RuntimeDyldCOFFX86_64.h
11.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
//===-- RuntimeDyldCOFFX86_64.h --- COFF/X86_64 specific code ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// COFF x86_x64 support for MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDCOFF86_64_H
#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDCOFF86_64_H
#include "../RuntimeDyldCOFF.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/Object/COFF.h"
#define DEBUG_TYPE "dyld"
namespace llvm {
class RuntimeDyldCOFFX86_64 : public RuntimeDyldCOFF {
private:
// When a module is loaded we save the SectionID of the unwind
// sections in a table until we receive a request to register all
// unregisteredEH frame sections with the memory manager.
SmallVector<SID, 2> UnregisteredEHFrameSections;
SmallVector<SID, 2> RegisteredEHFrameSections;
uint64_t ImageBase;
// Fake an __ImageBase pointer by returning the section with the lowest adress
uint64_t getImageBase() {
if (!ImageBase) {
ImageBase = std::numeric_limits<uint64_t>::max();
for (const SectionEntry &Section : Sections)
// The Sections list may contain sections that weren't loaded for
// whatever reason: they may be debug sections, and ProcessAllSections
// is false, or they may be sections that contain 0 bytes. If the
// section isn't loaded, the load address will be 0, and it should not
// be included in the ImageBase calculation.
if (Section.getLoadAddress() != 0)
ImageBase = std::min(ImageBase, Section.getLoadAddress());
}
return ImageBase;
}
void write32BitOffset(uint8_t *Target, int64_t Addend, uint64_t Delta) {
uint64_t Result = Addend + Delta;
assert(Result <= UINT32_MAX && "Relocation overflow");
writeBytesUnaligned(Result, Target, 4);
}
public:
RuntimeDyldCOFFX86_64(RuntimeDyld::MemoryManager &MM,
JITSymbolResolver &Resolver)
: RuntimeDyldCOFF(MM, Resolver), ImageBase(0) {}
unsigned getStubAlignment() override { return 1; }
// 2-byte jmp instruction + 32-bit relative address + 64-bit absolute jump
unsigned getMaxStubSize() const override { return 14; }
// The target location for the relocation is described by RE.SectionID and
// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
// SectionEntry has three members describing its location.
// SectionEntry::Address is the address at which the section has been loaded
// into memory in the current (host) process. SectionEntry::LoadAddress is
// the address that the section will have in the target process.
// SectionEntry::ObjAddress is the address of the bits for this section in the
// original emitted object image (also in the current address space).
//
// Relocations will be applied as if the section were loaded at
// SectionEntry::LoadAddress, but they will be applied at an address based
// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer
// to Target memory contents if they are required for value calculations.
//
// The Value parameter here is the load address of the symbol for the
// relocation to be applied. For relocations which refer to symbols in the
// current object Value will be the LoadAddress of the section in which
// the symbol resides (RE.Addend provides additional information about the
// symbol location). For external symbols, Value will be the address of the
// symbol in the target address space.
void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
const SectionEntry &Section = Sections[RE.SectionID];
uint8_t *Target = Section.getAddressWithOffset(RE.Offset);
switch (RE.RelType) {
case COFF::IMAGE_REL_AMD64_REL32:
case COFF::IMAGE_REL_AMD64_REL32_1:
case COFF::IMAGE_REL_AMD64_REL32_2:
case COFF::IMAGE_REL_AMD64_REL32_3:
case COFF::IMAGE_REL_AMD64_REL32_4:
case COFF::IMAGE_REL_AMD64_REL32_5: {
uint64_t FinalAddress = Section.getLoadAddressWithOffset(RE.Offset);
// Delta is the distance from the start of the reloc to the end of the
// instruction with the reloc.
uint64_t Delta = 4 + (RE.RelType - COFF::IMAGE_REL_AMD64_REL32);
Value -= FinalAddress + Delta;
uint64_t Result = Value + RE.Addend;
assert(((int64_t)Result <= INT32_MAX) && "Relocation overflow");
assert(((int64_t)Result >= INT32_MIN) && "Relocation underflow");
writeBytesUnaligned(Result, Target, 4);
break;
}
case COFF::IMAGE_REL_AMD64_ADDR32NB: {
// ADDR32NB requires an offset less than 2GB from 'ImageBase'.
// The MemoryManager can make sure this is always true by forcing the
// memory layout to be: CodeSection < ReadOnlySection < ReadWriteSection.
const uint64_t ImageBase = getImageBase();
if (Value < ImageBase || ((Value - ImageBase) > UINT32_MAX)) {
llvm::errs() << "IMAGE_REL_AMD64_ADDR32NB relocation requires an"
<< "ordered section layout.\n";
write32BitOffset(Target, 0, 0);
} else {
write32BitOffset(Target, RE.Addend, Value - ImageBase);
}
break;
}
case COFF::IMAGE_REL_AMD64_ADDR64: {
writeBytesUnaligned(Value + RE.Addend, Target, 8);
break;
}
case COFF::IMAGE_REL_AMD64_SECREL: {
assert(static_cast<int64_t>(RE.Addend) <= INT32_MAX && "Relocation overflow");
assert(static_cast<int64_t>(RE.Addend) >= INT32_MIN && "Relocation underflow");
writeBytesUnaligned(RE.Addend, Target, 4);
break;
}
default:
llvm_unreachable("Relocation type not implemented yet!");
break;
}
}
std::tuple<uint64_t, uint64_t, uint64_t>
generateRelocationStub(unsigned SectionID, StringRef TargetName,
uint64_t Offset, uint64_t RelType, uint64_t Addend,
StubMap &Stubs) {
uintptr_t StubOffset;
SectionEntry &Section = Sections[SectionID];
RelocationValueRef OriginalRelValueRef;
OriginalRelValueRef.SectionID = SectionID;
OriginalRelValueRef.Offset = Offset;
OriginalRelValueRef.Addend = Addend;
OriginalRelValueRef.SymbolName = TargetName.data();
auto Stub = Stubs.find(OriginalRelValueRef);
if (Stub == Stubs.end()) {
LLVM_DEBUG(dbgs() << " Create a new stub function for "
<< TargetName.data() << "\n");
StubOffset = Section.getStubOffset();
Stubs[OriginalRelValueRef] = StubOffset;
createStubFunction(Section.getAddressWithOffset(StubOffset));
Section.advanceStubOffset(getMaxStubSize());
} else {
LLVM_DEBUG(dbgs() << " Stub function found for " << TargetName.data()
<< "\n");
StubOffset = Stub->second;
}
// FIXME: If RelType == COFF::IMAGE_REL_AMD64_ADDR32NB we should be able
// to ignore the __ImageBase requirement and just forward to the stub
// directly as an offset of this section:
// write32BitOffset(Section.getAddressWithOffset(Offset), 0, StubOffset);
// .xdata exception handler's aren't having this though.
// Resolve original relocation to stub function.
const RelocationEntry RE(SectionID, Offset, RelType, Addend);
resolveRelocation(RE, Section.getLoadAddressWithOffset(StubOffset));
// adjust relocation info so resolution writes to the stub function
Addend = 0;
Offset = StubOffset + 6;
RelType = COFF::IMAGE_REL_AMD64_ADDR64;
return std::make_tuple(Offset, RelType, Addend);
}
Expected<object::relocation_iterator>
processRelocationRef(unsigned SectionID,
object::relocation_iterator RelI,
const object::ObjectFile &Obj,
ObjSectionToIDMap &ObjSectionToID,
StubMap &Stubs) override {
// If possible, find the symbol referred to in the relocation,
// and the section that contains it.
object::symbol_iterator Symbol = RelI->getSymbol();
if (Symbol == Obj.symbol_end())
report_fatal_error("Unknown symbol in relocation");
auto SectionOrError = Symbol->getSection();
if (!SectionOrError)
return SectionOrError.takeError();
object::section_iterator SecI = *SectionOrError;
// If there is no section, this must be an external reference.
const bool IsExtern = SecI == Obj.section_end();
// Determine the Addend used to adjust the relocation value.
uint64_t RelType = RelI->getType();
uint64_t Offset = RelI->getOffset();
uint64_t Addend = 0;
SectionEntry &Section = Sections[SectionID];
uintptr_t ObjTarget = Section.getObjAddress() + Offset;
Expected<StringRef> TargetNameOrErr = Symbol->getName();
if (!TargetNameOrErr)
return TargetNameOrErr.takeError();
StringRef TargetName = *TargetNameOrErr;
switch (RelType) {
case COFF::IMAGE_REL_AMD64_REL32:
case COFF::IMAGE_REL_AMD64_REL32_1:
case COFF::IMAGE_REL_AMD64_REL32_2:
case COFF::IMAGE_REL_AMD64_REL32_3:
case COFF::IMAGE_REL_AMD64_REL32_4:
case COFF::IMAGE_REL_AMD64_REL32_5:
case COFF::IMAGE_REL_AMD64_ADDR32NB: {
uint8_t *Displacement = (uint8_t *)ObjTarget;
Addend = readBytesUnaligned(Displacement, 4);
if (IsExtern)
std::tie(Offset, RelType, Addend) = generateRelocationStub(
SectionID, TargetName, Offset, RelType, Addend, Stubs);
break;
}
case COFF::IMAGE_REL_AMD64_ADDR64: {
uint8_t *Displacement = (uint8_t *)ObjTarget;
Addend = readBytesUnaligned(Displacement, 8);
break;
}
default:
break;
}
LLVM_DEBUG(dbgs() << "\t\tIn Section " << SectionID << " Offset " << Offset
<< " RelType: " << RelType << " TargetName: "
<< TargetName << " Addend " << Addend << "\n");
if (IsExtern) {
RelocationEntry RE(SectionID, Offset, RelType, Addend);
addRelocationForSymbol(RE, TargetName);
} else {
bool IsCode = SecI->isText();
unsigned TargetSectionID;
if (auto TargetSectionIDOrErr =
findOrEmitSection(Obj, *SecI, IsCode, ObjSectionToID))
TargetSectionID = *TargetSectionIDOrErr;
else
return TargetSectionIDOrErr.takeError();
uint64_t TargetOffset = getSymbolOffset(*Symbol);
RelocationEntry RE(SectionID, Offset, RelType, TargetOffset + Addend);
addRelocationForSection(RE, TargetSectionID);
}
return ++RelI;
}
void registerEHFrames() override {
for (auto const &EHFrameSID : UnregisteredEHFrameSections) {
uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
size_t EHFrameSize = Sections[EHFrameSID].getSize();
MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
RegisteredEHFrameSections.push_back(EHFrameSID);
}
UnregisteredEHFrameSections.clear();
}
Error finalizeLoad(const object::ObjectFile &Obj,
ObjSectionToIDMap &SectionMap) override {
// Look for and record the EH frame section IDs.
for (const auto &SectionPair : SectionMap) {
const object::SectionRef &Section = SectionPair.first;
Expected<StringRef> NameOrErr = Section.getName();
if (!NameOrErr)
return NameOrErr.takeError();
// Note unwind info is stored in .pdata but often points to .xdata
// with an IMAGE_REL_AMD64_ADDR32NB relocation. Using a memory manager
// that keeps sections ordered in relation to __ImageBase is necessary.
if ((*NameOrErr) == ".pdata")
UnregisteredEHFrameSections.push_back(SectionPair.second);
}
return Error::success();
}
};
} // end namespace llvm
#undef DEBUG_TYPE
#endif