FastISel.cpp 91 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
//===- FastISel.cpp - Implementation of the FastISel class ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the FastISel class.
//
// "Fast" instruction selection is designed to emit very poor code quickly.
// Also, it is not designed to be able to do much lowering, so most illegal
// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
// also not intended to be able to do much optimization, except in a few cases
// where doing optimizations reduces overall compile time.  For example, folding
// constants into immediate fields is often done, because it's cheap and it
// reduces the number of instructions later phases have to examine.
//
// "Fast" instruction selection is able to fail gracefully and transfer
// control to the SelectionDAG selector for operations that it doesn't
// support.  In many cases, this allows us to avoid duplicating a lot of
// the complicated lowering logic that SelectionDAG currently has.
//
// The intended use for "fast" instruction selection is "-O0" mode
// compilation, where the quality of the generated code is irrelevant when
// weighed against the speed at which the code can be generated.  Also,
// at -O0, the LLVM optimizers are not running, and this makes the
// compile time of codegen a much higher portion of the overall compile
// time.  Despite its limitations, "fast" instruction selection is able to
// handle enough code on its own to provide noticeable overall speedups
// in -O0 compiles.
//
// Basic operations are supported in a target-independent way, by reading
// the same instruction descriptions that the SelectionDAG selector reads,
// and identifying simple arithmetic operations that can be directly selected
// from simple operators.  More complicated operations currently require
// target-specific code.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/FastISel.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "isel"

// FIXME: Remove this after the feature has proven reliable.
static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values",
                                     cl::init(true), cl::Hidden,
                                     cl::desc("Sink local values in FastISel"));

STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
                                         "target-independent selector");
STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
                                    "target-specific selector");
STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");

/// Set the current block to which generated machine instructions will be
/// appended.
void FastISel::startNewBlock() {
  assert(LocalValueMap.empty() &&
         "local values should be cleared after finishing a BB");

  // Instructions are appended to FuncInfo.MBB. If the basic block already
  // contains labels or copies, use the last instruction as the last local
  // value.
  EmitStartPt = nullptr;
  if (!FuncInfo.MBB->empty())
    EmitStartPt = &FuncInfo.MBB->back();
  LastLocalValue = EmitStartPt;
}

/// Flush the local CSE map and sink anything we can.
void FastISel::finishBasicBlock() { flushLocalValueMap(); }

bool FastISel::lowerArguments() {
  if (!FuncInfo.CanLowerReturn)
    // Fallback to SDISel argument lowering code to deal with sret pointer
    // parameter.
    return false;

  if (!fastLowerArguments())
    return false;

  // Enter arguments into ValueMap for uses in non-entry BBs.
  for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
                                    E = FuncInfo.Fn->arg_end();
       I != E; ++I) {
    DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
    assert(VI != LocalValueMap.end() && "Missed an argument?");
    FuncInfo.ValueMap[&*I] = VI->second;
  }
  return true;
}

/// Return the defined register if this instruction defines exactly one
/// virtual register and uses no other virtual registers. Otherwise return 0.
static unsigned findSinkableLocalRegDef(MachineInstr &MI) {
  unsigned RegDef = 0;
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg())
      continue;
    if (MO.isDef()) {
      if (RegDef)
        return 0;
      RegDef = MO.getReg();
    } else if (Register::isVirtualRegister(MO.getReg())) {
      // This is another use of a vreg. Don't try to sink it.
      return 0;
    }
  }
  return RegDef;
}

void FastISel::flushLocalValueMap() {
  // Try to sink local values down to their first use so that we can give them a
  // better debug location. This has the side effect of shrinking local value
  // live ranges, which helps out fast regalloc.
  if (SinkLocalValues && LastLocalValue != EmitStartPt) {
    // Sink local value materialization instructions between EmitStartPt and
    // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to
    // avoid inserting into the range that we're iterating over.
    MachineBasicBlock::reverse_iterator RE =
        EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
                    : FuncInfo.MBB->rend();
    MachineBasicBlock::reverse_iterator RI(LastLocalValue);

    InstOrderMap OrderMap;
    for (; RI != RE;) {
      MachineInstr &LocalMI = *RI;
      ++RI;
      bool Store = true;
      if (!LocalMI.isSafeToMove(nullptr, Store))
        continue;
      unsigned DefReg = findSinkableLocalRegDef(LocalMI);
      if (DefReg == 0)
        continue;

      sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap);
    }
  }

  LocalValueMap.clear();
  LastLocalValue = EmitStartPt;
  recomputeInsertPt();
  SavedInsertPt = FuncInfo.InsertPt;
  LastFlushPoint = FuncInfo.InsertPt;
}

static bool isRegUsedByPhiNodes(unsigned DefReg,
                                FunctionLoweringInfo &FuncInfo) {
  for (auto &P : FuncInfo.PHINodesToUpdate)
    if (P.second == DefReg)
      return true;
  return false;
}

static bool isTerminatingEHLabel(MachineBasicBlock *MBB, MachineInstr &MI) {
  // Ignore non-EH labels.
  if (!MI.isEHLabel())
    return false;

  // Any EH label outside a landing pad must be for an invoke. Consider it a
  // terminator.
  if (!MBB->isEHPad())
    return true;

  // If this is a landingpad, the first non-phi instruction will be an EH_LABEL.
  // Don't consider that label to be a terminator.
  return MI.getIterator() != MBB->getFirstNonPHI();
}

/// Build a map of instruction orders. Return the first terminator and its
/// order. Consider EH_LABEL instructions to be terminators as well, since local
/// values for phis after invokes must be materialized before the call.
void FastISel::InstOrderMap::initialize(
    MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) {
  unsigned Order = 0;
  for (MachineInstr &I : *MBB) {
    if (!FirstTerminator &&
        (I.isTerminator() || isTerminatingEHLabel(MBB, I))) {
      FirstTerminator = &I;
      FirstTerminatorOrder = Order;
    }
    Orders[&I] = Order++;

    // We don't need to order instructions past the last flush point.
    if (I.getIterator() == LastFlushPoint)
      break;
  }
}

void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI,
                                             unsigned DefReg,
                                             InstOrderMap &OrderMap) {
  // If this register is used by a register fixup, MRI will not contain all
  // the uses until after register fixups, so don't attempt to sink or DCE
  // this instruction. Register fixups typically come from no-op cast
  // instructions, which replace the cast instruction vreg with the local
  // value vreg.
  if (FuncInfo.RegsWithFixups.count(DefReg))
    return;

  // We can DCE this instruction if there are no uses and it wasn't a
  // materialized for a successor PHI node.
  bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
  if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
    if (EmitStartPt == &LocalMI)
      EmitStartPt = EmitStartPt->getPrevNode();
    LLVM_DEBUG(dbgs() << "removing dead local value materialization "
                      << LocalMI);
    OrderMap.Orders.erase(&LocalMI);
    LocalMI.eraseFromParent();
    return;
  }

  // Number the instructions if we haven't yet so we can efficiently find the
  // earliest use.
  if (OrderMap.Orders.empty())
    OrderMap.initialize(FuncInfo.MBB, LastFlushPoint);

  // Find the first user in the BB.
  MachineInstr *FirstUser = nullptr;
  unsigned FirstOrder = std::numeric_limits<unsigned>::max();
  for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) {
    auto I = OrderMap.Orders.find(&UseInst);
    assert(I != OrderMap.Orders.end() &&
           "local value used by instruction outside local region");
    unsigned UseOrder = I->second;
    if (UseOrder < FirstOrder) {
      FirstOrder = UseOrder;
      FirstUser = &UseInst;
    }
  }

  // The insertion point will be the first terminator or the first user,
  // whichever came first. If there was no terminator, this must be a
  // fallthrough block and the insertion point is the end of the block.
  MachineBasicBlock::instr_iterator SinkPos;
  if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) {
    FirstOrder = OrderMap.FirstTerminatorOrder;
    SinkPos = OrderMap.FirstTerminator->getIterator();
  } else if (FirstUser) {
    SinkPos = FirstUser->getIterator();
  } else {
    assert(UsedByPHI && "must be users if not used by a phi");
    SinkPos = FuncInfo.MBB->instr_end();
  }

  // Collect all DBG_VALUEs before the new insertion position so that we can
  // sink them.
  SmallVector<MachineInstr *, 1> DbgValues;
  for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) {
    if (!DbgVal.isDebugValue())
      continue;
    unsigned UseOrder = OrderMap.Orders[&DbgVal];
    if (UseOrder < FirstOrder)
      DbgValues.push_back(&DbgVal);
  }

  // Sink LocalMI before SinkPos and assign it the same DebugLoc.
  LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI);
  FuncInfo.MBB->remove(&LocalMI);
  FuncInfo.MBB->insert(SinkPos, &LocalMI);
  if (SinkPos != FuncInfo.MBB->end())
    LocalMI.setDebugLoc(SinkPos->getDebugLoc());

  // Sink any debug values that we've collected.
  for (MachineInstr *DI : DbgValues) {
    FuncInfo.MBB->remove(DI);
    FuncInfo.MBB->insert(SinkPos, DI);
  }
}

bool FastISel::hasTrivialKill(const Value *V) {
  // Don't consider constants or arguments to have trivial kills.
  const Instruction *I = dyn_cast<Instruction>(V);
  if (!I)
    return false;

  // No-op casts are trivially coalesced by fast-isel.
  if (const auto *Cast = dyn_cast<CastInst>(I))
    if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0)))
      return false;

  // Even the value might have only one use in the LLVM IR, it is possible that
  // FastISel might fold the use into another instruction and now there is more
  // than one use at the Machine Instruction level.
  unsigned Reg = lookUpRegForValue(V);
  if (Reg && !MRI.use_empty(Reg))
    return false;

  // GEPs with all zero indices are trivially coalesced by fast-isel.
  if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
    if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
      return false;

  // Only instructions with a single use in the same basic block are considered
  // to have trivial kills.
  return I->hasOneUse() &&
         !(I->getOpcode() == Instruction::BitCast ||
           I->getOpcode() == Instruction::PtrToInt ||
           I->getOpcode() == Instruction::IntToPtr) &&
         cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
}

unsigned FastISel::getRegForValue(const Value *V) {
  EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
  // Don't handle non-simple values in FastISel.
  if (!RealVT.isSimple())
    return 0;

  // Ignore illegal types. We must do this before looking up the value
  // in ValueMap because Arguments are given virtual registers regardless
  // of whether FastISel can handle them.
  MVT VT = RealVT.getSimpleVT();
  if (!TLI.isTypeLegal(VT)) {
    // Handle integer promotions, though, because they're common and easy.
    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
    else
      return 0;
  }

  // Look up the value to see if we already have a register for it.
  unsigned Reg = lookUpRegForValue(V);
  if (Reg)
    return Reg;

  // In bottom-up mode, just create the virtual register which will be used
  // to hold the value. It will be materialized later.
  if (isa<Instruction>(V) &&
      (!isa<AllocaInst>(V) ||
       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
    return FuncInfo.InitializeRegForValue(V);

  SavePoint SaveInsertPt = enterLocalValueArea();

  // Materialize the value in a register. Emit any instructions in the
  // local value area.
  Reg = materializeRegForValue(V, VT);

  leaveLocalValueArea(SaveInsertPt);

  return Reg;
}

unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
  unsigned Reg = 0;
  if (const auto *CI = dyn_cast<ConstantInt>(V)) {
    if (CI->getValue().getActiveBits() <= 64)
      Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
  } else if (isa<AllocaInst>(V))
    Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
  else if (isa<ConstantPointerNull>(V))
    // Translate this as an integer zero so that it can be
    // local-CSE'd with actual integer zeros.
    Reg =
        getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
  else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
    if (CF->isNullValue())
      Reg = fastMaterializeFloatZero(CF);
    else
      // Try to emit the constant directly.
      Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);

    if (!Reg) {
      // Try to emit the constant by using an integer constant with a cast.
      const APFloat &Flt = CF->getValueAPF();
      EVT IntVT = TLI.getPointerTy(DL);
      uint32_t IntBitWidth = IntVT.getSizeInBits();
      APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
      bool isExact;
      (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
      if (isExact) {
        unsigned IntegerReg =
            getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
        if (IntegerReg != 0)
          Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
                           /*Kill=*/false);
      }
    }
  } else if (const auto *Op = dyn_cast<Operator>(V)) {
    if (!selectOperator(Op, Op->getOpcode()))
      if (!isa<Instruction>(Op) ||
          !fastSelectInstruction(cast<Instruction>(Op)))
        return 0;
    Reg = lookUpRegForValue(Op);
  } else if (isa<UndefValue>(V)) {
    Reg = createResultReg(TLI.getRegClassFor(VT));
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
  }
  return Reg;
}

/// Helper for getRegForValue. This function is called when the value isn't
/// already available in a register and must be materialized with new
/// instructions.
unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
  unsigned Reg = 0;
  // Give the target-specific code a try first.
  if (isa<Constant>(V))
    Reg = fastMaterializeConstant(cast<Constant>(V));

  // If target-specific code couldn't or didn't want to handle the value, then
  // give target-independent code a try.
  if (!Reg)
    Reg = materializeConstant(V, VT);

  // Don't cache constant materializations in the general ValueMap.
  // To do so would require tracking what uses they dominate.
  if (Reg) {
    LocalValueMap[V] = Reg;
    LastLocalValue = MRI.getVRegDef(Reg);
  }
  return Reg;
}

unsigned FastISel::lookUpRegForValue(const Value *V) {
  // Look up the value to see if we already have a register for it. We
  // cache values defined by Instructions across blocks, and other values
  // only locally. This is because Instructions already have the SSA
  // def-dominates-use requirement enforced.
  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
  if (I != FuncInfo.ValueMap.end())
    return I->second;
  return LocalValueMap[V];
}

void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
  if (!isa<Instruction>(I)) {
    LocalValueMap[I] = Reg;
    return;
  }

  unsigned &AssignedReg = FuncInfo.ValueMap[I];
  if (AssignedReg == 0)
    // Use the new register.
    AssignedReg = Reg;
  else if (Reg != AssignedReg) {
    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
    for (unsigned i = 0; i < NumRegs; i++) {
      FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
      FuncInfo.RegsWithFixups.insert(Reg + i);
    }

    AssignedReg = Reg;
  }
}

std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
  unsigned IdxN = getRegForValue(Idx);
  if (IdxN == 0)
    // Unhandled operand. Halt "fast" selection and bail.
    return std::pair<unsigned, bool>(0, false);

  bool IdxNIsKill = hasTrivialKill(Idx);

  // If the index is smaller or larger than intptr_t, truncate or extend it.
  MVT PtrVT = TLI.getPointerTy(DL);
  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
  if (IdxVT.bitsLT(PtrVT)) {
    IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
                      IdxNIsKill);
    IdxNIsKill = true;
  } else if (IdxVT.bitsGT(PtrVT)) {
    IdxN =
        fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
    IdxNIsKill = true;
  }
  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
}

void FastISel::recomputeInsertPt() {
  if (getLastLocalValue()) {
    FuncInfo.InsertPt = getLastLocalValue();
    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
    ++FuncInfo.InsertPt;
  } else
    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();

  // Now skip past any EH_LABELs, which must remain at the beginning.
  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
    ++FuncInfo.InsertPt;
}

void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
                              MachineBasicBlock::iterator E) {
  assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
         "Invalid iterator!");
  while (I != E) {
    if (LastFlushPoint == I)
      LastFlushPoint = E;
    if (SavedInsertPt == I)
      SavedInsertPt = E;
    if (EmitStartPt == I)
      EmitStartPt = E.isValid() ? &*E : nullptr;
    if (LastLocalValue == I)
      LastLocalValue = E.isValid() ? &*E : nullptr;

    MachineInstr *Dead = &*I;
    ++I;
    Dead->eraseFromParent();
    ++NumFastIselDead;
  }
  recomputeInsertPt();
}

FastISel::SavePoint FastISel::enterLocalValueArea() {
  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
  DebugLoc OldDL = DbgLoc;
  recomputeInsertPt();
  DbgLoc = DebugLoc();
  SavePoint SP = {OldInsertPt, OldDL};
  return SP;
}

void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
    LastLocalValue = &*std::prev(FuncInfo.InsertPt);

  // Restore the previous insert position.
  FuncInfo.InsertPt = OldInsertPt.InsertPt;
  DbgLoc = OldInsertPt.DL;
}

bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
  if (VT == MVT::Other || !VT.isSimple())
    // Unhandled type. Halt "fast" selection and bail.
    return false;

  // We only handle legal types. For example, on x86-32 the instruction
  // selector contains all of the 64-bit instructions from x86-64,
  // under the assumption that i64 won't be used if the target doesn't
  // support it.
  if (!TLI.isTypeLegal(VT)) {
    // MVT::i1 is special. Allow AND, OR, or XOR because they
    // don't require additional zeroing, which makes them easy.
    if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
                          ISDOpcode == ISD::XOR))
      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
    else
      return false;
  }

  // Check if the first operand is a constant, and handle it as "ri".  At -O0,
  // we don't have anything that canonicalizes operand order.
  if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
      unsigned Op1 = getRegForValue(I->getOperand(1));
      if (!Op1)
        return false;
      bool Op1IsKill = hasTrivialKill(I->getOperand(1));

      unsigned ResultReg =
          fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
                       CI->getZExtValue(), VT.getSimpleVT());
      if (!ResultReg)
        return false;

      // We successfully emitted code for the given LLVM Instruction.
      updateValueMap(I, ResultReg);
      return true;
    }

  unsigned Op0 = getRegForValue(I->getOperand(0));
  if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
    return false;
  bool Op0IsKill = hasTrivialKill(I->getOperand(0));

  // Check if the second operand is a constant and handle it appropriately.
  if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    uint64_t Imm = CI->getSExtValue();

    // Transform "sdiv exact X, 8" -> "sra X, 3".
    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
        cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
      Imm = Log2_64(Imm);
      ISDOpcode = ISD::SRA;
    }

    // Transform "urem x, pow2" -> "and x, pow2-1".
    if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
        isPowerOf2_64(Imm)) {
      --Imm;
      ISDOpcode = ISD::AND;
    }

    unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
                                      Op0IsKill, Imm, VT.getSimpleVT());
    if (!ResultReg)
      return false;

    // We successfully emitted code for the given LLVM Instruction.
    updateValueMap(I, ResultReg);
    return true;
  }

  unsigned Op1 = getRegForValue(I->getOperand(1));
  if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
    return false;
  bool Op1IsKill = hasTrivialKill(I->getOperand(1));

  // Now we have both operands in registers. Emit the instruction.
  unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
                                   ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
  if (!ResultReg)
    // Target-specific code wasn't able to find a machine opcode for
    // the given ISD opcode and type. Halt "fast" selection and bail.
    return false;

  // We successfully emitted code for the given LLVM Instruction.
  updateValueMap(I, ResultReg);
  return true;
}

bool FastISel::selectGetElementPtr(const User *I) {
  unsigned N = getRegForValue(I->getOperand(0));
  if (!N) // Unhandled operand. Halt "fast" selection and bail.
    return false;
  bool NIsKill = hasTrivialKill(I->getOperand(0));

  // Keep a running tab of the total offset to coalesce multiple N = N + Offset
  // into a single N = N + TotalOffset.
  uint64_t TotalOffs = 0;
  // FIXME: What's a good SWAG number for MaxOffs?
  uint64_t MaxOffs = 2048;
  MVT VT = TLI.getPointerTy(DL);
  for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
       GTI != E; ++GTI) {
    const Value *Idx = GTI.getOperand();
    if (StructType *StTy = GTI.getStructTypeOrNull()) {
      uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
      if (Field) {
        // N = N + Offset
        TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
        if (TotalOffs >= MaxOffs) {
          N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
          if (!N) // Unhandled operand. Halt "fast" selection and bail.
            return false;
          NIsKill = true;
          TotalOffs = 0;
        }
      }
    } else {
      Type *Ty = GTI.getIndexedType();

      // If this is a constant subscript, handle it quickly.
      if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
        if (CI->isZero())
          continue;
        // N = N + Offset
        uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
        TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
        if (TotalOffs >= MaxOffs) {
          N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
          if (!N) // Unhandled operand. Halt "fast" selection and bail.
            return false;
          NIsKill = true;
          TotalOffs = 0;
        }
        continue;
      }
      if (TotalOffs) {
        N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
        if (!N) // Unhandled operand. Halt "fast" selection and bail.
          return false;
        NIsKill = true;
        TotalOffs = 0;
      }

      // N = N + Idx * ElementSize;
      uint64_t ElementSize = DL.getTypeAllocSize(Ty);
      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
      unsigned IdxN = Pair.first;
      bool IdxNIsKill = Pair.second;
      if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
        return false;

      if (ElementSize != 1) {
        IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
        if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
          return false;
        IdxNIsKill = true;
      }
      N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
      if (!N) // Unhandled operand. Halt "fast" selection and bail.
        return false;
    }
  }
  if (TotalOffs) {
    N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
    if (!N) // Unhandled operand. Halt "fast" selection and bail.
      return false;
  }

  // We successfully emitted code for the given LLVM Instruction.
  updateValueMap(I, N);
  return true;
}

bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
                                   const CallInst *CI, unsigned StartIdx) {
  for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
    Value *Val = CI->getArgOperand(i);
    // Check for constants and encode them with a StackMaps::ConstantOp prefix.
    if (const auto *C = dyn_cast<ConstantInt>(Val)) {
      Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
      Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
    } else if (isa<ConstantPointerNull>(Val)) {
      Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
      Ops.push_back(MachineOperand::CreateImm(0));
    } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
      // Values coming from a stack location also require a special encoding,
      // but that is added later on by the target specific frame index
      // elimination implementation.
      auto SI = FuncInfo.StaticAllocaMap.find(AI);
      if (SI != FuncInfo.StaticAllocaMap.end())
        Ops.push_back(MachineOperand::CreateFI(SI->second));
      else
        return false;
    } else {
      unsigned Reg = getRegForValue(Val);
      if (!Reg)
        return false;
      Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
    }
  }
  return true;
}

bool FastISel::selectStackmap(const CallInst *I) {
  // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
  //                                  [live variables...])
  assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
         "Stackmap cannot return a value.");

  // The stackmap intrinsic only records the live variables (the arguments
  // passed to it) and emits NOPS (if requested). Unlike the patchpoint
  // intrinsic, this won't be lowered to a function call. This means we don't
  // have to worry about calling conventions and target-specific lowering code.
  // Instead we perform the call lowering right here.
  //
  // CALLSEQ_START(0, 0...)
  // STACKMAP(id, nbytes, ...)
  // CALLSEQ_END(0, 0)
  //
  SmallVector<MachineOperand, 32> Ops;

  // Add the <id> and <numBytes> constants.
  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
         "Expected a constant integer.");
  const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
  Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));

  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
         "Expected a constant integer.");
  const auto *NumBytes =
      cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
  Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));

  // Push live variables for the stack map (skipping the first two arguments
  // <id> and <numBytes>).
  if (!addStackMapLiveVars(Ops, I, 2))
    return false;

  // We are not adding any register mask info here, because the stackmap doesn't
  // clobber anything.

  // Add scratch registers as implicit def and early clobber.
  CallingConv::ID CC = I->getCallingConv();
  const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
  for (unsigned i = 0; ScratchRegs[i]; ++i)
    Ops.push_back(MachineOperand::CreateReg(
        ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
        /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));

  // Issue CALLSEQ_START
  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
  auto Builder =
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
  const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
  for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
    Builder.addImm(0);

  // Issue STACKMAP.
  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
                                    TII.get(TargetOpcode::STACKMAP));
  for (auto const &MO : Ops)
    MIB.add(MO);

  // Issue CALLSEQ_END
  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
      .addImm(0)
      .addImm(0);

  // Inform the Frame Information that we have a stackmap in this function.
  FuncInfo.MF->getFrameInfo().setHasStackMap();

  return true;
}

/// Lower an argument list according to the target calling convention.
///
/// This is a helper for lowering intrinsics that follow a target calling
/// convention or require stack pointer adjustment. Only a subset of the
/// intrinsic's operands need to participate in the calling convention.
bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
                                 unsigned NumArgs, const Value *Callee,
                                 bool ForceRetVoidTy, CallLoweringInfo &CLI) {
  ArgListTy Args;
  Args.reserve(NumArgs);

  // Populate the argument list.
  ImmutableCallSite CS(CI);
  for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
    Value *V = CI->getOperand(ArgI);

    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");

    ArgListEntry Entry;
    Entry.Val = V;
    Entry.Ty = V->getType();
    Entry.setAttributes(&CS, ArgI);
    Args.push_back(Entry);
  }

  Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
                               : CI->getType();
  CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);

  return lowerCallTo(CLI);
}

FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
    const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
    StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
  SmallString<32> MangledName;
  Mangler::getNameWithPrefix(MangledName, Target, DL);
  MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
  return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
}

bool FastISel::selectPatchpoint(const CallInst *I) {
  // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
  //                                                 i32 <numBytes>,
  //                                                 i8* <target>,
  //                                                 i32 <numArgs>,
  //                                                 [Args...],
  //                                                 [live variables...])
  CallingConv::ID CC = I->getCallingConv();
  bool IsAnyRegCC = CC == CallingConv::AnyReg;
  bool HasDef = !I->getType()->isVoidTy();
  Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();

  // Get the real number of arguments participating in the call <numArgs>
  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
         "Expected a constant integer.");
  const auto *NumArgsVal =
      cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
  unsigned NumArgs = NumArgsVal->getZExtValue();

  // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
  // This includes all meta-operands up to but not including CC.
  unsigned NumMetaOpers = PatchPointOpers::CCPos;
  assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
         "Not enough arguments provided to the patchpoint intrinsic");

  // For AnyRegCC the arguments are lowered later on manually.
  unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
  CallLoweringInfo CLI;
  CLI.setIsPatchPoint();
  if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
    return false;

  assert(CLI.Call && "No call instruction specified.");

  SmallVector<MachineOperand, 32> Ops;

  // Add an explicit result reg if we use the anyreg calling convention.
  if (IsAnyRegCC && HasDef) {
    assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
    CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
    CLI.NumResultRegs = 1;
    Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
  }

  // Add the <id> and <numBytes> constants.
  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
         "Expected a constant integer.");
  const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
  Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));

  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
         "Expected a constant integer.");
  const auto *NumBytes =
      cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
  Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));

  // Add the call target.
  if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
    uint64_t CalleeConstAddr =
      cast<ConstantInt>(C->getOperand(0))->getZExtValue();
    Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
  } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
    if (C->getOpcode() == Instruction::IntToPtr) {
      uint64_t CalleeConstAddr =
        cast<ConstantInt>(C->getOperand(0))->getZExtValue();
      Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
    } else
      llvm_unreachable("Unsupported ConstantExpr.");
  } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
    Ops.push_back(MachineOperand::CreateGA(GV, 0));
  } else if (isa<ConstantPointerNull>(Callee))
    Ops.push_back(MachineOperand::CreateImm(0));
  else
    llvm_unreachable("Unsupported callee address.");

  // Adjust <numArgs> to account for any arguments that have been passed on
  // the stack instead.
  unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
  Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));

  // Add the calling convention
  Ops.push_back(MachineOperand::CreateImm((unsigned)CC));

  // Add the arguments we omitted previously. The register allocator should
  // place these in any free register.
  if (IsAnyRegCC) {
    for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
      unsigned Reg = getRegForValue(I->getArgOperand(i));
      if (!Reg)
        return false;
      Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
    }
  }

  // Push the arguments from the call instruction.
  for (auto Reg : CLI.OutRegs)
    Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));

  // Push live variables for the stack map.
  if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
    return false;

  // Push the register mask info.
  Ops.push_back(MachineOperand::CreateRegMask(
      TRI.getCallPreservedMask(*FuncInfo.MF, CC)));

  // Add scratch registers as implicit def and early clobber.
  const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
  for (unsigned i = 0; ScratchRegs[i]; ++i)
    Ops.push_back(MachineOperand::CreateReg(
        ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
        /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));

  // Add implicit defs (return values).
  for (auto Reg : CLI.InRegs)
    Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
                                            /*isImp=*/true));

  // Insert the patchpoint instruction before the call generated by the target.
  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
                                    TII.get(TargetOpcode::PATCHPOINT));

  for (auto &MO : Ops)
    MIB.add(MO);

  MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);

  // Delete the original call instruction.
  CLI.Call->eraseFromParent();

  // Inform the Frame Information that we have a patchpoint in this function.
  FuncInfo.MF->getFrameInfo().setHasPatchPoint();

  if (CLI.NumResultRegs)
    updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
  return true;
}

bool FastISel::selectXRayCustomEvent(const CallInst *I) {
  const auto &Triple = TM.getTargetTriple();
  if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
    return true; // don't do anything to this instruction.
  SmallVector<MachineOperand, 8> Ops;
  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
                                          /*isDef=*/false));
  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
                                          /*isDef=*/false));
  MachineInstrBuilder MIB =
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
  for (auto &MO : Ops)
    MIB.add(MO);

  // Insert the Patchable Event Call instruction, that gets lowered properly.
  return true;
}

bool FastISel::selectXRayTypedEvent(const CallInst *I) {
  const auto &Triple = TM.getTargetTriple();
  if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
    return true; // don't do anything to this instruction.
  SmallVector<MachineOperand, 8> Ops;
  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
                                          /*isDef=*/false));
  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
                                          /*isDef=*/false));
  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
                                          /*isDef=*/false));
  MachineInstrBuilder MIB =
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
  for (auto &MO : Ops)
    MIB.add(MO);

  // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
  return true;
}

/// Returns an AttributeList representing the attributes applied to the return
/// value of the given call.
static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
  SmallVector<Attribute::AttrKind, 2> Attrs;
  if (CLI.RetSExt)
    Attrs.push_back(Attribute::SExt);
  if (CLI.RetZExt)
    Attrs.push_back(Attribute::ZExt);
  if (CLI.IsInReg)
    Attrs.push_back(Attribute::InReg);

  return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
                            Attrs);
}

bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
                           unsigned NumArgs) {
  MCContext &Ctx = MF->getContext();
  SmallString<32> MangledName;
  Mangler::getNameWithPrefix(MangledName, SymName, DL);
  MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
  return lowerCallTo(CI, Sym, NumArgs);
}

bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
                           unsigned NumArgs) {
  ImmutableCallSite CS(CI);

  FunctionType *FTy = CS.getFunctionType();
  Type *RetTy = CS.getType();

  ArgListTy Args;
  Args.reserve(NumArgs);

  // Populate the argument list.
  // Attributes for args start at offset 1, after the return attribute.
  for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
    Value *V = CI->getOperand(ArgI);

    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");

    ArgListEntry Entry;
    Entry.Val = V;
    Entry.Ty = V->getType();
    Entry.setAttributes(&CS, ArgI);
    Args.push_back(Entry);
  }
  TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args);

  CallLoweringInfo CLI;
  CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);

  return lowerCallTo(CLI);
}

bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
  // Handle the incoming return values from the call.
  CLI.clearIns();
  SmallVector<EVT, 4> RetTys;
  ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);

  SmallVector<ISD::OutputArg, 4> Outs;
  GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);

  bool CanLowerReturn = TLI.CanLowerReturn(
      CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());

  // FIXME: sret demotion isn't supported yet - bail out.
  if (!CanLowerReturn)
    return false;

  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
    EVT VT = RetTys[I];
    MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
    unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
    for (unsigned i = 0; i != NumRegs; ++i) {
      ISD::InputArg MyFlags;
      MyFlags.VT = RegisterVT;
      MyFlags.ArgVT = VT;
      MyFlags.Used = CLI.IsReturnValueUsed;
      if (CLI.RetSExt)
        MyFlags.Flags.setSExt();
      if (CLI.RetZExt)
        MyFlags.Flags.setZExt();
      if (CLI.IsInReg)
        MyFlags.Flags.setInReg();
      CLI.Ins.push_back(MyFlags);
    }
  }

  // Handle all of the outgoing arguments.
  CLI.clearOuts();
  for (auto &Arg : CLI.getArgs()) {
    Type *FinalType = Arg.Ty;
    if (Arg.IsByVal)
      FinalType = cast<PointerType>(Arg.Ty)->getElementType();
    bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
        FinalType, CLI.CallConv, CLI.IsVarArg);

    ISD::ArgFlagsTy Flags;
    if (Arg.IsZExt)
      Flags.setZExt();
    if (Arg.IsSExt)
      Flags.setSExt();
    if (Arg.IsInReg)
      Flags.setInReg();
    if (Arg.IsSRet)
      Flags.setSRet();
    if (Arg.IsSwiftSelf)
      Flags.setSwiftSelf();
    if (Arg.IsSwiftError)
      Flags.setSwiftError();
    if (Arg.IsCFGuardTarget)
      Flags.setCFGuardTarget();
    if (Arg.IsByVal)
      Flags.setByVal();
    if (Arg.IsInAlloca) {
      Flags.setInAlloca();
      // Set the byval flag for CCAssignFn callbacks that don't know about
      // inalloca. This way we can know how many bytes we should've allocated
      // and how many bytes a callee cleanup function will pop.  If we port
      // inalloca to more targets, we'll have to add custom inalloca handling in
      // the various CC lowering callbacks.
      Flags.setByVal();
    }
    if (Arg.IsByVal || Arg.IsInAlloca) {
      PointerType *Ty = cast<PointerType>(Arg.Ty);
      Type *ElementTy = Ty->getElementType();
      unsigned FrameSize =
          DL.getTypeAllocSize(Arg.ByValType ? Arg.ByValType : ElementTy);

      // For ByVal, alignment should come from FE. BE will guess if this info
      // is not there, but there are cases it cannot get right.
      unsigned FrameAlign = Arg.Alignment;
      if (!FrameAlign)
        FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
      Flags.setByValSize(FrameSize);
      Flags.setByValAlign(Align(FrameAlign));
    }
    if (Arg.IsNest)
      Flags.setNest();
    if (NeedsRegBlock)
      Flags.setInConsecutiveRegs();
    Flags.setOrigAlign(Align(DL.getABITypeAlignment(Arg.Ty)));

    CLI.OutVals.push_back(Arg.Val);
    CLI.OutFlags.push_back(Flags);
  }

  if (!fastLowerCall(CLI))
    return false;

  // Set all unused physreg defs as dead.
  assert(CLI.Call && "No call instruction specified.");
  CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);

  if (CLI.NumResultRegs && CLI.CS)
    updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);

  // Set labels for heapallocsite call.
  if (CLI.CS)
    if (MDNode *MD = CLI.CS->getInstruction()->getMetadata("heapallocsite"))
      CLI.Call->setHeapAllocMarker(*MF, MD);

  return true;
}

bool FastISel::lowerCall(const CallInst *CI) {
  ImmutableCallSite CS(CI);

  FunctionType *FuncTy = CS.getFunctionType();
  Type *RetTy = CS.getType();

  ArgListTy Args;
  ArgListEntry Entry;
  Args.reserve(CS.arg_size());

  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
       i != e; ++i) {
    Value *V = *i;

    // Skip empty types
    if (V->getType()->isEmptyTy())
      continue;

    Entry.Val = V;
    Entry.Ty = V->getType();

    // Skip the first return-type Attribute to get to params.
    Entry.setAttributes(&CS, i - CS.arg_begin());
    Args.push_back(Entry);
  }

  // Check if target-independent constraints permit a tail call here.
  // Target-dependent constraints are checked within fastLowerCall.
  bool IsTailCall = CI->isTailCall();
  if (IsTailCall && !isInTailCallPosition(CS, TM))
    IsTailCall = false;
  if (IsTailCall && MF->getFunction()
                            .getFnAttribute("disable-tail-calls")
                            .getValueAsString() == "true")
    IsTailCall = false;

  CallLoweringInfo CLI;
  CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
      .setTailCall(IsTailCall);

  return lowerCallTo(CLI);
}

bool FastISel::selectCall(const User *I) {
  const CallInst *Call = cast<CallInst>(I);

  // Handle simple inline asms.
  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
    // If the inline asm has side effects, then make sure that no local value
    // lives across by flushing the local value map.
    if (IA->hasSideEffects())
      flushLocalValueMap();

    // Don't attempt to handle constraints.
    if (!IA->getConstraintString().empty())
      return false;

    unsigned ExtraInfo = 0;
    if (IA->hasSideEffects())
      ExtraInfo |= InlineAsm::Extra_HasSideEffects;
    if (IA->isAlignStack())
      ExtraInfo |= InlineAsm::Extra_IsAlignStack;
    ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;

    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::INLINEASM))
        .addExternalSymbol(IA->getAsmString().c_str())
        .addImm(ExtraInfo);
    return true;
  }

  // Handle intrinsic function calls.
  if (const auto *II = dyn_cast<IntrinsicInst>(Call))
    return selectIntrinsicCall(II);

  // Usually, it does not make sense to initialize a value,
  // make an unrelated function call and use the value, because
  // it tends to be spilled on the stack. So, we move the pointer
  // to the last local value to the beginning of the block, so that
  // all the values which have already been materialized,
  // appear after the call. It also makes sense to skip intrinsics
  // since they tend to be inlined.
  flushLocalValueMap();

  return lowerCall(Call);
}

bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
  switch (II->getIntrinsicID()) {
  default:
    break;
  // At -O0 we don't care about the lifetime intrinsics.
  case Intrinsic::lifetime_start:
  case Intrinsic::lifetime_end:
  // The donothing intrinsic does, well, nothing.
  case Intrinsic::donothing:
  // Neither does the sideeffect intrinsic.
  case Intrinsic::sideeffect:
  // Neither does the assume intrinsic; it's also OK not to codegen its operand.
  case Intrinsic::assume:
    return true;
  case Intrinsic::dbg_declare: {
    const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
    assert(DI->getVariable() && "Missing variable");
    if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
      return true;
    }

    const Value *Address = DI->getAddress();
    if (!Address || isa<UndefValue>(Address)) {
      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
      return true;
    }

    // Byval arguments with frame indices were already handled after argument
    // lowering and before isel.
    const auto *Arg =
        dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
    if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
      return true;

    Optional<MachineOperand> Op;
    if (unsigned Reg = lookUpRegForValue(Address))
      Op = MachineOperand::CreateReg(Reg, false);

    // If we have a VLA that has a "use" in a metadata node that's then used
    // here but it has no other uses, then we have a problem. E.g.,
    //
    //   int foo (const int *x) {
    //     char a[*x];
    //     return 0;
    //   }
    //
    // If we assign 'a' a vreg and fast isel later on has to use the selection
    // DAG isel, it will want to copy the value to the vreg. However, there are
    // no uses, which goes counter to what selection DAG isel expects.
    if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
        (!isa<AllocaInst>(Address) ||
         !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
      Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
                                     false);

    if (Op) {
      assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
             "Expected inlined-at fields to agree");
      // A dbg.declare describes the address of a source variable, so lower it
      // into an indirect DBG_VALUE.
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true,
              *Op, DI->getVariable(), DI->getExpression());
    } else {
      // We can't yet handle anything else here because it would require
      // generating code, thus altering codegen because of debug info.
      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
    }
    return true;
  }
  case Intrinsic::dbg_value: {
    // This form of DBG_VALUE is target-independent.
    const DbgValueInst *DI = cast<DbgValueInst>(II);
    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
    const Value *V = DI->getValue();
    assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
           "Expected inlined-at fields to agree");
    if (!V) {
      // Currently the optimizer can produce this; insert an undef to
      // help debugging.  Probably the optimizer should not do this.
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
              DI->getVariable(), DI->getExpression());
    } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
      if (CI->getBitWidth() > 64)
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
            .addCImm(CI)
            .addImm(0U)
            .addMetadata(DI->getVariable())
            .addMetadata(DI->getExpression());
      else
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
            .addImm(CI->getZExtValue())
            .addImm(0U)
            .addMetadata(DI->getVariable())
            .addMetadata(DI->getExpression());
    } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
          .addFPImm(CF)
          .addImm(0U)
          .addMetadata(DI->getVariable())
          .addMetadata(DI->getExpression());
    } else if (unsigned Reg = lookUpRegForValue(V)) {
      // FIXME: This does not handle register-indirect values at offset 0.
      bool IsIndirect = false;
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
              DI->getVariable(), DI->getExpression());
    } else {
      // We can't yet handle anything else here because it would require
      // generating code, thus altering codegen because of debug info.
      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
    }
    return true;
  }
  case Intrinsic::dbg_label: {
    const DbgLabelInst *DI = cast<DbgLabelInst>(II);
    assert(DI->getLabel() && "Missing label");
    if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
      return true;
    }

    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
    return true;
  }
  case Intrinsic::objectsize:
    llvm_unreachable("llvm.objectsize.* should have been lowered already");

  case Intrinsic::is_constant:
    llvm_unreachable("llvm.is.constant.* should have been lowered already");

  case Intrinsic::launder_invariant_group:
  case Intrinsic::strip_invariant_group:
  case Intrinsic::expect: {
    unsigned ResultReg = getRegForValue(II->getArgOperand(0));
    if (!ResultReg)
      return false;
    updateValueMap(II, ResultReg);
    return true;
  }
  case Intrinsic::experimental_stackmap:
    return selectStackmap(II);
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    return selectPatchpoint(II);

  case Intrinsic::xray_customevent:
    return selectXRayCustomEvent(II);
  case Intrinsic::xray_typedevent:
    return selectXRayTypedEvent(II);
  }

  return fastLowerIntrinsicCall(II);
}

bool FastISel::selectCast(const User *I, unsigned Opcode) {
  EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
  EVT DstVT = TLI.getValueType(DL, I->getType());

  if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
      !DstVT.isSimple())
    // Unhandled type. Halt "fast" selection and bail.
    return false;

  // Check if the destination type is legal.
  if (!TLI.isTypeLegal(DstVT))
    return false;

  // Check if the source operand is legal.
  if (!TLI.isTypeLegal(SrcVT))
    return false;

  unsigned InputReg = getRegForValue(I->getOperand(0));
  if (!InputReg)
    // Unhandled operand.  Halt "fast" selection and bail.
    return false;

  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));

  unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
                                  Opcode, InputReg, InputRegIsKill);
  if (!ResultReg)
    return false;

  updateValueMap(I, ResultReg);
  return true;
}

bool FastISel::selectBitCast(const User *I) {
  // If the bitcast doesn't change the type, just use the operand value.
  if (I->getType() == I->getOperand(0)->getType()) {
    unsigned Reg = getRegForValue(I->getOperand(0));
    if (!Reg)
      return false;
    updateValueMap(I, Reg);
    return true;
  }

  // Bitcasts of other values become reg-reg copies or BITCAST operators.
  EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
  EVT DstEVT = TLI.getValueType(DL, I->getType());
  if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
      !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
    // Unhandled type. Halt "fast" selection and bail.
    return false;

  MVT SrcVT = SrcEVT.getSimpleVT();
  MVT DstVT = DstEVT.getSimpleVT();
  unsigned Op0 = getRegForValue(I->getOperand(0));
  if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
    return false;
  bool Op0IsKill = hasTrivialKill(I->getOperand(0));

  // First, try to perform the bitcast by inserting a reg-reg copy.
  unsigned ResultReg = 0;
  if (SrcVT == DstVT) {
    const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
    const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
    // Don't attempt a cross-class copy. It will likely fail.
    if (SrcClass == DstClass) {
      ResultReg = createResultReg(DstClass);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
    }
  }

  // If the reg-reg copy failed, select a BITCAST opcode.
  if (!ResultReg)
    ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);

  if (!ResultReg)
    return false;

  updateValueMap(I, ResultReg);
  return true;
}

// Remove local value instructions starting from the instruction after
// SavedLastLocalValue to the current function insert point.
void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
{
  MachineInstr *CurLastLocalValue = getLastLocalValue();
  if (CurLastLocalValue != SavedLastLocalValue) {
    // Find the first local value instruction to be deleted.
    // This is the instruction after SavedLastLocalValue if it is non-NULL.
    // Otherwise it's the first instruction in the block.
    MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
    if (SavedLastLocalValue)
      ++FirstDeadInst;
    else
      FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
    setLastLocalValue(SavedLastLocalValue);
    removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
  }
}

bool FastISel::selectInstruction(const Instruction *I) {
  MachineInstr *SavedLastLocalValue = getLastLocalValue();
  // Just before the terminator instruction, insert instructions to
  // feed PHI nodes in successor blocks.
  if (I->isTerminator()) {
    if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
      // PHI node handling may have generated local value instructions,
      // even though it failed to handle all PHI nodes.
      // We remove these instructions because SelectionDAGISel will generate
      // them again.
      removeDeadLocalValueCode(SavedLastLocalValue);
      return false;
    }
  }

  // FastISel does not handle any operand bundles except OB_funclet.
  if (ImmutableCallSite CS = ImmutableCallSite(I))
    for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
      if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
        return false;

  DbgLoc = I->getDebugLoc();

  SavedInsertPt = FuncInfo.InsertPt;

  if (const auto *Call = dyn_cast<CallInst>(I)) {
    const Function *F = Call->getCalledFunction();
    LibFunc Func;

    // As a special case, don't handle calls to builtin library functions that
    // may be translated directly to target instructions.
    if (F && !F->hasLocalLinkage() && F->hasName() &&
        LibInfo->getLibFunc(F->getName(), Func) &&
        LibInfo->hasOptimizedCodeGen(Func))
      return false;

    // Don't handle Intrinsic::trap if a trap function is specified.
    if (F && F->getIntrinsicID() == Intrinsic::trap &&
        Call->hasFnAttr("trap-func-name"))
      return false;
  }

  // First, try doing target-independent selection.
  if (!SkipTargetIndependentISel) {
    if (selectOperator(I, I->getOpcode())) {
      ++NumFastIselSuccessIndependent;
      DbgLoc = DebugLoc();
      return true;
    }
    // Remove dead code.
    recomputeInsertPt();
    if (SavedInsertPt != FuncInfo.InsertPt)
      removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
    SavedInsertPt = FuncInfo.InsertPt;
  }
  // Next, try calling the target to attempt to handle the instruction.
  if (fastSelectInstruction(I)) {
    ++NumFastIselSuccessTarget;
    DbgLoc = DebugLoc();
    return true;
  }
  // Remove dead code.
  recomputeInsertPt();
  if (SavedInsertPt != FuncInfo.InsertPt)
    removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);

  DbgLoc = DebugLoc();
  // Undo phi node updates, because they will be added again by SelectionDAG.
  if (I->isTerminator()) {
    // PHI node handling may have generated local value instructions.
    // We remove them because SelectionDAGISel will generate them again.
    removeDeadLocalValueCode(SavedLastLocalValue);
    FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
  }
  return false;
}

/// Emit an unconditional branch to the given block, unless it is the immediate
/// (fall-through) successor, and update the CFG.
void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
                              const DebugLoc &DbgLoc) {
  if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
      FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
    // For more accurate line information if this is the only non-debug
    // instruction in the block then emit it, otherwise we have the
    // unconditional fall-through case, which needs no instructions.
  } else {
    // The unconditional branch case.
    TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
                     SmallVector<MachineOperand, 0>(), DbgLoc);
  }
  if (FuncInfo.BPI) {
    auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
        FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
    FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
  } else
    FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
}

void FastISel::finishCondBranch(const BasicBlock *BranchBB,
                                MachineBasicBlock *TrueMBB,
                                MachineBasicBlock *FalseMBB) {
  // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
  // happen in degenerate IR and MachineIR forbids to have a block twice in the
  // successor/predecessor lists.
  if (TrueMBB != FalseMBB) {
    if (FuncInfo.BPI) {
      auto BranchProbability =
          FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
      FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
    } else
      FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
  }

  fastEmitBranch(FalseMBB, DbgLoc);
}

/// Emit an FNeg operation.
bool FastISel::selectFNeg(const User *I, const Value *In) {
  unsigned OpReg = getRegForValue(In);
  if (!OpReg)
    return false;
  bool OpRegIsKill = hasTrivialKill(In);

  // If the target has ISD::FNEG, use it.
  EVT VT = TLI.getValueType(DL, I->getType());
  unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
                                  OpReg, OpRegIsKill);
  if (ResultReg) {
    updateValueMap(I, ResultReg);
    return true;
  }

  // Bitcast the value to integer, twiddle the sign bit with xor,
  // and then bitcast it back to floating-point.
  if (VT.getSizeInBits() > 64)
    return false;
  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
  if (!TLI.isTypeLegal(IntVT))
    return false;

  unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
                               ISD::BITCAST, OpReg, OpRegIsKill);
  if (!IntReg)
    return false;

  unsigned IntResultReg = fastEmit_ri_(
      IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
      UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
  if (!IntResultReg)
    return false;

  ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
                         IntResultReg, /*IsKill=*/true);
  if (!ResultReg)
    return false;

  updateValueMap(I, ResultReg);
  return true;
}

bool FastISel::selectExtractValue(const User *U) {
  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
  if (!EVI)
    return false;

  // Make sure we only try to handle extracts with a legal result.  But also
  // allow i1 because it's easy.
  EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
  if (!RealVT.isSimple())
    return false;
  MVT VT = RealVT.getSimpleVT();
  if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
    return false;

  const Value *Op0 = EVI->getOperand(0);
  Type *AggTy = Op0->getType();

  // Get the base result register.
  unsigned ResultReg;
  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
  if (I != FuncInfo.ValueMap.end())
    ResultReg = I->second;
  else if (isa<Instruction>(Op0))
    ResultReg = FuncInfo.InitializeRegForValue(Op0);
  else
    return false; // fast-isel can't handle aggregate constants at the moment

  // Get the actual result register, which is an offset from the base register.
  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());

  SmallVector<EVT, 4> AggValueVTs;
  ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);

  for (unsigned i = 0; i < VTIndex; i++)
    ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);

  updateValueMap(EVI, ResultReg);
  return true;
}

bool FastISel::selectOperator(const User *I, unsigned Opcode) {
  switch (Opcode) {
  case Instruction::Add:
    return selectBinaryOp(I, ISD::ADD);
  case Instruction::FAdd:
    return selectBinaryOp(I, ISD::FADD);
  case Instruction::Sub:
    return selectBinaryOp(I, ISD::SUB);
  case Instruction::FSub: {
    // FNeg is currently represented in LLVM IR as a special case of FSub.
    Value *X;
    if (match(I, m_FNeg(m_Value(X))))
       return selectFNeg(I, X);
    return selectBinaryOp(I, ISD::FSUB);
  }
  case Instruction::Mul:
    return selectBinaryOp(I, ISD::MUL);
  case Instruction::FMul:
    return selectBinaryOp(I, ISD::FMUL);
  case Instruction::SDiv:
    return selectBinaryOp(I, ISD::SDIV);
  case Instruction::UDiv:
    return selectBinaryOp(I, ISD::UDIV);
  case Instruction::FDiv:
    return selectBinaryOp(I, ISD::FDIV);
  case Instruction::SRem:
    return selectBinaryOp(I, ISD::SREM);
  case Instruction::URem:
    return selectBinaryOp(I, ISD::UREM);
  case Instruction::FRem:
    return selectBinaryOp(I, ISD::FREM);
  case Instruction::Shl:
    return selectBinaryOp(I, ISD::SHL);
  case Instruction::LShr:
    return selectBinaryOp(I, ISD::SRL);
  case Instruction::AShr:
    return selectBinaryOp(I, ISD::SRA);
  case Instruction::And:
    return selectBinaryOp(I, ISD::AND);
  case Instruction::Or:
    return selectBinaryOp(I, ISD::OR);
  case Instruction::Xor:
    return selectBinaryOp(I, ISD::XOR);

  case Instruction::FNeg:
    return selectFNeg(I, I->getOperand(0));

  case Instruction::GetElementPtr:
    return selectGetElementPtr(I);

  case Instruction::Br: {
    const BranchInst *BI = cast<BranchInst>(I);

    if (BI->isUnconditional()) {
      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
      fastEmitBranch(MSucc, BI->getDebugLoc());
      return true;
    }

    // Conditional branches are not handed yet.
    // Halt "fast" selection and bail.
    return false;
  }

  case Instruction::Unreachable:
    if (TM.Options.TrapUnreachable)
      return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
    else
      return true;

  case Instruction::Alloca:
    // FunctionLowering has the static-sized case covered.
    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
      return true;

    // Dynamic-sized alloca is not handled yet.
    return false;

  case Instruction::Call:
    // On AIX, call lowering uses the DAG-ISEL path currently so that the
    // callee of the direct function call instruction will be mapped to the
    // symbol for the function's entry point, which is distinct from the
    // function descriptor symbol. The latter is the symbol whose XCOFF symbol
    // name is the C-linkage name of the source level function.
    if (TM.getTargetTriple().isOSAIX())
      return false;
    return selectCall(I);

  case Instruction::BitCast:
    return selectBitCast(I);

  case Instruction::FPToSI:
    return selectCast(I, ISD::FP_TO_SINT);
  case Instruction::ZExt:
    return selectCast(I, ISD::ZERO_EXTEND);
  case Instruction::SExt:
    return selectCast(I, ISD::SIGN_EXTEND);
  case Instruction::Trunc:
    return selectCast(I, ISD::TRUNCATE);
  case Instruction::SIToFP:
    return selectCast(I, ISD::SINT_TO_FP);

  case Instruction::IntToPtr: // Deliberate fall-through.
  case Instruction::PtrToInt: {
    EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
    EVT DstVT = TLI.getValueType(DL, I->getType());
    if (DstVT.bitsGT(SrcVT))
      return selectCast(I, ISD::ZERO_EXTEND);
    if (DstVT.bitsLT(SrcVT))
      return selectCast(I, ISD::TRUNCATE);
    unsigned Reg = getRegForValue(I->getOperand(0));
    if (!Reg)
      return false;
    updateValueMap(I, Reg);
    return true;
  }

  case Instruction::ExtractValue:
    return selectExtractValue(I);

  case Instruction::PHI:
    llvm_unreachable("FastISel shouldn't visit PHI nodes!");

  default:
    // Unhandled instruction. Halt "fast" selection and bail.
    return false;
  }
}

FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
                   const TargetLibraryInfo *LibInfo,
                   bool SkipTargetIndependentISel)
    : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
      MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
      TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
      TII(*MF->getSubtarget().getInstrInfo()),
      TLI(*MF->getSubtarget().getTargetLowering()),
      TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
      SkipTargetIndependentISel(SkipTargetIndependentISel),
      LastLocalValue(nullptr), EmitStartPt(nullptr) {}

FastISel::~FastISel() = default;

bool FastISel::fastLowerArguments() { return false; }

bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }

bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
  return false;
}

unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }

unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
                              bool /*Op0IsKill*/) {
  return 0;
}

unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
                               bool /*Op0IsKill*/, unsigned /*Op1*/,
                               bool /*Op1IsKill*/) {
  return 0;
}

unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
  return 0;
}

unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
                              const ConstantFP * /*FPImm*/) {
  return 0;
}

unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
                               bool /*Op0IsKill*/, uint64_t /*Imm*/) {
  return 0;
}

/// This method is a wrapper of fastEmit_ri. It first tries to emit an
/// instruction with an immediate operand using fastEmit_ri.
/// If that fails, it materializes the immediate into a register and try
/// fastEmit_rr instead.
unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
                                bool Op0IsKill, uint64_t Imm, MVT ImmType) {
  // If this is a multiply by a power of two, emit this as a shift left.
  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
    Opcode = ISD::SHL;
    Imm = Log2_64(Imm);
  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
    // div x, 8 -> srl x, 3
    Opcode = ISD::SRL;
    Imm = Log2_64(Imm);
  }

  // Horrible hack (to be removed), check to make sure shift amounts are
  // in-range.
  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
      Imm >= VT.getSizeInBits())
    return 0;

  // First check if immediate type is legal. If not, we can't use the ri form.
  unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
  if (ResultReg)
    return ResultReg;
  unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
  bool IsImmKill = true;
  if (!MaterialReg) {
    // This is a bit ugly/slow, but failing here means falling out of
    // fast-isel, which would be very slow.
    IntegerType *ITy =
        IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
    MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
    if (!MaterialReg)
      return 0;
    // FIXME: If the materialized register here has no uses yet then this
    // will be the first use and we should be able to mark it as killed.
    // However, the local value area for materialising constant expressions
    // grows down, not up, which means that any constant expressions we generate
    // later which also use 'Imm' could be after this instruction and therefore
    // after this kill.
    IsImmKill = false;
  }
  return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
}

unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
  return MRI.createVirtualRegister(RC);
}

unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
                                            unsigned OpNum) {
  if (Register::isVirtualRegister(Op)) {
    const TargetRegisterClass *RegClass =
        TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
    if (!MRI.constrainRegClass(Op, RegClass)) {
      // If it's not legal to COPY between the register classes, something
      // has gone very wrong before we got here.
      unsigned NewOp = createResultReg(RegClass);
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
              TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
      return NewOp;
    }
  }
  return Op;
}

unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
                                 const TargetRegisterClass *RC) {
  unsigned ResultReg = createResultReg(RC);
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
  return ResultReg;
}

unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
                                  const TargetRegisterClass *RC, unsigned Op0,
                                  bool Op0IsKill) {
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  unsigned ResultReg = createResultReg(RC);
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());

  if (II.getNumDefs() >= 1)
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
        .addReg(Op0, getKillRegState(Op0IsKill));
  else {
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
        .addReg(Op0, getKillRegState(Op0IsKill));
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
  }

  return ResultReg;
}

unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
                                   const TargetRegisterClass *RC, unsigned Op0,
                                   bool Op0IsKill, unsigned Op1,
                                   bool Op1IsKill) {
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  unsigned ResultReg = createResultReg(RC);
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);

  if (II.getNumDefs() >= 1)
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
        .addReg(Op0, getKillRegState(Op0IsKill))
        .addReg(Op1, getKillRegState(Op1IsKill));
  else {
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
        .addReg(Op0, getKillRegState(Op0IsKill))
        .addReg(Op1, getKillRegState(Op1IsKill));
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
  }
  return ResultReg;
}

unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
                                    const TargetRegisterClass *RC, unsigned Op0,
                                    bool Op0IsKill, unsigned Op1,
                                    bool Op1IsKill, unsigned Op2,
                                    bool Op2IsKill) {
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  unsigned ResultReg = createResultReg(RC);
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
  Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);

  if (II.getNumDefs() >= 1)
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
        .addReg(Op0, getKillRegState(Op0IsKill))
        .addReg(Op1, getKillRegState(Op1IsKill))
        .addReg(Op2, getKillRegState(Op2IsKill));
  else {
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
        .addReg(Op0, getKillRegState(Op0IsKill))
        .addReg(Op1, getKillRegState(Op1IsKill))
        .addReg(Op2, getKillRegState(Op2IsKill));
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
  }
  return ResultReg;
}

unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
                                   const TargetRegisterClass *RC, unsigned Op0,
                                   bool Op0IsKill, uint64_t Imm) {
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  unsigned ResultReg = createResultReg(RC);
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());

  if (II.getNumDefs() >= 1)
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
        .addReg(Op0, getKillRegState(Op0IsKill))
        .addImm(Imm);
  else {
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
        .addReg(Op0, getKillRegState(Op0IsKill))
        .addImm(Imm);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
  }
  return ResultReg;
}

unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
                                    const TargetRegisterClass *RC, unsigned Op0,
                                    bool Op0IsKill, uint64_t Imm1,
                                    uint64_t Imm2) {
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  unsigned ResultReg = createResultReg(RC);
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());

  if (II.getNumDefs() >= 1)
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
        .addReg(Op0, getKillRegState(Op0IsKill))
        .addImm(Imm1)
        .addImm(Imm2);
  else {
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
        .addReg(Op0, getKillRegState(Op0IsKill))
        .addImm(Imm1)
        .addImm(Imm2);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
  }
  return ResultReg;
}

unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
                                  const TargetRegisterClass *RC,
                                  const ConstantFP *FPImm) {
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  unsigned ResultReg = createResultReg(RC);

  if (II.getNumDefs() >= 1)
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
        .addFPImm(FPImm);
  else {
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
        .addFPImm(FPImm);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
  }
  return ResultReg;
}

unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
                                    const TargetRegisterClass *RC, unsigned Op0,
                                    bool Op0IsKill, unsigned Op1,
                                    bool Op1IsKill, uint64_t Imm) {
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  unsigned ResultReg = createResultReg(RC);
  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);

  if (II.getNumDefs() >= 1)
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
        .addReg(Op0, getKillRegState(Op0IsKill))
        .addReg(Op1, getKillRegState(Op1IsKill))
        .addImm(Imm);
  else {
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
        .addReg(Op0, getKillRegState(Op0IsKill))
        .addReg(Op1, getKillRegState(Op1IsKill))
        .addImm(Imm);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
  }
  return ResultReg;
}

unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
                                  const TargetRegisterClass *RC, uint64_t Imm) {
  unsigned ResultReg = createResultReg(RC);
  const MCInstrDesc &II = TII.get(MachineInstOpcode);

  if (II.getNumDefs() >= 1)
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
        .addImm(Imm);
  else {
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
  }
  return ResultReg;
}

unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
                                              bool Op0IsKill, uint32_t Idx) {
  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
  assert(Register::isVirtualRegister(Op0) &&
         "Cannot yet extract from physregs");
  const TargetRegisterClass *RC = MRI.getRegClass(Op0);
  MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
          ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
  return ResultReg;
}

/// Emit MachineInstrs to compute the value of Op with all but the least
/// significant bit set to zero.
unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
  return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
}

/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
/// Emit code to ensure constants are copied into registers when needed.
/// Remember the virtual registers that need to be added to the Machine PHI
/// nodes as input.  We cannot just directly add them, because expansion
/// might result in multiple MBB's for one BB.  As such, the start of the
/// BB might correspond to a different MBB than the end.
bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
  const Instruction *TI = LLVMBB->getTerminator();

  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
  FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();

  // Check successor nodes' PHI nodes that expect a constant to be available
  // from this block.
  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
    const BasicBlock *SuccBB = TI->getSuccessor(succ);
    if (!isa<PHINode>(SuccBB->begin()))
      continue;
    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];

    // If this terminator has multiple identical successors (common for
    // switches), only handle each succ once.
    if (!SuccsHandled.insert(SuccMBB).second)
      continue;

    MachineBasicBlock::iterator MBBI = SuccMBB->begin();

    // At this point we know that there is a 1-1 correspondence between LLVM PHI
    // nodes and Machine PHI nodes, but the incoming operands have not been
    // emitted yet.
    for (const PHINode &PN : SuccBB->phis()) {
      // Ignore dead phi's.
      if (PN.use_empty())
        continue;

      // Only handle legal types. Two interesting things to note here. First,
      // by bailing out early, we may leave behind some dead instructions,
      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
      // own moves. Second, this check is necessary because FastISel doesn't
      // use CreateRegs to create registers, so it always creates
      // exactly one register for each non-void instruction.
      EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
        // Handle integer promotions, though, because they're common and easy.
        if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
          FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
          return false;
        }
      }

      const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);

      // Set the DebugLoc for the copy. Prefer the location of the operand
      // if there is one; use the location of the PHI otherwise.
      DbgLoc = PN.getDebugLoc();
      if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
        DbgLoc = Inst->getDebugLoc();

      unsigned Reg = getRegForValue(PHIOp);
      if (!Reg) {
        FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
        return false;
      }
      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
      DbgLoc = DebugLoc();
    }
  }

  return true;
}

bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
  assert(LI->hasOneUse() &&
         "tryToFoldLoad expected a LoadInst with a single use");
  // We know that the load has a single use, but don't know what it is.  If it
  // isn't one of the folded instructions, then we can't succeed here.  Handle
  // this by scanning the single-use users of the load until we get to FoldInst.
  unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.

  const Instruction *TheUser = LI->user_back();
  while (TheUser != FoldInst && // Scan up until we find FoldInst.
         // Stay in the right block.
         TheUser->getParent() == FoldInst->getParent() &&
         --MaxUsers) { // Don't scan too far.
    // If there are multiple or no uses of this instruction, then bail out.
    if (!TheUser->hasOneUse())
      return false;

    TheUser = TheUser->user_back();
  }

  // If we didn't find the fold instruction, then we failed to collapse the
  // sequence.
  if (TheUser != FoldInst)
    return false;

  // Don't try to fold volatile loads.  Target has to deal with alignment
  // constraints.
  if (LI->isVolatile())
    return false;

  // Figure out which vreg this is going into.  If there is no assigned vreg yet
  // then there actually was no reference to it.  Perhaps the load is referenced
  // by a dead instruction.
  unsigned LoadReg = getRegForValue(LI);
  if (!LoadReg)
    return false;

  // We can't fold if this vreg has no uses or more than one use.  Multiple uses
  // may mean that the instruction got lowered to multiple MIs, or the use of
  // the loaded value ended up being multiple operands of the result.
  if (!MRI.hasOneUse(LoadReg))
    return false;

  MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
  MachineInstr *User = RI->getParent();

  // Set the insertion point properly.  Folding the load can cause generation of
  // other random instructions (like sign extends) for addressing modes; make
  // sure they get inserted in a logical place before the new instruction.
  FuncInfo.InsertPt = User;
  FuncInfo.MBB = User->getParent();

  // Ask the target to try folding the load.
  return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
}

bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
  // Must be an add.
  if (!isa<AddOperator>(Add))
    return false;
  // Type size needs to match.
  if (DL.getTypeSizeInBits(GEP->getType()) !=
      DL.getTypeSizeInBits(Add->getType()))
    return false;
  // Must be in the same basic block.
  if (isa<Instruction>(Add) &&
      FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
    return false;
  // Must have a constant operand.
  return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
}

MachineMemOperand *
FastISel::createMachineMemOperandFor(const Instruction *I) const {
  const Value *Ptr;
  Type *ValTy;
  unsigned Alignment;
  MachineMemOperand::Flags Flags;
  bool IsVolatile;

  if (const auto *LI = dyn_cast<LoadInst>(I)) {
    Alignment = LI->getAlignment();
    IsVolatile = LI->isVolatile();
    Flags = MachineMemOperand::MOLoad;
    Ptr = LI->getPointerOperand();
    ValTy = LI->getType();
  } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
    Alignment = SI->getAlignment();
    IsVolatile = SI->isVolatile();
    Flags = MachineMemOperand::MOStore;
    Ptr = SI->getPointerOperand();
    ValTy = SI->getValueOperand()->getType();
  } else
    return nullptr;

  bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
  bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
  bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
  const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);

  AAMDNodes AAInfo;
  I->getAAMetadata(AAInfo);

  if (Alignment == 0) // Ensure that codegen never sees alignment 0.
    Alignment = DL.getABITypeAlignment(ValTy);

  unsigned Size = DL.getTypeStoreSize(ValTy);

  if (IsVolatile)
    Flags |= MachineMemOperand::MOVolatile;
  if (IsNonTemporal)
    Flags |= MachineMemOperand::MONonTemporal;
  if (IsDereferenceable)
    Flags |= MachineMemOperand::MODereferenceable;
  if (IsInvariant)
    Flags |= MachineMemOperand::MOInvariant;

  return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
                                           Alignment, AAInfo, Ranges);
}

CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
  // If both operands are the same, then try to optimize or fold the cmp.
  CmpInst::Predicate Predicate = CI->getPredicate();
  if (CI->getOperand(0) != CI->getOperand(1))
    return Predicate;

  switch (Predicate) {
  default: llvm_unreachable("Invalid predicate!");
  case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
  case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
  case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
  case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
  case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
  case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
  case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
  case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
  case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
  case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
  case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
  case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
  case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
  case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
  case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
  case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;

  case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
  case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
  case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
  case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
  case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
  case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
  case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
  case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
  case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
  case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
  }

  return Predicate;
}