WinEHPrepare.cpp 50.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass lowers LLVM IR exception handling into something closer to what the
// backend wants for functions using a personality function from a runtime
// provided by MSVC. Functions with other personality functions are left alone
// and may be prepared by other passes. In particular, all supported MSVC
// personality functions require cleanup code to be outlined, and the C++
// personality requires catch handler code to be outlined.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"

using namespace llvm;

#define DEBUG_TYPE "winehprepare"

static cl::opt<bool> DisableDemotion(
    "disable-demotion", cl::Hidden,
    cl::desc(
        "Clone multicolor basic blocks but do not demote cross scopes"),
    cl::init(false));

static cl::opt<bool> DisableCleanups(
    "disable-cleanups", cl::Hidden,
    cl::desc("Do not remove implausible terminators or other similar cleanups"),
    cl::init(false));

static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
    "demote-catchswitch-only", cl::Hidden,
    cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));

namespace {

class WinEHPrepare : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid.
  WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
      : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}

  bool runOnFunction(Function &Fn) override;

  bool doFinalization(Module &M) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  StringRef getPassName() const override {
    return "Windows exception handling preparation";
  }

private:
  void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
  void
  insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
                 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
  AllocaInst *insertPHILoads(PHINode *PN, Function &F);
  void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
                          DenseMap<BasicBlock *, Value *> &Loads, Function &F);
  bool prepareExplicitEH(Function &F);
  void colorFunclets(Function &F);

  void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
  void cloneCommonBlocks(Function &F);
  void removeImplausibleInstructions(Function &F);
  void cleanupPreparedFunclets(Function &F);
  void verifyPreparedFunclets(Function &F);

  bool DemoteCatchSwitchPHIOnly;

  // All fields are reset by runOnFunction.
  EHPersonality Personality = EHPersonality::Unknown;

  const DataLayout *DL = nullptr;
  DenseMap<BasicBlock *, ColorVector> BlockColors;
  MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
};

} // end anonymous namespace

char WinEHPrepare::ID = 0;
INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions",
                false, false)

FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
  return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
}

bool WinEHPrepare::runOnFunction(Function &Fn) {
  if (!Fn.hasPersonalityFn())
    return false;

  // Classify the personality to see what kind of preparation we need.
  Personality = classifyEHPersonality(Fn.getPersonalityFn());

  // Do nothing if this is not a scope-based personality.
  if (!isScopedEHPersonality(Personality))
    return false;

  DL = &Fn.getParent()->getDataLayout();
  return prepareExplicitEH(Fn);
}

bool WinEHPrepare::doFinalization(Module &M) { return false; }

void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}

static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
                             const BasicBlock *BB) {
  CxxUnwindMapEntry UME;
  UME.ToState = ToState;
  UME.Cleanup = BB;
  FuncInfo.CxxUnwindMap.push_back(UME);
  return FuncInfo.getLastStateNumber();
}

static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
                                int TryHigh, int CatchHigh,
                                ArrayRef<const CatchPadInst *> Handlers) {
  WinEHTryBlockMapEntry TBME;
  TBME.TryLow = TryLow;
  TBME.TryHigh = TryHigh;
  TBME.CatchHigh = CatchHigh;
  assert(TBME.TryLow <= TBME.TryHigh);
  for (const CatchPadInst *CPI : Handlers) {
    WinEHHandlerType HT;
    Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
    if (TypeInfo->isNullValue())
      HT.TypeDescriptor = nullptr;
    else
      HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
    HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
    HT.Handler = CPI->getParent();
    if (auto *AI =
            dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
      HT.CatchObj.Alloca = AI;
    else
      HT.CatchObj.Alloca = nullptr;
    TBME.HandlerArray.push_back(HT);
  }
  FuncInfo.TryBlockMap.push_back(TBME);
}

static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
  for (const User *U : CleanupPad->users())
    if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
      return CRI->getUnwindDest();
  return nullptr;
}

static void calculateStateNumbersForInvokes(const Function *Fn,
                                            WinEHFuncInfo &FuncInfo) {
  auto *F = const_cast<Function *>(Fn);
  DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
  for (BasicBlock &BB : *F) {
    auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
    if (!II)
      continue;

    auto &BBColors = BlockColors[&BB];
    assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
    BasicBlock *FuncletEntryBB = BBColors.front();

    BasicBlock *FuncletUnwindDest;
    auto *FuncletPad =
        dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
    assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
    if (!FuncletPad)
      FuncletUnwindDest = nullptr;
    else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
      FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
    else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
      FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
    else
      llvm_unreachable("unexpected funclet pad!");

    BasicBlock *InvokeUnwindDest = II->getUnwindDest();
    int BaseState = -1;
    if (FuncletUnwindDest == InvokeUnwindDest) {
      auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
      if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
        BaseState = BaseStateI->second;
    }

    if (BaseState != -1) {
      FuncInfo.InvokeStateMap[II] = BaseState;
    } else {
      Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
      assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
      FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
    }
  }
}

// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
// to. If the unwind edge came from an invoke, return null.
static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
                                                 Value *ParentPad) {
  const Instruction *TI = BB->getTerminator();
  if (isa<InvokeInst>(TI))
    return nullptr;
  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
    if (CatchSwitch->getParentPad() != ParentPad)
      return nullptr;
    return BB;
  }
  assert(!TI->isEHPad() && "unexpected EHPad!");
  auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
  if (CleanupPad->getParentPad() != ParentPad)
    return nullptr;
  return CleanupPad->getParent();
}

static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
                                     const Instruction *FirstNonPHI,
                                     int ParentState) {
  const BasicBlock *BB = FirstNonPHI->getParent();
  assert(BB->isEHPad() && "not a funclet!");

  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
    assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
           "shouldn't revist catch funclets!");

    SmallVector<const CatchPadInst *, 2> Handlers;
    for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
      auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
      Handlers.push_back(CatchPad);
    }
    int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
    FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
    for (const BasicBlock *PredBlock : predecessors(BB))
      if ((PredBlock = getEHPadFromPredecessor(PredBlock,
                                               CatchSwitch->getParentPad())))
        calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
                                 TryLow);
    int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);

    // catchpads are separate funclets in C++ EH due to the way rethrow works.
    int TryHigh = CatchLow - 1;
    for (const auto *CatchPad : Handlers) {
      FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
      for (const User *U : CatchPad->users()) {
        const auto *UserI = cast<Instruction>(U);
        if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
          BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
          if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
            calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
        }
        if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
          BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
          // If a nested cleanup pad reports a null unwind destination and the
          // enclosing catch pad doesn't it must be post-dominated by an
          // unreachable instruction.
          if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
            calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
        }
      }
    }
    int CatchHigh = FuncInfo.getLastStateNumber();
    addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
    LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
    LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh
                      << '\n');
    LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
                      << '\n');
  } else {
    auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);

    // It's possible for a cleanup to be visited twice: it might have multiple
    // cleanupret instructions.
    if (FuncInfo.EHPadStateMap.count(CleanupPad))
      return;

    int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
    FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
    LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
                      << BB->getName() << '\n');
    for (const BasicBlock *PredBlock : predecessors(BB)) {
      if ((PredBlock = getEHPadFromPredecessor(PredBlock,
                                               CleanupPad->getParentPad()))) {
        calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
                                 CleanupState);
      }
    }
    for (const User *U : CleanupPad->users()) {
      const auto *UserI = cast<Instruction>(U);
      if (UserI->isEHPad())
        report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
                           "contain exceptional actions");
    }
  }
}

static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
                        const Function *Filter, const BasicBlock *Handler) {
  SEHUnwindMapEntry Entry;
  Entry.ToState = ParentState;
  Entry.IsFinally = false;
  Entry.Filter = Filter;
  Entry.Handler = Handler;
  FuncInfo.SEHUnwindMap.push_back(Entry);
  return FuncInfo.SEHUnwindMap.size() - 1;
}

static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
                         const BasicBlock *Handler) {
  SEHUnwindMapEntry Entry;
  Entry.ToState = ParentState;
  Entry.IsFinally = true;
  Entry.Filter = nullptr;
  Entry.Handler = Handler;
  FuncInfo.SEHUnwindMap.push_back(Entry);
  return FuncInfo.SEHUnwindMap.size() - 1;
}

static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
                                     const Instruction *FirstNonPHI,
                                     int ParentState) {
  const BasicBlock *BB = FirstNonPHI->getParent();
  assert(BB->isEHPad() && "no a funclet!");

  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
    assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
           "shouldn't revist catch funclets!");

    // Extract the filter function and the __except basic block and create a
    // state for them.
    assert(CatchSwitch->getNumHandlers() == 1 &&
           "SEH doesn't have multiple handlers per __try");
    const auto *CatchPad =
        cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
    const BasicBlock *CatchPadBB = CatchPad->getParent();
    const Constant *FilterOrNull =
        cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
    const Function *Filter = dyn_cast<Function>(FilterOrNull);
    assert((Filter || FilterOrNull->isNullValue()) &&
           "unexpected filter value");
    int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);

    // Everything in the __try block uses TryState as its parent state.
    FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
    LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
                      << CatchPadBB->getName() << '\n');
    for (const BasicBlock *PredBlock : predecessors(BB))
      if ((PredBlock = getEHPadFromPredecessor(PredBlock,
                                               CatchSwitch->getParentPad())))
        calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
                                 TryState);

    // Everything in the __except block unwinds to ParentState, just like code
    // outside the __try.
    for (const User *U : CatchPad->users()) {
      const auto *UserI = cast<Instruction>(U);
      if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
        BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
        if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
          calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
      }
      if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
        BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
        // If a nested cleanup pad reports a null unwind destination and the
        // enclosing catch pad doesn't it must be post-dominated by an
        // unreachable instruction.
        if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
          calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
      }
    }
  } else {
    auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);

    // It's possible for a cleanup to be visited twice: it might have multiple
    // cleanupret instructions.
    if (FuncInfo.EHPadStateMap.count(CleanupPad))
      return;

    int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
    FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
    LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
                      << BB->getName() << '\n');
    for (const BasicBlock *PredBlock : predecessors(BB))
      if ((PredBlock =
               getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
        calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
                                 CleanupState);
    for (const User *U : CleanupPad->users()) {
      const auto *UserI = cast<Instruction>(U);
      if (UserI->isEHPad())
        report_fatal_error("Cleanup funclets for the SEH personality cannot "
                           "contain exceptional actions");
    }
  }
}

static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
    return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
           CatchSwitch->unwindsToCaller();
  if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
    return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
           getCleanupRetUnwindDest(CleanupPad) == nullptr;
  if (isa<CatchPadInst>(EHPad))
    return false;
  llvm_unreachable("unexpected EHPad!");
}

void llvm::calculateSEHStateNumbers(const Function *Fn,
                                    WinEHFuncInfo &FuncInfo) {
  // Don't compute state numbers twice.
  if (!FuncInfo.SEHUnwindMap.empty())
    return;

  for (const BasicBlock &BB : *Fn) {
    if (!BB.isEHPad())
      continue;
    const Instruction *FirstNonPHI = BB.getFirstNonPHI();
    if (!isTopLevelPadForMSVC(FirstNonPHI))
      continue;
    ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
  }

  calculateStateNumbersForInvokes(Fn, FuncInfo);
}

void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
                                         WinEHFuncInfo &FuncInfo) {
  // Return if it's already been done.
  if (!FuncInfo.EHPadStateMap.empty())
    return;

  for (const BasicBlock &BB : *Fn) {
    if (!BB.isEHPad())
      continue;
    const Instruction *FirstNonPHI = BB.getFirstNonPHI();
    if (!isTopLevelPadForMSVC(FirstNonPHI))
      continue;
    calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
  }

  calculateStateNumbersForInvokes(Fn, FuncInfo);
}

static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
                           int TryParentState, ClrHandlerType HandlerType,
                           uint32_t TypeToken, const BasicBlock *Handler) {
  ClrEHUnwindMapEntry Entry;
  Entry.HandlerParentState = HandlerParentState;
  Entry.TryParentState = TryParentState;
  Entry.Handler = Handler;
  Entry.HandlerType = HandlerType;
  Entry.TypeToken = TypeToken;
  FuncInfo.ClrEHUnwindMap.push_back(Entry);
  return FuncInfo.ClrEHUnwindMap.size() - 1;
}

void llvm::calculateClrEHStateNumbers(const Function *Fn,
                                      WinEHFuncInfo &FuncInfo) {
  // Return if it's already been done.
  if (!FuncInfo.EHPadStateMap.empty())
    return;

  // This numbering assigns one state number to each catchpad and cleanuppad.
  // It also computes two tree-like relations over states:
  // 1) Each state has a "HandlerParentState", which is the state of the next
  //    outer handler enclosing this state's handler (same as nearest ancestor
  //    per the ParentPad linkage on EH pads, but skipping over catchswitches).
  // 2) Each state has a "TryParentState", which:
  //    a) for a catchpad that's not the last handler on its catchswitch, is
  //       the state of the next catchpad on that catchswitch
  //    b) for all other pads, is the state of the pad whose try region is the
  //       next outer try region enclosing this state's try region.  The "try
  //       regions are not present as such in the IR, but will be inferred
  //       based on the placement of invokes and pads which reach each other
  //       by exceptional exits
  // Catchswitches do not get their own states, but each gets mapped to the
  // state of its first catchpad.

  // Step one: walk down from outermost to innermost funclets, assigning each
  // catchpad and cleanuppad a state number.  Add an entry to the
  // ClrEHUnwindMap for each state, recording its HandlerParentState and
  // handler attributes.  Record the TryParentState as well for each catchpad
  // that's not the last on its catchswitch, but initialize all other entries'
  // TryParentStates to a sentinel -1 value that the next pass will update.

  // Seed a worklist with pads that have no parent.
  SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
  for (const BasicBlock &BB : *Fn) {
    const Instruction *FirstNonPHI = BB.getFirstNonPHI();
    const Value *ParentPad;
    if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
      ParentPad = CPI->getParentPad();
    else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
      ParentPad = CSI->getParentPad();
    else
      continue;
    if (isa<ConstantTokenNone>(ParentPad))
      Worklist.emplace_back(FirstNonPHI, -1);
  }

  // Use the worklist to visit all pads, from outer to inner.  Record
  // HandlerParentState for all pads.  Record TryParentState only for catchpads
  // that aren't the last on their catchswitch (setting all other entries'
  // TryParentStates to an initial value of -1).  This loop is also responsible
  // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
  // catchswitches.
  while (!Worklist.empty()) {
    const Instruction *Pad;
    int HandlerParentState;
    std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();

    if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
      // Create the entry for this cleanup with the appropriate handler
      // properties.  Finally and fault handlers are distinguished by arity.
      ClrHandlerType HandlerType =
          (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault
                                        : ClrHandlerType::Finally);
      int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
                                         HandlerType, 0, Pad->getParent());
      // Queue any child EH pads on the worklist.
      for (const User *U : Cleanup->users())
        if (const auto *I = dyn_cast<Instruction>(U))
          if (I->isEHPad())
            Worklist.emplace_back(I, CleanupState);
      // Remember this pad's state.
      FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
    } else {
      // Walk the handlers of this catchswitch in reverse order since all but
      // the last need to set the following one as its TryParentState.
      const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
      int CatchState = -1, FollowerState = -1;
      SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
      for (auto CBI = CatchBlocks.rbegin(), CBE = CatchBlocks.rend();
           CBI != CBE; ++CBI, FollowerState = CatchState) {
        const BasicBlock *CatchBlock = *CBI;
        // Create the entry for this catch with the appropriate handler
        // properties.
        const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
        uint32_t TypeToken = static_cast<uint32_t>(
            cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
        CatchState =
            addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
                            ClrHandlerType::Catch, TypeToken, CatchBlock);
        // Queue any child EH pads on the worklist.
        for (const User *U : Catch->users())
          if (const auto *I = dyn_cast<Instruction>(U))
            if (I->isEHPad())
              Worklist.emplace_back(I, CatchState);
        // Remember this catch's state.
        FuncInfo.EHPadStateMap[Catch] = CatchState;
      }
      // Associate the catchswitch with the state of its first catch.
      assert(CatchSwitch->getNumHandlers());
      FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
    }
  }

  // Step two: record the TryParentState of each state.  For cleanuppads that
  // don't have cleanuprets, we may need to infer this from their child pads,
  // so visit pads in descendant-most to ancestor-most order.
  for (auto Entry = FuncInfo.ClrEHUnwindMap.rbegin(),
            End = FuncInfo.ClrEHUnwindMap.rend();
       Entry != End; ++Entry) {
    const Instruction *Pad =
        Entry->Handler.get<const BasicBlock *>()->getFirstNonPHI();
    // For most pads, the TryParentState is the state associated with the
    // unwind dest of exceptional exits from it.
    const BasicBlock *UnwindDest;
    if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
      // If a catch is not the last in its catchswitch, its TryParentState is
      // the state associated with the next catch in the switch, even though
      // that's not the unwind dest of exceptions escaping the catch.  Those
      // cases were already assigned a TryParentState in the first pass, so
      // skip them.
      if (Entry->TryParentState != -1)
        continue;
      // Otherwise, get the unwind dest from the catchswitch.
      UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
    } else {
      const auto *Cleanup = cast<CleanupPadInst>(Pad);
      UnwindDest = nullptr;
      for (const User *U : Cleanup->users()) {
        if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
          // Common and unambiguous case -- cleanupret indicates cleanup's
          // unwind dest.
          UnwindDest = CleanupRet->getUnwindDest();
          break;
        }

        // Get an unwind dest for the user
        const BasicBlock *UserUnwindDest = nullptr;
        if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
          UserUnwindDest = Invoke->getUnwindDest();
        } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
          UserUnwindDest = CatchSwitch->getUnwindDest();
        } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
          int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
          int UserUnwindState =
              FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
          if (UserUnwindState != -1)
            UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState]
                                 .Handler.get<const BasicBlock *>();
        }

        // Not having an unwind dest for this user might indicate that it
        // doesn't unwind, so can't be taken as proof that the cleanup itself
        // may unwind to caller (see e.g. SimplifyUnreachable and
        // RemoveUnwindEdge).
        if (!UserUnwindDest)
          continue;

        // Now we have an unwind dest for the user, but we need to see if it
        // unwinds all the way out of the cleanup or if it stays within it.
        const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
        const Value *UserUnwindParent;
        if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
          UserUnwindParent = CSI->getParentPad();
        else
          UserUnwindParent =
              cast<CleanupPadInst>(UserUnwindPad)->getParentPad();

        // The unwind stays within the cleanup iff it targets a child of the
        // cleanup.
        if (UserUnwindParent == Cleanup)
          continue;

        // This unwind exits the cleanup, so its dest is the cleanup's dest.
        UnwindDest = UserUnwindDest;
        break;
      }
    }

    // Record the state of the unwind dest as the TryParentState.
    int UnwindDestState;

    // If UnwindDest is null at this point, either the pad in question can
    // be exited by unwind to caller, or it cannot be exited by unwind.  In
    // either case, reporting such cases as unwinding to caller is correct.
    // This can lead to EH tables that "look strange" -- if this pad's is in
    // a parent funclet which has other children that do unwind to an enclosing
    // pad, the try region for this pad will be missing the "duplicate" EH
    // clause entries that you'd expect to see covering the whole parent.  That
    // should be benign, since the unwind never actually happens.  If it were
    // an issue, we could add a subsequent pass that pushes unwind dests down
    // from parents that have them to children that appear to unwind to caller.
    if (!UnwindDest) {
      UnwindDestState = -1;
    } else {
      UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
    }

    Entry->TryParentState = UnwindDestState;
  }

  // Step three: transfer information from pads to invokes.
  calculateStateNumbersForInvokes(Fn, FuncInfo);
}

void WinEHPrepare::colorFunclets(Function &F) {
  BlockColors = colorEHFunclets(F);

  // Invert the map from BB to colors to color to BBs.
  for (BasicBlock &BB : F) {
    ColorVector &Colors = BlockColors[&BB];
    for (BasicBlock *Color : Colors)
      FuncletBlocks[Color].push_back(&BB);
  }
}

void WinEHPrepare::demotePHIsOnFunclets(Function &F,
                                        bool DemoteCatchSwitchPHIOnly) {
  // Strip PHI nodes off of EH pads.
  SmallVector<PHINode *, 16> PHINodes;
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
    BasicBlock *BB = &*FI++;
    if (!BB->isEHPad())
      continue;
    if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB->getFirstNonPHI()))
      continue;

    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
      Instruction *I = &*BI++;
      auto *PN = dyn_cast<PHINode>(I);
      // Stop at the first non-PHI.
      if (!PN)
        break;

      AllocaInst *SpillSlot = insertPHILoads(PN, F);
      if (SpillSlot)
        insertPHIStores(PN, SpillSlot);

      PHINodes.push_back(PN);
    }
  }

  for (auto *PN : PHINodes) {
    // There may be lingering uses on other EH PHIs being removed
    PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
    PN->eraseFromParent();
  }
}

void WinEHPrepare::cloneCommonBlocks(Function &F) {
  // We need to clone all blocks which belong to multiple funclets.  Values are
  // remapped throughout the funclet to propagate both the new instructions
  // *and* the new basic blocks themselves.
  for (auto &Funclets : FuncletBlocks) {
    BasicBlock *FuncletPadBB = Funclets.first;
    std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
    Value *FuncletToken;
    if (FuncletPadBB == &F.getEntryBlock())
      FuncletToken = ConstantTokenNone::get(F.getContext());
    else
      FuncletToken = FuncletPadBB->getFirstNonPHI();

    std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
    ValueToValueMapTy VMap;
    for (BasicBlock *BB : BlocksInFunclet) {
      ColorVector &ColorsForBB = BlockColors[BB];
      // We don't need to do anything if the block is monochromatic.
      size_t NumColorsForBB = ColorsForBB.size();
      if (NumColorsForBB == 1)
        continue;

      DEBUG_WITH_TYPE("winehprepare-coloring",
                      dbgs() << "  Cloning block \'" << BB->getName()
                              << "\' for funclet \'" << FuncletPadBB->getName()
                              << "\'.\n");

      // Create a new basic block and copy instructions into it!
      BasicBlock *CBB =
          CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
      // Insert the clone immediately after the original to ensure determinism
      // and to keep the same relative ordering of any funclet's blocks.
      CBB->insertInto(&F, BB->getNextNode());

      // Add basic block mapping.
      VMap[BB] = CBB;

      // Record delta operations that we need to perform to our color mappings.
      Orig2Clone.emplace_back(BB, CBB);
    }

    // If nothing was cloned, we're done cloning in this funclet.
    if (Orig2Clone.empty())
      continue;

    // Update our color mappings to reflect that one block has lost a color and
    // another has gained a color.
    for (auto &BBMapping : Orig2Clone) {
      BasicBlock *OldBlock = BBMapping.first;
      BasicBlock *NewBlock = BBMapping.second;

      BlocksInFunclet.push_back(NewBlock);
      ColorVector &NewColors = BlockColors[NewBlock];
      assert(NewColors.empty() && "A new block should only have one color!");
      NewColors.push_back(FuncletPadBB);

      DEBUG_WITH_TYPE("winehprepare-coloring",
                      dbgs() << "  Assigned color \'" << FuncletPadBB->getName()
                              << "\' to block \'" << NewBlock->getName()
                              << "\'.\n");

      BlocksInFunclet.erase(
          std::remove(BlocksInFunclet.begin(), BlocksInFunclet.end(), OldBlock),
          BlocksInFunclet.end());
      ColorVector &OldColors = BlockColors[OldBlock];
      OldColors.erase(
          std::remove(OldColors.begin(), OldColors.end(), FuncletPadBB),
          OldColors.end());

      DEBUG_WITH_TYPE("winehprepare-coloring",
                      dbgs() << "  Removed color \'" << FuncletPadBB->getName()
                              << "\' from block \'" << OldBlock->getName()
                              << "\'.\n");
    }

    // Loop over all of the instructions in this funclet, fixing up operand
    // references as we go.  This uses VMap to do all the hard work.
    for (BasicBlock *BB : BlocksInFunclet)
      // Loop over all instructions, fixing each one as we find it...
      for (Instruction &I : *BB)
        RemapInstruction(&I, VMap,
                         RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);

    // Catchrets targeting cloned blocks need to be updated separately from
    // the loop above because they are not in the current funclet.
    SmallVector<CatchReturnInst *, 2> FixupCatchrets;
    for (auto &BBMapping : Orig2Clone) {
      BasicBlock *OldBlock = BBMapping.first;
      BasicBlock *NewBlock = BBMapping.second;

      FixupCatchrets.clear();
      for (BasicBlock *Pred : predecessors(OldBlock))
        if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
          if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
            FixupCatchrets.push_back(CatchRet);

      for (CatchReturnInst *CatchRet : FixupCatchrets)
        CatchRet->setSuccessor(NewBlock);
    }

    auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
      unsigned NumPreds = PN->getNumIncomingValues();
      for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
           ++PredIdx) {
        BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
        bool EdgeTargetsFunclet;
        if (auto *CRI =
                dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
          EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
        } else {
          ColorVector &IncomingColors = BlockColors[IncomingBlock];
          assert(!IncomingColors.empty() && "Block not colored!");
          assert((IncomingColors.size() == 1 ||
                  llvm::all_of(IncomingColors,
                               [&](BasicBlock *Color) {
                                 return Color != FuncletPadBB;
                               })) &&
                 "Cloning should leave this funclet's blocks monochromatic");
          EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
        }
        if (IsForOldBlock != EdgeTargetsFunclet)
          continue;
        PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
        // Revisit the next entry.
        --PredIdx;
        --PredEnd;
      }
    };

    for (auto &BBMapping : Orig2Clone) {
      BasicBlock *OldBlock = BBMapping.first;
      BasicBlock *NewBlock = BBMapping.second;
      for (PHINode &OldPN : OldBlock->phis()) {
        UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
      }
      for (PHINode &NewPN : NewBlock->phis()) {
        UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
      }
    }

    // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
    // the PHI nodes for NewBB now.
    for (auto &BBMapping : Orig2Clone) {
      BasicBlock *OldBlock = BBMapping.first;
      BasicBlock *NewBlock = BBMapping.second;
      for (BasicBlock *SuccBB : successors(NewBlock)) {
        for (PHINode &SuccPN : SuccBB->phis()) {
          // Ok, we have a PHI node.  Figure out what the incoming value was for
          // the OldBlock.
          int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
          if (OldBlockIdx == -1)
            break;
          Value *IV = SuccPN.getIncomingValue(OldBlockIdx);

          // Remap the value if necessary.
          if (auto *Inst = dyn_cast<Instruction>(IV)) {
            ValueToValueMapTy::iterator I = VMap.find(Inst);
            if (I != VMap.end())
              IV = I->second;
          }

          SuccPN.addIncoming(IV, NewBlock);
        }
      }
    }

    for (ValueToValueMapTy::value_type VT : VMap) {
      // If there were values defined in BB that are used outside the funclet,
      // then we now have to update all uses of the value to use either the
      // original value, the cloned value, or some PHI derived value.  This can
      // require arbitrary PHI insertion, of which we are prepared to do, clean
      // these up now.
      SmallVector<Use *, 16> UsesToRename;

      auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
      if (!OldI)
        continue;
      auto *NewI = cast<Instruction>(VT.second);
      // Scan all uses of this instruction to see if it is used outside of its
      // funclet, and if so, record them in UsesToRename.
      for (Use &U : OldI->uses()) {
        Instruction *UserI = cast<Instruction>(U.getUser());
        BasicBlock *UserBB = UserI->getParent();
        ColorVector &ColorsForUserBB = BlockColors[UserBB];
        assert(!ColorsForUserBB.empty());
        if (ColorsForUserBB.size() > 1 ||
            *ColorsForUserBB.begin() != FuncletPadBB)
          UsesToRename.push_back(&U);
      }

      // If there are no uses outside the block, we're done with this
      // instruction.
      if (UsesToRename.empty())
        continue;

      // We found a use of OldI outside of the funclet.  Rename all uses of OldI
      // that are outside its funclet to be uses of the appropriate PHI node
      // etc.
      SSAUpdater SSAUpdate;
      SSAUpdate.Initialize(OldI->getType(), OldI->getName());
      SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
      SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);

      while (!UsesToRename.empty())
        SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
    }
  }
}

void WinEHPrepare::removeImplausibleInstructions(Function &F) {
  // Remove implausible terminators and replace them with UnreachableInst.
  for (auto &Funclet : FuncletBlocks) {
    BasicBlock *FuncletPadBB = Funclet.first;
    std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
    Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
    auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
    auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
    auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);

    for (BasicBlock *BB : BlocksInFunclet) {
      for (Instruction &I : *BB) {
        CallSite CS(&I);
        if (!CS)
          continue;

        Value *FuncletBundleOperand = nullptr;
        if (auto BU = CS.getOperandBundle(LLVMContext::OB_funclet))
          FuncletBundleOperand = BU->Inputs.front();

        if (FuncletBundleOperand == FuncletPad)
          continue;

        // Skip call sites which are nounwind intrinsics or inline asm.
        auto *CalledFn =
            dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
        if (CalledFn && ((CalledFn->isIntrinsic() && CS.doesNotThrow()) ||
                         CS.isInlineAsm()))
          continue;

        // This call site was not part of this funclet, remove it.
        if (CS.isInvoke()) {
          // Remove the unwind edge if it was an invoke.
          removeUnwindEdge(BB);
          // Get a pointer to the new call.
          BasicBlock::iterator CallI =
              std::prev(BB->getTerminator()->getIterator());
          auto *CI = cast<CallInst>(&*CallI);
          changeToUnreachable(CI, /*UseLLVMTrap=*/false);
        } else {
          changeToUnreachable(&I, /*UseLLVMTrap=*/false);
        }

        // There are no more instructions in the block (except for unreachable),
        // we are done.
        break;
      }

      Instruction *TI = BB->getTerminator();
      // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
      bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
      // The token consumed by a CatchReturnInst must match the funclet token.
      bool IsUnreachableCatchret = false;
      if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
        IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
      // The token consumed by a CleanupReturnInst must match the funclet token.
      bool IsUnreachableCleanupret = false;
      if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
        IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
      if (IsUnreachableRet || IsUnreachableCatchret ||
          IsUnreachableCleanupret) {
        changeToUnreachable(TI, /*UseLLVMTrap=*/false);
      } else if (isa<InvokeInst>(TI)) {
        if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
          // Invokes within a cleanuppad for the MSVC++ personality never
          // transfer control to their unwind edge: the personality will
          // terminate the program.
          removeUnwindEdge(BB);
        }
      }
    }
  }
}

void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
  // Clean-up some of the mess we made by removing useles PHI nodes, trivial
  // branches, etc.
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
    BasicBlock *BB = &*FI++;
    SimplifyInstructionsInBlock(BB);
    ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
    MergeBlockIntoPredecessor(BB);
  }

  // We might have some unreachable blocks after cleaning up some impossible
  // control flow.
  removeUnreachableBlocks(F);
}

#ifndef NDEBUG
void WinEHPrepare::verifyPreparedFunclets(Function &F) {
  for (BasicBlock &BB : F) {
    size_t NumColors = BlockColors[&BB].size();
    assert(NumColors == 1 && "Expected monochromatic BB!");
    if (NumColors == 0)
      report_fatal_error("Uncolored BB!");
    if (NumColors > 1)
      report_fatal_error("Multicolor BB!");
    assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
           "EH Pad still has a PHI!");
  }
}
#endif

bool WinEHPrepare::prepareExplicitEH(Function &F) {
  // Remove unreachable blocks.  It is not valuable to assign them a color and
  // their existence can trick us into thinking values are alive when they are
  // not.
  removeUnreachableBlocks(F);

  // Determine which blocks are reachable from which funclet entries.
  colorFunclets(F);

  cloneCommonBlocks(F);

  if (!DisableDemotion)
    demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
                                DemoteCatchSwitchPHIOnlyOpt);

  if (!DisableCleanups) {
    LLVM_DEBUG(verifyFunction(F));
    removeImplausibleInstructions(F);

    LLVM_DEBUG(verifyFunction(F));
    cleanupPreparedFunclets(F);
  }

  LLVM_DEBUG(verifyPreparedFunclets(F));
  // Recolor the CFG to verify that all is well.
  LLVM_DEBUG(colorFunclets(F));
  LLVM_DEBUG(verifyPreparedFunclets(F));

  BlockColors.clear();
  FuncletBlocks.clear();

  return true;
}

// TODO: Share loads when one use dominates another, or when a catchpad exit
// dominates uses (needs dominators).
AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
  BasicBlock *PHIBlock = PN->getParent();
  AllocaInst *SpillSlot = nullptr;
  Instruction *EHPad = PHIBlock->getFirstNonPHI();

  if (!EHPad->isTerminator()) {
    // If the EHPad isn't a terminator, then we can insert a load in this block
    // that will dominate all uses.
    SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
                               Twine(PN->getName(), ".wineh.spillslot"),
                               &F.getEntryBlock().front());
    Value *V = new LoadInst(PN->getType(), SpillSlot,
                            Twine(PN->getName(), ".wineh.reload"),
                            &*PHIBlock->getFirstInsertionPt());
    PN->replaceAllUsesWith(V);
    return SpillSlot;
  }

  // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
  // loads of the slot before every use.
  DenseMap<BasicBlock *, Value *> Loads;
  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
       UI != UE;) {
    Use &U = *UI++;
    auto *UsingInst = cast<Instruction>(U.getUser());
    if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
      // Use is on an EH pad phi.  Leave it alone; we'll insert loads and
      // stores for it separately.
      continue;
    }
    replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
  }
  return SpillSlot;
}

// TODO: improve store placement.  Inserting at def is probably good, but need
// to be careful not to introduce interfering stores (needs liveness analysis).
// TODO: identify related phi nodes that can share spill slots, and share them
// (also needs liveness).
void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
                                   AllocaInst *SpillSlot) {
  // Use a worklist of (Block, Value) pairs -- the given Value needs to be
  // stored to the spill slot by the end of the given Block.
  SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;

  Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});

  while (!Worklist.empty()) {
    BasicBlock *EHBlock;
    Value *InVal;
    std::tie(EHBlock, InVal) = Worklist.pop_back_val();

    PHINode *PN = dyn_cast<PHINode>(InVal);
    if (PN && PN->getParent() == EHBlock) {
      // The value is defined by another PHI we need to remove, with no room to
      // insert a store after the PHI, so each predecessor needs to store its
      // incoming value.
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
        Value *PredVal = PN->getIncomingValue(i);

        // Undef can safely be skipped.
        if (isa<UndefValue>(PredVal))
          continue;

        insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
      }
    } else {
      // We need to store InVal, which dominates EHBlock, but can't put a store
      // in EHBlock, so need to put stores in each predecessor.
      for (BasicBlock *PredBlock : predecessors(EHBlock)) {
        insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
      }
    }
  }
}

void WinEHPrepare::insertPHIStore(
    BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
    SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {

  if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) {
    // Pred is unsplittable, so we need to queue it on the worklist.
    Worklist.push_back({PredBlock, PredVal});
    return;
  }

  // Otherwise, insert the store at the end of the basic block.
  new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
}

void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
                                      DenseMap<BasicBlock *, Value *> &Loads,
                                      Function &F) {
  // Lazilly create the spill slot.
  if (!SpillSlot)
    SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
                               Twine(V->getName(), ".wineh.spillslot"),
                               &F.getEntryBlock().front());

  auto *UsingInst = cast<Instruction>(U.getUser());
  if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
    // If this is a PHI node, we can't insert a load of the value before
    // the use.  Instead insert the load in the predecessor block
    // corresponding to the incoming value.
    //
    // Note that if there are multiple edges from a basic block to this
    // PHI node that we cannot have multiple loads.  The problem is that
    // the resulting PHI node will have multiple values (from each load)
    // coming in from the same block, which is illegal SSA form.
    // For this reason, we keep track of and reuse loads we insert.
    BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
    if (auto *CatchRet =
            dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
      // Putting a load above a catchret and use on the phi would still leave
      // a cross-funclet def/use.  We need to split the edge, change the
      // catchret to target the new block, and put the load there.
      BasicBlock *PHIBlock = UsingInst->getParent();
      BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
      // SplitEdge gives us:
      //   IncomingBlock:
      //     ...
      //     br label %NewBlock
      //   NewBlock:
      //     catchret label %PHIBlock
      // But we need:
      //   IncomingBlock:
      //     ...
      //     catchret label %NewBlock
      //   NewBlock:
      //     br label %PHIBlock
      // So move the terminators to each others' blocks and swap their
      // successors.
      BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
      Goto->removeFromParent();
      CatchRet->removeFromParent();
      IncomingBlock->getInstList().push_back(CatchRet);
      NewBlock->getInstList().push_back(Goto);
      Goto->setSuccessor(0, PHIBlock);
      CatchRet->setSuccessor(NewBlock);
      // Update the color mapping for the newly split edge.
      // Grab a reference to the ColorVector to be inserted before getting the
      // reference to the vector we are copying because inserting the new
      // element in BlockColors might cause the map to be reallocated.
      ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
      ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
      ColorsForNewBlock = ColorsForPHIBlock;
      for (BasicBlock *FuncletPad : ColorsForPHIBlock)
        FuncletBlocks[FuncletPad].push_back(NewBlock);
      // Treat the new block as incoming for load insertion.
      IncomingBlock = NewBlock;
    }
    Value *&Load = Loads[IncomingBlock];
    // Insert the load into the predecessor block
    if (!Load)
      Load = new LoadInst(V->getType(), SpillSlot,
                          Twine(V->getName(), ".wineh.reload"),
                          /*isVolatile=*/false, IncomingBlock->getTerminator());

    U.set(Load);
  } else {
    // Reload right before the old use.
    auto *Load = new LoadInst(V->getType(), SpillSlot,
                              Twine(V->getName(), ".wineh.reload"),
                              /*isVolatile=*/false, UsingInst);
    U.set(Load);
  }
}

void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
                                      MCSymbol *InvokeBegin,
                                      MCSymbol *InvokeEnd) {
  assert(InvokeStateMap.count(II) &&
         "should get invoke with precomputed state");
  LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
}

WinEHFuncInfo::WinEHFuncInfo() {}