits.erase(I);
    }
  }

  // Now we know the height of MI. Update any regunits read.
  for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) {
    Register Reg = MI.getOperand(ReadOps[i]).getReg();
    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
      LiveRegUnit &LRU = RegUnits[*Units];
      // Set the height to the highest reader of the unit.
      if (LRU.Cycle <= Height && LRU.MI != &MI) {
        LRU.Cycle = Height;
        LRU.MI = &MI;
        LRU.Op = ReadOps[i];
      }
    }
  }

  return Height;
}

using MIHeightMap = DenseMap<const MachineInstr *, unsigned>;

// Push the height of DefMI upwards if required to match UseMI.
// Return true if this is the first time DefMI was seen.
static bool pushDepHeight(const DataDep &Dep, const MachineInstr &UseMI,
                          unsigned UseHeight, MIHeightMap &Heights,
                          const TargetSchedModel &SchedModel,
                          const TargetInstrInfo *TII) {
  // Adjust height by Dep.DefMI latency.
  if (!Dep.DefMI->isTransient())
    UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI,
                                                  Dep.UseOp);

  // Update Heights[DefMI] to be the maximum height seen.
  MIHeightMap::iterator I;
  bool New;
  std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight));
  if (New)
    return true;

  // DefMI has been pushed before. Give it the max height.
  if (I->second < UseHeight)
    I->second = UseHeight;
  return false;
}

/// Assuming that the virtual register defined by DefMI:DefOp was used by
/// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop
/// when reaching the block that contains DefMI.
void MachineTraceMetrics::Ensemble::
addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
           ArrayRef<const MachineBasicBlock*> Trace) {
  assert(!Trace.empty() && "Trace should contain at least one block");
  unsigned Reg = DefMI->getOperand(DefOp).getReg();
  assert(Register::isVirtualRegister(Reg));
  const MachineBasicBlock *DefMBB = DefMI->getParent();

  // Reg is live-in to all blocks in Trace that follow DefMBB.
  for (unsigned i = Trace.size(); i; --i) {
    const MachineBasicBlock *MBB = Trace[i-1];
    if (MBB == DefMBB)
      return;
    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    // Just add the register. The height will be updated later.
    TBI.LiveIns.push_back(Reg);
  }
}

/// Compute instruction heights in the trace through MBB. This updates MBB and
/// the blocks below it in the trace. It is assumed that the trace has already
/// been computed.
void MachineTraceMetrics::Ensemble::
computeInstrHeights(const MachineBasicBlock *MBB) {
  // The bottom of the trace may already be computed.
  // Find the blocks that need updating.
  SmallVector<const MachineBasicBlock*, 8> Stack;
  do {
    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    assert(TBI.hasValidHeight() && "Incomplete trace");
    if (TBI.HasValidInstrHeights)
      break;
    Stack.push_back(MBB);
    TBI.LiveIns.clear();
    MBB = TBI.Succ;
  } while (MBB);

  // As we move upwards in the trace, keep track of instructions that are
  // required by deeper trace instructions. Map MI -> height required so far.
  MIHeightMap Heights;

  // For physregs, the def isn't known when we see the use.
  // Instead, keep track of the highest use of each regunit.
  SparseSet<LiveRegUnit> RegUnits;
  RegUnits.setUniverse(MTM.TRI->getNumRegUnits());

  // If the bottom of the trace was already precomputed, initialize heights
  // from its live-in list.
  // MBB is the highest precomputed block in the trace.
  if (MBB) {
    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    for (LiveInReg &LI : TBI.LiveIns) {
      if (Register::isVirtualRegister(LI.Reg)) {
        // For virtual registers, the def latency is included.
        unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)];
        if (Height < LI.Height)
          Height = LI.Height;
      } else {
        // For register units, the def latency is not included because we don't
        // know the def yet.
        RegUnits[LI.Reg].Cycle = LI.Height;
      }
    }
  }

  // Go through the trace blocks in bottom-up order.
  SmallVector<DataDep, 8> Deps;
  for (;!Stack.empty(); Stack.pop_back()) {
    MBB = Stack.back();
    LLVM_DEBUG(dbgs() << "Heights for " << printMBBReference(*MBB) << ":\n");
    TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    TBI.HasValidInstrHeights = true;
    TBI.CriticalPath = 0;

    LLVM_DEBUG({
      dbgs() << format("%7u Instructions\n", TBI.InstrHeight);
      ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber());
      for (unsigned K = 0; K != PRHeights.size(); ++K)
        if (PRHeights[K]) {
          unsigned Factor = MTM.SchedModel.getResourceFactor(K);
          dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K]))
                 << MTM.SchedModel.getProcResource(K)->Name << " ("
                 << PRHeights[K]/Factor << " ops x" << Factor << ")\n";
        }
    });

    // Get dependencies from PHIs in the trace successor.
    const MachineBasicBlock *Succ = TBI.Succ;
    // If MBB is the last block in the trace, and it has a back-edge to the
    // loop header, get loop-carried dependencies from PHIs in the header. For
    // that purpose, pretend that all the loop header PHIs have height 0.
    if (!Succ)
      if (const MachineLoop *Loop = getLoopFor(MBB))
        if (MBB->isSuccessor(Loop->getHeader()))
          Succ = Loop->getHeader();

    if (Succ) {
      for (const auto &PHI : *Succ) {
        if (!PHI.isPHI())
          break;
        Deps.clear();
        getPHIDeps(PHI, Deps, MBB, MTM.MRI);
        if (!Deps.empty()) {
          // Loop header PHI heights are all 0.
          unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0;
          LLVM_DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI);
          if (pushDepHeight(Deps.front(), PHI, Height, Heights, MTM.SchedModel,
                            MTM.TII))
            addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack);
        }
      }
    }

    // Go through the block backwards.
    for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin();
         BI != BB;) {
      const MachineInstr &MI = *--BI;

      // Find the MI height as determined by virtual register uses in the
      // trace below.
      unsigned Cycle = 0;
      MIHeightMap::iterator HeightI = Heights.find(&MI);
      if (HeightI != Heights.end()) {
        Cycle = HeightI->second;
        // We won't be seeing any more MI uses.
        Heights.erase(HeightI);
      }

      // Don't process PHI deps. They depend on the specific predecessor, and
      // we'll get them when visiting the predecessor.
      Deps.clear();
      bool HasPhysRegs = !MI.isPHI() && getDataDeps(MI, Deps, MTM.MRI);

      // There may also be regunit dependencies to include in the height.
      if (HasPhysRegs)
        Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits, MTM.SchedModel,
                                      MTM.TII, MTM.TRI);

      // Update the required height of any virtual registers read by MI.
      for (const DataDep &Dep : Deps)
        if (pushDepHeight(Dep, MI, Cycle, Heights, MTM.SchedModel, MTM.TII))
          addLiveIns(Dep.DefMI, Dep.DefOp, Stack);

      InstrCycles &MICycles = Cycles[&MI];
      MICycles.Height = Cycle;
      if (!TBI.HasValidInstrDepths) {
        LLVM_DEBUG(dbgs() << Cycle << '\t' << MI);
        continue;
      }
      // Update critical path length.
      TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth);
      LLVM_DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << MI);
    }

    // Update virtual live-in heights. They were added by addLiveIns() with a 0
    // height because the final height isn't known until now.
    LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " Live-ins:");
    for (LiveInReg &LIR : TBI.LiveIns) {
      const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
      LIR.Height = Heights.lookup(DefMI);
      LLVM_DEBUG(dbgs() << ' ' << printReg(LIR.Reg) << '@' << LIR.Height);
    }

    // Transfer the live regunits to the live-in list.
    for (SparseSet<LiveRegUnit>::const_iterator
         RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) {
      TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle));
      LLVM_DEBUG(dbgs() << ' ' << printRegUnit(RI->RegUnit, MTM.TRI) << '@'
                        << RI->Cycle);
    }
    LLVM_DEBUG(dbgs() << '\n');

    if (!TBI.HasValidInstrDepths)
      continue;
    // Add live-ins to the critical path length.
    TBI.CriticalPath = std::max(TBI.CriticalPath,
                                computeCrossBlockCriticalPath(TBI));
    LLVM_DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n');
  }
}

MachineTraceMetrics::Trace
MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) {
  TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];

  if (!TBI.hasValidDepth() || !TBI.hasValidHeight())
    computeTrace(MBB);
  if (!TBI.HasValidInstrDepths)
    computeInstrDepths(MBB);
  if (!TBI.HasValidInstrHeights)
    computeInstrHeights(MBB);

  return Trace(*this, TBI);
}

unsigned
MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr &MI) const {
  assert(getBlockNum() == unsigned(MI.getParent()->getNumber()) &&
         "MI must be in the trace center block");
  InstrCycles Cyc = getInstrCycles(MI);
  return getCriticalPath() - (Cyc.Depth + Cyc.Height);
}

unsigned
MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr &PHI) const {
  const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum());
  SmallVector<DataDep, 1> Deps;
  getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI);
  assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor");
  DataDep &Dep = Deps.front();
  unsigned DepCycle = getInstrCycles(*Dep.DefMI).Depth;
  // Add latency if DefMI is a real instruction. Transients get latency 0.
  if (!Dep.DefMI->isTransient())
    DepCycle += TE.MTM.SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp,
                                                        &PHI, Dep.UseOp);
  return DepCycle;
}

/// When bottom is set include instructions in current block in estimate.
unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
  // Find the limiting processor resource.
  // Numbers have been pre-scaled to be comparable.
  unsigned PRMax = 0;
  ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
  if (Bottom) {
    ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum());
    for (unsigned K = 0; K != PRDepths.size(); ++K)
      PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]);
  } else {
    for (unsigned K = 0; K != PRDepths.size(); ++K)
      PRMax = std::max(PRMax, PRDepths[K]);
  }
  // Convert to cycle count.
  PRMax = TE.MTM.getCycles(PRMax);

  /// All instructions before current block
  unsigned Instrs = TBI.InstrDepth;
  // plus instructions in current block
  if (Bottom)
    Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
  if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
    Instrs /= IW;
  // Assume issue width 1 without a schedule model.
  return std::max(Instrs, PRMax);
}

unsigned MachineTraceMetrics::Trace::getResourceLength(
    ArrayRef<const MachineBasicBlock *> Extrablocks,
    ArrayRef<const MCSchedClassDesc *> ExtraInstrs,
    ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const {
  // Add up resources above and below the center block.
  ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
  ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum());
  unsigned PRMax = 0;

  // Capture computing cycles from extra instructions
  auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs,
                            unsigned ResourceIdx)
                         ->unsigned {
    unsigned Cycles = 0;
    for (const MCSchedClassDesc *SC : Instrs) {
      if (!SC->isValid())
        continue;
      for (TargetSchedModel::ProcResIter
               PI = TE.MTM.SchedModel.getWriteProcResBegin(SC),
               PE = TE.MTM.SchedModel.getWriteProcResEnd(SC);
           PI != PE; ++PI) {
        if (PI->ProcResourceIdx != ResourceIdx)
          continue;
        Cycles +=
            (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx));
      }
    }
    return Cycles;
  };

  for (unsigned K = 0; K != PRDepths.size(); ++K) {
    unsigned PRCycles = PRDepths[K] + PRHeights[K];
    for (const MachineBasicBlock *MBB : Extrablocks)
      PRCycles += TE.MTM.getProcResourceCycles(MBB->getNumber())[K];
    PRCycles += extraCycles(ExtraInstrs, K);
    PRCycles -= extraCycles(RemoveInstrs, K);
    PRMax = std::max(PRMax, PRCycles);
  }
  // Convert to cycle count.
  PRMax = TE.MTM.getCycles(PRMax);

  // Instrs: #instructions in current trace outside current block.
  unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight;
  // Add instruction count from the extra blocks.
  for (const MachineBasicBlock *MBB : Extrablocks)
    Instrs += TE.MTM.getResources(MBB)->InstrCount;
  Instrs += ExtraInstrs.size();
  Instrs -= RemoveInstrs.size();
  if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
    Instrs /= IW;
  // Assume issue width 1 without a schedule model.
  return std::max(Instrs, PRMax);
}

bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr &DefMI,
                                              const MachineInstr &UseMI) const {
  if (DefMI.getParent() == UseMI.getParent())
    return true;

  const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI.getParent()->getNumber()];
  const TraceBlockInfo &TBI = TE.BlockInfo[UseMI.getParent()->getNumber()];

  return DepTBI.isUsefulDominator(TBI);
}

void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
  OS << getName() << " ensemble:\n";
  for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
    OS << "  %bb." << i << '\t';
    BlockInfo[i].print(OS);
    OS << '\n';
  }
}

void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const {
  if (hasValidDepth()) {
    OS << "depth=" << InstrDepth;
    if (Pred)
      OS << " pred=" << printMBBReference(*Pred);
    else
      OS << " pred=null";
    OS << " head=%bb." << Head;
    if (HasValidInstrDepths)
      OS << " +instrs";
  } else
    OS << "depth invalid";
  OS << ", ";
  if (hasValidHeight()) {
    OS << "height=" << InstrHeight;
    if (Succ)
      OS << " succ=" << printMBBReference(*Succ);
    else
      OS << " succ=null";
    OS << " tail=%bb." << Tail;
    if (HasValidInstrHeights)
      OS << " +instrs";
  } else
    OS << "height invalid";
  if (HasValidInstrDepths && HasValidInstrHeights)
    OS << ", crit=" << CriticalPath;
}

void MachineTraceMetrics::Trace::print(raw_ostream &OS) const {
  unsigned MBBNum = &TBI - &TE.BlockInfo[0];

  OS << TE.getName() << " trace %bb." << TBI.Head << " --> %bb." << MBBNum
     << " --> %bb." << TBI.Tail << ':';
  if (TBI.hasValidHeight() && TBI.hasValidDepth())
    OS << ' ' << getInstrCount() << " instrs.";
  if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights)
    OS << ' ' << TBI.CriticalPath << " cycles.";

  const MachineTraceMetrics::TraceBlockInfo *Block = &TBI;
  OS << "\n%bb." << MBBNum;
  while (Block->hasValidDepth() && Block->Pred) {
    unsigned Num = Block->Pred->getNumber();
    OS << " <- " << printMBBReference(*Block->Pred);
    Block = &TE.BlockInfo[Num];
  }

  Block = &TBI;
  OS << "\n    ";
  while (Block->hasValidHeight() && Block->Succ) {
    unsigned Num = Block->Succ->getNumber();
    OS << " -> " << printMBBReference(*Block->Succ);
    Block = &TE.BlockInfo[Num];
  }
  OS << '\n';
}