ARCInstrInfo.td 34.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
//===- ARCInstrInfo.td - Target Description for ARC --------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the ARC instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

include "ARCInstrFormats.td"

// ---------------------------------------------------------------------------
// Selection DAG Nodes.
// ---------------------------------------------------------------------------

// Selection DAG types.
def SDT_ARCcmptst : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
def SDT_ARCcmov : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>]>;
def SDT_ARCmov : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>]>;
def SDT_ARCbrcc : SDTypeProfile<0, 4, []>;
def SDT_ARCBranchLink : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def SDT_ARCCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
                                           SDTCisVT<1, i32> ]>;
def SDT_ARCCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
                                         SDTCisVT<1, i32> ]>;


// Global Address.
def ARCGAWrapper : SDNode<"ARCISD::GAWRAPPER", SDT_ARCmov, []>;

// Comparison
def ARCcmp : SDNode<"ARCISD::CMP", SDT_ARCcmptst, [SDNPOutGlue]>;

// Conditionanal mov
def ARCcmov : SDNode<"ARCISD::CMOV", SDT_ARCcmov, [SDNPInGlue]>;

// Conditional Branch
def ARCbrcc : SDNode<"ARCISD::BRcc", SDT_ARCbrcc,
                       [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;

// Direct Call
def ARCBranchLink     : SDNode<"ARCISD::BL",SDT_ARCBranchLink,
                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                             SDNPVariadic]>;

// Indirect Call
def ARCJumpLink       : SDNode<"ARCISD::JL",SDT_ARCBranchLink,
                                 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                                  SDNPVariadic]>;
// Call return
def ret      : SDNode<"ARCISD::RET", SDTNone,
                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;

// Call sequencing nodes.
// These are target-independent nodes, but have target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARCCallSeqStart,
                           [SDNPHasChain, SDNPOutGlue]>;
def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_ARCCallSeqEnd,
                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;

//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//

def imm32 : ImmLeaf<i32, [{
  return (Imm & 0xFFFFFFFF) == Imm;
}]>;

// Addressing modes
def FrameADDR_ri : ComplexPattern<i32, 2, "SelectFrameADDR_ri",
                                  [add, frameindex], []>;
def AddrModeS9 : ComplexPattern<i32, 2, "SelectAddrModeS9", []>;
def AddrModeImm : ComplexPattern<i32, 2, "SelectAddrModeImm", []>;
def AddrModeFar : ComplexPattern<i32, 2, "SelectAddrModeFar", []>;

//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//

let Defs = [SP], Uses = [SP] in {
def ADJCALLSTACKDOWN : PseudoInstARC<(outs), (ins i32imm:$amt, i32imm:$amt2),
                               "# ADJCALLSTACKDOWN $amt, $amt2",
                               [(callseq_start timm:$amt, timm:$amt2)]>;
def ADJCALLSTACKUP : PseudoInstARC<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                            "# ADJCALLSTACKUP $amt1",
                            [(callseq_end timm:$amt1, timm:$amt2)]>;
}

def GETFI : PseudoInstARC<(outs GPR32:$dst), (ins MEMii:$addr),
                             "pldfi $dst, $addr",
                             [(set GPR32:$dst, FrameADDR_ri:$addr)]>;


def ST_FAR : PseudoInstARC<(outs), (ins GPR32:$dst, MEMrlimm:$addr),
                             "ST_FAR $dst, $addr",
                             [(store GPR32:$dst, AddrModeFar:$addr)]>;

def STH_FAR : PseudoInstARC<(outs), (ins GPR32:$dst, MEMrlimm:$addr),
                             "STH_FAR $dst, $addr",
                             [(truncstorei16 GPR32:$dst, AddrModeFar:$addr)]>;

def STB_FAR : PseudoInstARC<(outs), (ins GPR32:$dst, MEMrlimm:$addr),
                             "STB_FAR $dst, $addr",
                             [(truncstorei8 GPR32:$dst, AddrModeFar:$addr)]>;

//===----------------------------------------------------------------------===//
// Instruction Generation multiclasses.
// Generate many variants of a single instruction with a single defining
// multiclass.  These classes do not contain Selection DAG patterns.
//===----------------------------------------------------------------------===//

// Generic 3 operand binary instructions (i.e., add r0, r1, r2).
multiclass ArcBinaryInst<bits<5> major, bits<6> mincode,
                       string opasm> {
  // 3 register variant.
  def _rrr : F32_DOP_RR<major, mincode, 0, (outs GPR32:$A),
                        (ins GPR32:$B, GPR32:$C),
                        !strconcat(opasm, "\t$A, $B, $C"),
                        []>;
  def _f_rrr : F32_DOP_RR<major, mincode, 1, (outs GPR32:$A),
                          (ins GPR32:$B, GPR32:$C),
                          !strconcat(opasm, ".f\t$A, $B, $C"),
                          []>
  { let Defs = [STATUS32]; }

  // 2 register with unsigned 6-bit immediate variant.
  def _rru6 : F32_DOP_RU6<major, mincode, 0, (outs GPR32:$A),
                          (ins GPR32:$B, immU6:$U6),
                          !strconcat(opasm, "\t$A, $B, $U6"),
                          []>;
  def _f_rru6 : F32_DOP_RU6<major, mincode, 1, (outs GPR32:$A),
                            (ins GPR32:$B, immU6:$U6),
                            !strconcat(opasm, ".f\t$A, $B, $U6"),
                            []>
  { let Defs = [STATUS32]; }

  // 2 register with 32-bit immediate variant.
  def _rrlimm : F32_DOP_RLIMM<major, mincode, 0,
                              (outs GPR32:$A),
                              (ins GPR32:$B, i32imm:$LImm),
                              !strconcat(opasm, "\t$A, $B, $LImm"),
                              []>;
  def _f_rrlimm : F32_DOP_RLIMM<major, mincode, 1,
                                (outs GPR32:$A),
                                (ins GPR32:$B, i32imm:$LImm),
                                !strconcat(opasm, ".f\t$A, $B, $LImm"),
                                []>
  { let Defs = [STATUS32]; }

  // 2 matched-register with signed 12-bit immediate variant (add r0, r0, -1).
  def _rrs12 : F32_DOP_RS12<major, mincode, 0,
                            (outs GPR32:$B),
                            (ins GPR32:$in, immS<12>:$S12),
                            !strconcat(opasm, "\t$B, $in, $S12"),
                            []>
  { let Constraints = "$B = $in"; }
  def _f_rrs12 : F32_DOP_RS12<major, mincode, 1,
                              (outs GPR32:$B),
                              (ins GPR32:$in, immS<12>:$S12),
                              !strconcat(opasm, ".f\t$B, $in, $S12"),
                              []>
  { let Constraints = "$B = $in"; let Defs = [STATUS32]; }
}

// Special multivariant GEN4 DOP format instruction that take 2 registers.
// This is the class that is used for various comparison instructions.
multiclass ArcSpecialDOPInst<bits<6> subop, string opasm, bit F> {
  def _rr : F32_DOP_RR<0b00100, subop, F, (outs), (ins GPR32:$B, GPR32:$C),
               !strconcat(opasm, "\t$B, $C"),
               []>;

  def _ru6 : F32_DOP_RU6<0b00100, subop, F, (outs), (ins GPR32:$B, i32imm:$U6),
               !strconcat(opasm, "\t$B, $U6"),
               []>;

  def _rlimm : F32_DOP_RLIMM<0b00100, subop, F, (outs),
               (ins GPR32:$B, i32imm:$LImm),
               !strconcat(opasm, "\t$B, $LImm"),
               []>;
}

// Generic 2-operand unary instructions.
multiclass ArcUnaryInst<bits<5> major, bits<6> subop,
                        string opasm> {
  def _rr : F32_SOP_RR<major, subop, 0, (outs GPR32:$B), (ins GPR32:$C),
                       !strconcat(opasm, "\t$B, $C"), []>;

  def _f_rr : F32_SOP_RR<major, subop, 1, (outs GPR32:$B), (ins GPR32:$C),
                       !strconcat(opasm, ".f\t$B, $C"), []>
  { let Defs = [STATUS32]; }
}


multiclass ArcBinaryGEN4Inst<bits<6> mincode, string opasm> :
  ArcBinaryInst<0b00100, mincode, opasm>;
multiclass ArcBinaryEXT5Inst<bits<6> mincode, string opasm> :
  ArcBinaryInst<0b00101, mincode, opasm>;

multiclass ArcUnaryGEN4Inst<bits<6> mincode, string opasm> :
  ArcUnaryInst<0b00100, mincode, opasm>;

// Pattern generation for differnt instruction variants.
multiclass MultiPat<SDPatternOperator InFrag,
               Instruction RRR, Instruction RRU6, Instruction RRLImm> {
  def _rrr : Pat<(InFrag i32:$B, i32:$C), (RRR i32:$B, i32:$C)>;
  def _rru6 : Pat<(InFrag i32:$B, immU6:$U6), (RRU6 i32:$B, immU6:$U6)>;
  def _rrlimm : Pat<(InFrag i32:$B, imm32:$LImm), (RRLImm i32:$B, imm32:$LImm)>;
}

// ---------------------------------------------------------------------------
// Instruction defintions and patterns for 3 operand binary instructions.
// ---------------------------------------------------------------------------

// Definitions for 3 operand binary instructions.
defm ADD : ArcBinaryGEN4Inst<0b000000, "add">;
defm SUB : ArcBinaryGEN4Inst<0b000010, "sub">;
defm SUB1 : ArcBinaryGEN4Inst<0b010111, "sub1">;
defm SUB2 : ArcBinaryGEN4Inst<0b011000, "sub2">;
defm SUB3 : ArcBinaryGEN4Inst<0b011001, "sub3">;
defm OR  : ArcBinaryGEN4Inst<0b000101, "or">;
defm AND : ArcBinaryGEN4Inst<0b000100, "and">;
defm XOR : ArcBinaryGEN4Inst<0b000111, "xor">;
defm MAX : ArcBinaryGEN4Inst<0b001000, "max">;
defm MIN : ArcBinaryGEN4Inst<0b001001, "min">;
defm ASL : ArcBinaryEXT5Inst<0b000000, "asl">;
defm LSR : ArcBinaryEXT5Inst<0b000001, "lsr">;
defm ASR : ArcBinaryEXT5Inst<0b000010, "asr">;
defm ROR : ArcBinaryEXT5Inst<0b000011, "ror">;
defm MPY  : ArcBinaryGEN4Inst<0b011010, "mpy">;
defm MPYM : ArcBinaryGEN4Inst<0b011011, "mpym">;
defm MPYMU : ArcBinaryGEN4Inst<0b011100, "mpymu">;
defm SETEQ : ArcBinaryGEN4Inst<0b111000, "seteq">;

// Patterns for 3 operand binary instructions.
defm : MultiPat<add, ADD_rrr, ADD_rru6, ADD_rrlimm>;
defm : MultiPat<sub, SUB_rrr, SUB_rru6, SUB_rrlimm>;
defm : MultiPat<or, OR_rrr, OR_rru6, OR_rrlimm>;
defm : MultiPat<and, AND_rrr, AND_rru6, AND_rrlimm>;
defm : MultiPat<xor, XOR_rrr, XOR_rru6, XOR_rrlimm>;
defm : MultiPat<smax, MAX_rrr, MAX_rru6, MAX_rrlimm>;
defm : MultiPat<smin, MIN_rrr, MIN_rru6, MIN_rrlimm>;
defm : MultiPat<shl, ASL_rrr, ASL_rru6, ASL_rrlimm>;
defm : MultiPat<srl, LSR_rrr, LSR_rru6, LSR_rrlimm>;
defm : MultiPat<sra, ASR_rrr, ASR_rru6, ASR_rrlimm>;
defm : MultiPat<rotr, ROR_rrr, ROR_rru6, ROR_rrlimm>;
defm : MultiPat<mul, MPY_rrr, MPY_rru6, MPY_rrlimm>;
defm : MultiPat<mulhs, MPYM_rrr, MPYM_rru6, MPYM_rrlimm>;
defm : MultiPat<mulhu, MPYMU_rrr, MPYMU_rru6, MPYMU_rrlimm>;

// ---------------------------------------------------------------------------
// Unary Instruction definitions.
// ---------------------------------------------------------------------------
// General unary instruction definitions.
defm SEXB : ArcUnaryGEN4Inst<0b000101, "sexb">;
defm SEXH : ArcUnaryGEN4Inst<0b000110, "sexh">;

// General Unary Instruction fragments.
def : Pat<(sext_inreg i32:$a, i8), (SEXB_rr i32:$a)>;
def : Pat<(sext_inreg i32:$a, i16), (SEXH_rr i32:$a)>;

// Comparison instruction definition
let isCompare = 1, Defs = [STATUS32] in {
defm CMP : ArcSpecialDOPInst<0b001100, "cmp", 1>;
}

def cmp : PatFrag<(ops node:$op1, node:$op2), (ARCcmp $op1, $op2)>;
defm : MultiPat<cmp, CMP_rr, CMP_ru6, CMP_rlimm>;

// ---------------------------------------------------------------------------
// MOV instruction and variants (conditional mov).
// ---------------------------------------------------------------------------
let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
def MOV_rs12 : F32_DOP_RS12<0b00100, 0b001010, 0,
                 (outs GPR32:$B), (ins immS<12>:$S12),
                 "mov\t$B, $S12",
                 [(set GPR32:$B, immS<12>:$S12)]>;
}

def MOV_rr : F32_DOP_RR<0b00100, 0b001010, 0,
                (outs GPR32:$B), (ins GPR32:$C),
                "mov\t$B, $C", []>;

def MOV_rlimm : F32_DOP_RLIMM<0b00100, 0b001010, 0,
                      (outs GPR32:$B), (ins i32imm:$LImm),
                      "mov\t$B, $LImm", []>;

def MOV_ru6 : F32_DOP_RU6<0b00100, 0b001010, 0,
                          (outs GPR32:$B), (ins immU6:$U6),
                          "mov\t$B, $U6", []>;

def cmov : PatFrag<(ops node:$op1, node:$op2, node:$cc),
                   (ARCcmov $op1, $op2, $cc)>;
let Uses = [STATUS32] in {
def MOVcc : F32_DOP_CC_RR<0b00100, 0b001010, 0,
               (outs GPR32:$B),
               (ins GPR32:$C, GPR32:$fval, cmovpred:$cc),
               !strconcat("mov.", "$cc\t$B, $C"),
               [(set GPR32:$B, (cmov i32:$C, i32:$fval, cmovpred:$cc))]> {
  let Constraints = "$B = $fval";
}
}
def : Pat<(ARCGAWrapper tglobaladdr:$addr),
           (MOV_rlimm tglobaladdr:$addr)>;

def : Pat<(ARCGAWrapper tjumptable:$addr),
           (MOV_rlimm tjumptable:$addr)>;


// ---------------------------------------------------------------------------
// Control flow instructions (branch, return, calls, etc).
// ---------------------------------------------------------------------------

// Branch instructions
let isBranch = 1, isTerminator = 1 in {

  // Unconditional branch.
  let isBarrier = 1 in
  def BR : F32_BR0_UCOND_FAR<(outs), (ins btargetS25:$S25),
                             "b\t$S25", [(br bb:$S25)]>;

  let Uses=[STATUS32] in
  // Conditional branch.
  def Bcc : F32_BR0_COND<(outs), (ins btargetS21:$S21, ccond:$cc),
                         "b$cc\t$S21", []>;

  // Compare and branch (limited range).
  def BRcc_rr  : F32_BR1_BCC<(outs),
                             (ins btargetS9:$S9, GPR32:$B, GPR32:$C, brccond:$cc),
                             "br$cc\t$B, $C, $S9", 0, []>;
  def BRcc_ru6 : F32_BR1_BCC<(outs),
                             (ins btargetS9:$S9, GPR32:$B, immU6:$C, brccond:$cc),
                             "br$cc\t$B, $C, $S9", 1, []>;

  // Pseudo compare and branch.
  // After register allocation, this can expand into either a limited range
  // Compare and branch (BRcc), or into CMP + Bcc.
  // At worst, this expands into 2 4-byte instructions.
  def BRcc_rr_p : PseudoInstARC<(outs),
                                (ins btarget:$T, GPR32:$B, GPR32:$C, ccond:$cc),
                                "pbr$cc\t$B, $C, $T", 
                                [(ARCbrcc bb:$T, i32:$B, i32:$C, imm32:$cc)]>
                                { let Size = 8; }

  def BRcc_ru6_p : PseudoInstARC<(outs),
                                 (ins btarget:$T, GPR32:$B, i32imm:$C, ccond:$cc),
                                 "pbr$cc\t$B, $C, $T",
                                 [(ARCbrcc bb:$T, i32:$B, immU6:$C, imm32:$cc)]>
                                 { let Size = 8; }
} // let isBranch, isTerminator

// Unconditional Jump.
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
  // Indirect.
  let isIndirectBranch = 1 in
  def J :  F32_DOP_RR<0b00100, 0b100000, 0,
                      (outs), (ins GPR32:$C),
                      "j\t[$C]", [(brind i32:$C)]>;

  // Direct.
  def J_LImm : F32_DOP_RLIMM<0b00100, 0b100000, 0,
                             (outs), (ins i32imm:$LImm),
                             "j\t$LImm", []>;
}

// Call instructions.
let isCall = 1, isBarrier = 1, Defs = [BLINK], Uses = [SP] in {
  // Direct unconditional call.
  def BL : F32_BR1_BL_UCOND_FAR<(outs), (ins calltargetS25:$S25),
                      "bl\t$S25", [(ARCBranchLink tglobaladdr:$S25)]>;

  // Indirect unconditional call.
  let isIndirectBranch = 1 in
  def JL : F32_DOP_RR<0b00100, 0b100010, 0, (outs), (ins GPR32:$C),
                     "jl\t[$C]", [(ARCJumpLink i32:$C)]>;

  // Direct unconditional call.
  def JL_LImm : F32_DOP_RLIMM<0b00100, 0b100010, 0, (outs), (ins i32imm:$LImm),
                              "jl\t$LImm", []>;
} // let isCall, isBarrier, Defs, Uses

// Pattern to generate BL instruction.
def : Pat<(ARCBranchLink texternalsym:$dst), (BL texternalsym:$dst)>;

// Return from call.
let isReturn = 1, isTerminator = 1, isBarrier = 1  in
// This is a specialized 2-byte instruction that doesn't generalize
// to any larger 2-byte class, so go ahead and define it here.
def J_S_BLINK : InstARC<2, (outs), (ins), "j_s\t[%blink]", [(ret)]> {
  let Inst{15-0} = 0b0111111011100000;
}

//----------------------------------------------------------------------------
// Compact stack-based operations.
//----------------------------------------------------------------------------

// 2-byte push/pop blink instructions commonly used for prolog/epilog
// generation.  These 2 instructions are actually specialized 2-byte
// format instructions that aren't generalized to a larger 2-byte
// class, so we might as well have them here.
let Uses = [BLINK], Defs = [SP] in
def PUSH_S_BLINK : F16_SP_OPS_buconst<0b111, "push_s">;

let Defs = [BLINK, SP] in
def POP_S_BLINK : F16_SP_OPS_buconst<0b110, "pop_s">;

def PUSH_S_r : F16_SP_OPS_uconst<0b110,
  (outs), (ins GPR32Reduced:$b3), "push_s">;
def POP_S_r : F16_SP_OPS_uconst<0b111,
  (outs GPR32Reduced:$b3), (ins), "pop_s">;

def SP_SUB_SP_S : F16_SP_OPS_bconst<0b001, "sub_s">;
def SP_ADD_SP_S : F16_SP_OPS_bconst<0b000, "add_s">;
def SP_ADD_S : F16_SP_OPS_u7_aligned<0b100,
                (outs GPR32Reduced:$b3), (ins immU<7>:$u7),
                "add_s\t$b3, %sp, $u7">;

def SP_LD_S : F16_SP_LD<0b000, "ld_s">;
def SP_LDB_S : F16_SP_LD<0b001, "ldb_s">;
def SP_ST_S : F16_SP_ST<0b010, "st_s">;
def SP_STB_S : F16_SP_ST<0b011, "stb_s">;

def LEAVE_S : F16_SP_OPS<0b110,
  (outs), (ins immU<7>:$u7), "leave_s\t$u7"> {

  bits<7> u7;
  
  let fieldB = u7{6-4};
  let fieldU{4-1} = u7{3-0};
  let fieldU{0} = 0b0;
}

def ENTER_S : F16_SP_OPS<0b111,
  (outs), (ins immU<6>:$u6), "enter_s\t$u6"> {

  bits<6> u6;
  
  let fieldB{2} = 0;
  let fieldB{1-0} = u6{5-4};
  let fieldU{4-1} = u6{3-0};
  let fieldU{0} = 0b0;
}

//----------------------------------------------------------------------------
// Compact Move/Load instructions.
//----------------------------------------------------------------------------
class COMPACT_MOV_S :
  F16_COMPACT<0b0, (outs GPR32:$g), (ins GPR32:$h),
          "mov_s\t$g, $h"> {  
  let DecoderMethod = "DecodeMoveHRegInstruction";
}

def COMPACT_MOV_S_limm : COMPACT_MOV_S {
  bits<32> LImm;  
  let Inst{47-16} = LImm;

  bits<5> LImmReg = 0b11110;  
  let Inst{7-5} = LImmReg{2-0};
  let Inst{1-0} = LImmReg{4-3};

  let Size = 6;  
}

def COMPACT_MOV_S_hreg : COMPACT_MOV_S;

def COMPACT_LD_S :
  F16_COMPACT<0b1, (outs GPR32:$r), (ins GPR32:$h, immU<5>:$u5),
          "ld_s\t$r, [$h, $u5]"> {
  bits<5> u5;
  bits<2> r;

  let Inst{10} = u5{4};
  let Inst{9-8} = r;
  let Inst{4-3} = u5{3-2};
  let u5{1-0} = 0b00;
}

//----------------------------------------------------------------------------
// Compact Load/Add/Sub.
//----------------------------------------------------------------------------
def LD_S_AS_rrr : F16_LD_SUB<0b0, "ld_s.as\t$a, [$b, $c]">;
def SUB_S_rrr : F16_LD_SUB<0b1, "sub_s\t$a, $b, $c">;
def ADD_S_rru6 : F16_ADD;

//----------------------------------------------------------------------------
// Compact Load/Store.
//----------------------------------------------------------------------------
def LD_S_s11 : F16_LD_ST_s11<0b0, "ld_s\t%r1, [%gp, $s11]">;
def ST_S_s11 : F16_LD_ST_s11<0b1, "st_s\t%r0, [%gp, $s11]">;
def LDI_S_u7 : F16_LDI_u7;

//----------------------------------------------------------------------------
// Indexed Jump or Execute.
//----------------------------------------------------------------------------
def JLI_S : F16_JLI_EI<0, "jli_s">;
def EI_S : F16_JLI_EI<1, "ei_s">;

//----------------------------------------------------------------------------
// Load/Add Register-Register.
//----------------------------------------------------------------------------
def LD_S_rrr : F16_LD_ADD_RR<0b00, "ld_s\t$a, [$b, $c]">;
def LDB_S_rrr : F16_LD_ADD_RR<0b01, "ldb_s\t$a, [$b, $c]">;
def LDH_S_rrr : F16_LD_ADD_RR<0b10, "ldh_s\t$a, [$b, $c]">;
def ADD_S_rrr : F16_LD_ADD_RR<0b11, "add_s\t$a, $b, $c">;

//----------------------------------------------------------------------------
// Load/Add GP-Relative.
//----------------------------------------------------------------------------
def GP_LD_S : F16_GP_LD_ADD<0b00, (ins immS<11>:$s),
  "ld_s\t%r0, [%gp, $s]"> {

  bits<11> s;
  let Inst{8-0} = s{10-2};
  let s{1-0} = 0b00;
}

def GP_LDB_S : F16_GP_LD_ADD<0b01, (ins immS<9>:$s),
  "ldb_s\t%r0, [%gp, $s]"> {

  bits<9> s;
  let Inst{8-0} = s{8-0};
}

def GP_LDH_S : F16_GP_LD_ADD<0b10, (ins immS<10>:$s),
  "ldh_s\t%r0, [%gp, $s]"> {

  bits<10> s;
  let Inst{8-0} = s{9-1};
  let s{0} = 0b0;
}

def GP_ADD_S : F16_GP_LD_ADD<0b11, (ins immS<11>:$s),
  "add_s\t%r0, %gp, $s"> {

  bits<11> s;
  let Inst{8-0} = s{10-2};
  let s{1-0} = 0b00;
}

//----------------------------------------------------------------------------
// Load PCL-Relative.
//----------------------------------------------------------------------------
def PCL_LD : InstARC<2, (outs GPR32:$b), (ins immU<10>:$u10),
 "ld_s\t$b, [%pcl, $u10]", []> {
 
  bits<3> b; 
  bits<10> u10; 

  let Inst{15-11} = 0b11010;
  let Inst{10-8} = b;
  let Inst{7-0} = u10{9-2};
  let u10{1-0} = 0b00;
}

let isBranch = 1 in {
  //----------------------------------------------------------------------------
  // Branch on Compare Register with Zero.
  //----------------------------------------------------------------------------
  def BREQ_S : F16_BCC_REG<0b0, "breq_s">;
  def BRNE_S : F16_BCC_REG<0b1, "brne_s">;

  //----------------------------------------------------------------------------
  // Branch Conditionally.
  //----------------------------------------------------------------------------
  let isBarrier = 1 in
  def B_S : F16_BCC_s10<0b00, "b_s">;

  def BEQ_S : F16_BCC_s10<0b01, "beq_s">;
  def BNE_S : F16_BCC_s10<0b10, "bne_s">;
  def BGT_S : F16_BCC_s7<0b000, "bgt_s">;
  def BGE_S : F16_BCC_s7<0b001, "bge_s">;
  def BLT_S : F16_BCC_s7<0b010, "blt_s">;
  def BLE_S : F16_BCC_s7<0b011, "ble_s">;
  def BHI_S : F16_BCC_s7<0b100, "bhi_s">;
  def BHS_S : F16_BCC_s7<0b101, "bhs_s">;
  def BLO_S : F16_BCC_s7<0b110, "blo_s">;
  def BLS_S : F16_BCC_s7<0b111, "bls_s">;
} // let isBranch

def BL_S :
  InstARC<2, (outs), (ins btargetS13:$s13), "bl_s\t$s13", []> {

  let Inst{15-11} = 0b11111;
  
  bits<13> s13;
  let Inst{10-0} = s13{12-2};
  let s13{1-0} = 0b00;
  
  let isCall = 1;
  let isBarrier = 1;
}

//----------------------------------------------------------------------------
// Add/Sub/Shift Register-Immediate.
//----------------------------------------------------------------------------
def ADD_S_ru3 : F16_ADD_IMM<0b00,"add_s">;
def SUB_S_ru3 : F16_ADD_IMM<0b01,"sub_s">;
def ASL_S_ru3 : F16_ADD_IMM<0b10,"asl_s">;
def ASR_S_ru3 : F16_ADD_IMM<0b11,"asr_s">;

//----------------------------------------------------------------------------
// Shift/Subtract/Bit Immediate.
//----------------------------------------------------------------------------
def ASL_S_ru5 : F16_SH_SUB_BIT_DST<0b000,"asl_s">;
def LSR_S_ru5 : F16_SH_SUB_BIT_DST<0b001,"lsr_s">;
def ASR_S_ru5 : F16_SH_SUB_BIT_DST<0b010,"asr_s">;
def SUB_S_ru5 : F16_SH_SUB_BIT_DST<0b011,"sub_s">;
def BSET_S_ru5 : F16_SH_SUB_BIT_DST<0b100,"bset_s">;
def BCLR_S_ru5 : F16_SH_SUB_BIT_DST<0b101,"bclr_s">;
def BMSK_S_ru5 : F16_SH_SUB_BIT_DST<0b110,"bmsk_s">;
def BTST_S_ru5 : F16_SH_SUB_BIT<0b111, "btst_s\t$b, $u5">;

//----------------------------------------------------------------------------
// Dual Register Operations.
//----------------------------------------------------------------------------
def ADD_S_rlimm :
  F16_OP_HREG_LIMM<0b000, (outs GPR32:$b_s3), (ins i32imm:$LImm),
          !strconcat("add_s", "\t$b_s3, $b_s3, $LImm")>;

def ADD_S_rr :
  F16_OP_HREG<0b000, (outs GPR32:$b_s3), (ins GPR32:$h),
          !strconcat("add_s", "\t$b_s3, $b_s3, $h")>;

def ADD_S_rs3 :
  F16_OP_HREG<0b001, (outs GPR32:$h), (ins immC<3>:$b_s3),
          !strconcat("add_s", "\t$h, $h, $b_s3")>;

def ADD_S_limms3 :
  F16_OP_HREG_LIMM<0b001, (outs), (ins immC<3>:$b_s3, i32imm:$LImm),
          !strconcat("add_s", "\t0, $LImm, $b_s3")>;

def MOV_S_NE_rlimm :
  F16_OP_HREG_LIMM<0b111, (outs GPR32:$b_s3), (ins i32imm:$LImm),
          !strconcat("mov_s.ne", "\t$b_s3, $LImm")>;

def MOV_S_NE_rr :
  F16_OP_HREG<0b111,(outs GPR32:$b_s3), (ins GPR32:$h),
          !strconcat("mov_s.ne", "\t$b_s3, $h")>;

def MOV_S_rs3 :
  F16_OP_HREG<0b011, (outs GPR32:$h), (ins immC<3>:$b_s3),
          !strconcat("mov_s", "\t$h, $b_s3")>;

def MOV_S_s3 :
  F16_OP_HREG30<0b011, (outs), (ins immC<3>:$b_s3),
          !strconcat("mov_s", "\t0, $b_s3")>;

def CMP_S_rlimm :
  F16_OP_HREG_LIMM<0b100, (outs GPR32:$b_s3), (ins i32imm:$LImm),
          !strconcat("cmp_s", "\t$b_s3, $LImm")>;

def CMP_S_rr :
  F16_OP_HREG<0b100, (outs GPR32:$b_s3), (ins GPR32:$h),
          !strconcat("cmp_s", "\t$b_s3, $h")>;

def CMP_S_rs3 :
  F16_OP_HREG<0b101, (outs GPR32:$h), (ins immC<3>:$b_s3),
          !strconcat("cmp_s", "\t$h, $b_s3")>;

def CMP_S_limms3 :
  F16_OP_HREG_LIMM<0b101, (outs), (ins immC<3>:$b_s3, i32imm:$LImm),
          !strconcat("cmp_s", "\t$LImm, $b_s3")>;

//----------------------------------------------------------------------------
// Compact MOV/ADD/CMP Immediate instructions.
//----------------------------------------------------------------------------
def MOV_S_u8 :
  F16_OP_IMM<0b11011, (outs GPR32:$b), (ins immU<8>:$u8),
          !strconcat("mov_s", "\t$b, $u8")> {
  bits<8> u8;
  let Inst{7-0} = u8;
}

def ADD_S_u7 :
  F16_OP_U7<0b0, !strconcat("add_s", "\t$b, $b, $u7")>;

def CMP_S_u7 :
  F16_OP_U7<0b1, !strconcat("cmp_s", "\t$b, $u7")>;

//----------------------------------------------------------------------------
// Compact Load/Store instructions with offset.
//----------------------------------------------------------------------------
def LD_S_OFF :
  F16_LD_ST_WORD_OFF<0x10, (outs GPR32:$c), (ins GPR32:$b, immU<7>:$off),
  "ld_s">;

def LDB_S_OFF :
  F16_LD_ST_BYTE_OFF<0x11, (outs GPR32:$c), (ins GPR32:$b, immU<5>:$off),
  "ldb_s">;

class F16_LDH_OFF<bits<5> opc, string asmstr> :
  F16_LD_ST_HALF_OFF<opc, (outs GPR32:$c), (ins GPR32:$b, immU<6>:$off),
  asmstr>;

def LDH_S_OFF : F16_LDH_OFF<0x12, "ldh_s">;
def LDH_S_X_OFF : F16_LDH_OFF<0x13, "ldh_s.x">;

def ST_S_OFF :
  F16_LD_ST_WORD_OFF<0x14, (outs), (ins GPR32:$c, GPR32:$b, immU<7>:$off),
  "st_s">;

def STB_S_OFF :
  F16_LD_ST_BYTE_OFF<0x15, (outs), (ins GPR32:$c, GPR32:$b, immU<5>:$off),
  "stb_s">;

def STH_S_OFF :
  F16_LD_ST_HALF_OFF<0x16, (outs), (ins GPR32:$c, GPR32:$b, immU<6>:$off),
  "sth_s">;

//----------------------------------------------------------------------------
// General compact instructions.
//----------------------------------------------------------------------------
def GEN_SUB_S : F16_GEN_DOP<0x02, "sub_s">;
def GEN_AND_S : F16_GEN_DOP<0x04, "and_s">;
def GEN_OR_S : F16_GEN_DOP<0x05, "or_s">;
def GEN_BIC_S : F16_GEN_DOP<0x06, "bic_s">;
def GEN_XOR_S : F16_GEN_DOP<0x07, "xor_s">;
def GEN_MPYW_S : F16_GEN_DOP<0x09, "mpyw_s">;
def GEN_MPYUW_S : F16_GEN_DOP<0x0a, "mpyuw_s">;
def GEN_TST_S : F16_GEN_DOP_NODST<0x0b, "tst_s">;
def GEN_MPY_S : F16_GEN_DOP<0x0c, "mpy_s">;
def GEN_SEXB_S : F16_GEN_DOP_SINGLESRC<0x0d, "sexb_s">;
def GEN_SEXH_S : F16_GEN_DOP_SINGLESRC<0x0e, "sexh_s">;
def GEN_EXTB_S : F16_GEN_DOP_SINGLESRC<0x0f, "extb_s">;
def GEN_EXTH_S : F16_GEN_DOP_SINGLESRC<0x10, "exth_s">;
def GEN_ABS_S : F16_GEN_DOP_SINGLESRC<0x11, "abs_s">;
def GEN_NOT_S : F16_GEN_DOP_SINGLESRC<0x12, "not_s">;
def GEN_NEG_S : F16_GEN_DOP_SINGLESRC<0x13, "neg_s">;
def GEN_ADD1_S : F16_GEN_DOP<0x14, "add1_s">;
def GEN_ADD2_S : F16_GEN_DOP<0x15, "add2_s">;
def GEN_ADD3_S : F16_GEN_DOP<0x16, "add3_s">;
def GEN_ASL_S : F16_GEN_DOP<0x18, "asl_s">;
def GEN_LSR_S : F16_GEN_DOP<0x19, "lsr_s">;
def GEN_ASR_S : F16_GEN_DOP<0x1a, "asr_s">;
def GEN_AS1L_S : F16_GEN_DOP_SINGLESRC<0x1b, "asl_s">;
def GEN_AS1R_S : F16_GEN_DOP_SINGLESRC<0x1c, "asr_s">;
def GEN_LS1R_S : F16_GEN_DOP_SINGLESRC<0x1d, "lsr_s">;
def GEN_TRAP_S : F16_GEN_DOP_BASE<0x1e, (outs), (ins immU6:$u6),
  "trap_s\t$u6"> {

  bits<6> u6;
  let b = u6{5-3};
  let c = u6{2-0};
}

def GEN_BRK_S : F16_GEN_DOP_BASE<0x1f, (outs), (ins),
  "brk_s"> {

  let b = 0b111;
  let c = 0b111;
}

let isBarrier = 1 in {
  let isBranch = 1 in {
    def GEN_J_S : F16_GEN_SOP<0x0, "j_s\t[$b]">;
    def GEN_J_S_D : F16_GEN_SOP<0x1, "j_s.d\t[$b]">;
  } // let isBranch

  let isCall = 1 in {
    def GEN_JL_S : F16_GEN_SOP<0x2, "jl_s\t[$b]">;
    def GEN_JL_S_D : F16_GEN_SOP<0x3, "jl_s.d\t[$b]">;
  } // let isCall
} // let isBarrier

def GEN_SUB_S_NE : F16_GEN_SOP<0x6, "sub_s.ne\t$b, $b, $b">;

def GEN_NOP_S : F16_GEN_ZOP<0x0, "nop_s">;
def GEN_UNIMP_S : F16_GEN_ZOP<0x1, "unimp_s">;
def GEN_SWI_S : F16_GEN_ZOP<0x2, "swi_s">;

let isReturn = 1, isTerminator = 1 in {
  def GEN_JEQ_S : F16_GEN_ZOP<0x4, "jeq_s\t[%blink]">;
  def GEN_JNE_S : F16_GEN_ZOP<0x5, "jne_s\t[%blink]">;
  let isBarrier = 1 in {
    //def GEN_J_S_BLINK : F16_GEN_ZOP<0x6, "j_s\t[%blink]">;
    def GEN_J_S_D_BLINK : F16_GEN_ZOP<0x7, "j_s.d\t[%blink]">;
  } // let isBarrier
} // let isReturn, isTerminator

//----------------------------------------------------------------------------
// Load/Store instructions.
//----------------------------------------------------------------------------

// Filter  class for load/store mappings
class ArcLdStRel;

// Load instruction variants:
// Control bits: x, aa, di, zz
// x - sign extend.
// aa - incrementing mode. (N/A for LIMM).
// di - uncached.
// zz - data size.
multiclass ArcLdInst<DataSizeMode zz, ExtMode x, CacheMode di, string asmop> {
  let mayLoad = 1, ZZ = zz, X = x, DI = di in {
    def _rs9: F32_LD_ADDR<x.Value, NoAM.Value, di.Value, zz.Value,
			   (outs GPR32:$A), (ins MEMrs9:$addr),
			   !strconcat(asmop, "\t$A, [$addr]"), []>, ArcLdStRel;

    def _limm: F32_LD_LIMM<x.Value, di.Value, zz.Value,
			   (outs GPR32:$A), (ins MEMii:$addr),
			   !strconcat(asmop, "\t$A, [$addr]"), []>, ArcLdStRel;

    def _rlimm: F32_LD_RLIMM<x.Value, NoAM.Value, di.Value, zz.Value,
			     (outs GPR32:$A), (ins MEMrlimm:$addr),
			     !strconcat(asmop, "\t$A, [$addr]"), []>, ArcLdStRel;

    foreach aa = [PreIncAM, PostIncAM] in {
      def aa.InstSuffix#_rs9: F32_LD_RS9<x.Value, aa.Value, di.Value, zz.Value,
					  (outs GPR32:$A, GPR32:$addrout),
					  (ins GPR32:$B, immS<9>:$S9),
					  asmop#aa.AsmSuffix#"\t$A, [$B,$S9]", []>, ArcLdStRel
			       { let Constraints = "$addrout = $B"; let AA = aa; }
    }
  }
}

foreach di = [NoCC, UncachedCC] in {
  defm LD#di.InstSuffix : ArcLdInst<WordSM, NoEM, di, "ld"#di.AsmSuffix>;
  foreach zz = [ByteSM, HalfSM] in {
    foreach x = [NoEM, SignedEM] in {
      defm LD#zz.InstSuffix#x.InstSuffix#di.InstSuffix : ArcLdInst<zz, x, di, "ld"#zz.AsmSuffix#x.AsmSuffix#di.AsmSuffix>;
    }
  }
}

// Load instruction patterns.
// 32-bit loads.
def : Pat<(load AddrModeS9:$addr), (LD_rs9 AddrModeS9:$addr)>;
def : Pat<(load AddrModeImm:$addr), (LD_limm AddrModeImm:$addr)>;
def : Pat<(load AddrModeFar:$addr), (LD_rs9 AddrModeFar:$addr)>;

// 16-bit loads
def : Pat<(zextloadi16 AddrModeS9:$addr), (LDH_rs9 AddrModeS9:$addr)>;
def : Pat<(extloadi16 AddrModeS9:$addr), (LDH_rs9 AddrModeS9:$addr)>;
def : Pat<(zextloadi16 AddrModeImm:$addr), (LDH_limm AddrModeImm:$addr)>;
def : Pat<(extloadi16 AddrModeImm:$addr), (LDH_limm AddrModeImm:$addr)>;
def : Pat<(zextloadi16 AddrModeFar:$addr), (LDH_rlimm AddrModeFar:$addr)>;
def : Pat<(extloadi16 AddrModeFar:$addr), (LDH_rlimm AddrModeFar:$addr)>;
def : Pat<(sextloadi16 AddrModeImm:$addr),(LDH_X_limm AddrModeImm:$addr)>;
def : Pat<(sextloadi16 AddrModeFar:$addr),(LDH_X_rlimm AddrModeFar:$addr)>;
def : Pat<(sextloadi16 AddrModeS9:$addr),(LDH_X_rs9 AddrModeS9:$addr)>;

// 8-bit loads.
def : Pat<(zextloadi8 AddrModeS9:$addr), (LDB_rs9 AddrModeS9:$addr)>;
def : Pat<(extloadi8 AddrModeS9:$addr), (LDB_rs9 AddrModeS9:$addr)>;
def : Pat<(zextloadi8 AddrModeImm:$addr), (LDB_limm AddrModeImm:$addr)>;
def : Pat<(extloadi8 AddrModeImm:$addr), (LDB_limm AddrModeImm:$addr)>;
def : Pat<(zextloadi8 AddrModeFar:$addr), (LDB_rlimm AddrModeFar:$addr)>;
def : Pat<(extloadi8 AddrModeFar:$addr), (LDB_rlimm AddrModeFar:$addr)>;
def : Pat<(zextloadi1 AddrModeS9:$addr), (LDB_rs9 AddrModeS9:$addr)>;
def : Pat<(extloadi1 AddrModeS9:$addr), (LDB_rs9 AddrModeS9:$addr)>;
def : Pat<(zextloadi1 AddrModeImm:$addr), (LDB_limm AddrModeImm:$addr)>;
def : Pat<(extloadi1 AddrModeImm:$addr), (LDB_limm AddrModeImm:$addr)>;
def : Pat<(zextloadi1 AddrModeFar:$addr), (LDB_rlimm AddrModeFar:$addr)>;
def : Pat<(extloadi1 AddrModeFar:$addr), (LDB_rlimm AddrModeFar:$addr)>;
def : Pat<(sextloadi8 AddrModeImm:$addr),(LDB_X_limm AddrModeImm:$addr)>;
def : Pat<(sextloadi8 AddrModeFar:$addr),(LDB_X_rlimm AddrModeFar:$addr)>;
def : Pat<(sextloadi8 AddrModeS9:$addr),(LDB_X_rs9 AddrModeS9:$addr)>;


// Store instruction variants:
// Control bits: aa, di, zz
// aa - incrementing mode. (N/A for LIMM).
// di - uncached.
// zz - data size.
multiclass ArcStInst<DataSizeMode zz, CacheMode di, string asmop> {
  let mayStore = 1, ZZ = zz, DI = di in {
    def _rs9: F32_ST_ADDR<NoAM.Value, di.Value, zz.Value,
			   (outs), (ins GPR32:$C, MEMrs9:$addr),
			   !strconcat(asmop, "\t$C, [$addr]"), []>, ArcLdStRel;

    def _limm: F32_ST_LIMM<di.Value, zz.Value,
			   (outs), (ins GPR32:$C, MEMii:$addr),
			   !strconcat(asmop, "\t$C, [$addr]"), []>, ArcLdStRel;


    foreach aa = [PreIncAM, PostIncAM] in {
      def aa.InstSuffix#_rs9: F32_ST_RS9<aa.Value, di.Value, zz.Value,
					  (outs GPR32:$addrout),
					  (ins GPR32:$C, GPR32:$B, immS<9>:$S9),
					  asmop#aa.AsmSuffix#"\t$C, [$B,$S9]", []>, ArcLdStRel
			       { let Constraints = "$addrout = $B"; let AA = aa; }
    }
  }
}

foreach di = [NoCC, UncachedCC] in {
  foreach zz = [ByteSM, HalfSM, WordSM] in {
      defm ST#zz.InstSuffix#di.InstSuffix : ArcStInst<zz, di, "st"#zz.AsmSuffix#di.AsmSuffix>;
  }
}

// Store instruction patterns.
// 32-bit stores
def : Pat<(store i32:$C, AddrModeS9:$addr),
          (ST_rs9 i32:$C, AddrModeS9:$addr)>;
def : Pat<(store i32:$C, AddrModeImm:$addr),
          (ST_limm i32:$C, AddrModeImm:$addr)>;

// 16-bit stores
def : Pat<(truncstorei16 i32:$C, AddrModeS9:$addr),
          (STH_rs9 i32:$C, AddrModeS9:$addr)>;
def : Pat<(truncstorei16 i32:$C, AddrModeImm:$addr),
          (STH_limm i32:$C, AddrModeImm:$addr)>;

// 8-bit stores
def : Pat<(truncstorei8 i32:$C, AddrModeS9:$addr),
          (STB_rs9 i32:$C, AddrModeS9:$addr)>;
def : Pat<(truncstorei8 i32:$C, AddrModeImm:$addr),
          (STB_limm i32:$C, AddrModeImm:$addr)>;

def getPostIncOpcode : InstrMapping {
  let FilterClass = "ArcLdStRel";
  let RowFields = [ "BaseOpcode", "ZZ", "DI", "X"];
  let ColFields = [ "AA" ];
  let KeyCol = [ "NoAM" ];
  let ValueCols = [["PostIncAM"]];
}