ARMBaseInstrInfo.h 31.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
//===-- ARMBaseInstrInfo.h - ARM Base Instruction Information ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the Base ARM implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_ARM_ARMBASEINSTRINFO_H
#define LLVM_LIB_TARGET_ARM_ARMBASEINSTRINFO_H

#include "MCTargetDesc/ARMBaseInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include <array>
#include <cstdint>

#define GET_INSTRINFO_HEADER
#include "ARMGenInstrInfo.inc"

namespace llvm {

class ARMBaseRegisterInfo;
class ARMSubtarget;

class ARMBaseInstrInfo : public ARMGenInstrInfo {
  const ARMSubtarget &Subtarget;

protected:
  // Can be only subclassed.
  explicit ARMBaseInstrInfo(const ARMSubtarget &STI);

  void expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
                                unsigned LoadImmOpc, unsigned LoadOpc) const;

  /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
  /// and \p DefIdx.
  /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
  /// the list is modeled as <Reg:SubReg, SubIdx>.
  /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
  /// two elements:
  /// - %1:sub1, sub0
  /// - %2<:0>, sub1
  ///
  /// \returns true if it is possible to build such an input sequence
  /// with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isRegSequenceLike().
  bool getRegSequenceLikeInputs(
      const MachineInstr &MI, unsigned DefIdx,
      SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const override;

  /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
  /// and \p DefIdx.
  /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
  /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
  /// - %1:sub1, sub0
  ///
  /// \returns true if it is possible to build such an input sequence
  /// with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isExtractSubregLike().
  bool getExtractSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
                                  RegSubRegPairAndIdx &InputReg) const override;

  /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
  /// and \p DefIdx.
  /// \p [out] BaseReg and \p [out] InsertedReg contain
  /// the equivalent inputs of INSERT_SUBREG.
  /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
  /// - BaseReg: %0:sub0
  /// - InsertedReg: %1:sub1, sub3
  ///
  /// \returns true if it is possible to build such an input sequence
  /// with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isInsertSubregLike().
  bool
  getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
                            RegSubRegPair &BaseReg,
                            RegSubRegPairAndIdx &InsertedReg) const override;

  /// Commutes the operands in the given instruction.
  /// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
  ///
  /// Do not call this method for a non-commutable instruction or for
  /// non-commutable pair of operand indices OpIdx1 and OpIdx2.
  /// Even though the instruction is commutable, the method may still
  /// fail to commute the operands, null pointer is returned in such cases.
  MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
                                       unsigned OpIdx1,
                                       unsigned OpIdx2) const override;
  /// If the specific machine instruction is an instruction that moves/copies
  /// value from one register to another register return destination and source
  /// registers as machine operands.
  Optional<DestSourcePair>
  isCopyInstrImpl(const MachineInstr &MI) const override;

public:
  // Return whether the target has an explicit NOP encoding.
  bool hasNOP() const;

  // Return the non-pre/post incrementing version of 'Opc'. Return 0
  // if there is not such an opcode.
  virtual unsigned getUnindexedOpcode(unsigned Opc) const = 0;

  MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
                                      MachineInstr &MI,
                                      LiveVariables *LV) const override;

  virtual const ARMBaseRegisterInfo &getRegisterInfo() const = 0;
  const ARMSubtarget &getSubtarget() const { return Subtarget; }

  ScheduleHazardRecognizer *
  CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
                               const ScheduleDAG *DAG) const override;

  ScheduleHazardRecognizer *
  CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
                                     const ScheduleDAG *DAG) const override;

  // Branch analysis.
  bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                     MachineBasicBlock *&FBB,
                     SmallVectorImpl<MachineOperand> &Cond,
                     bool AllowModify = false) const override;
  unsigned removeBranch(MachineBasicBlock &MBB,
                        int *BytesRemoved = nullptr) const override;
  unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                        MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
                        const DebugLoc &DL,
                        int *BytesAdded = nullptr) const override;

  bool
  reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;

  // Predication support.
  bool isPredicated(const MachineInstr &MI) const override;

  ARMCC::CondCodes getPredicate(const MachineInstr &MI) const {
    int PIdx = MI.findFirstPredOperandIdx();
    return PIdx != -1 ? (ARMCC::CondCodes)MI.getOperand(PIdx).getImm()
                      : ARMCC::AL;
  }

  bool PredicateInstruction(MachineInstr &MI,
                            ArrayRef<MachineOperand> Pred) const override;

  bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
                         ArrayRef<MachineOperand> Pred2) const override;

  bool DefinesPredicate(MachineInstr &MI,
                        std::vector<MachineOperand> &Pred) const override;

  bool isPredicable(const MachineInstr &MI) const override;

  // CPSR defined in instruction
  static bool isCPSRDefined(const MachineInstr &MI);
  bool isAddrMode3OpImm(const MachineInstr &MI, unsigned Op) const;
  bool isAddrMode3OpMinusReg(const MachineInstr &MI, unsigned Op) const;

  // Load, scaled register offset
  bool isLdstScaledReg(const MachineInstr &MI, unsigned Op) const;
  // Load, scaled register offset, not plus LSL2
  bool isLdstScaledRegNotPlusLsl2(const MachineInstr &MI, unsigned Op) const;
  // Minus reg for ldstso addr mode
  bool isLdstSoMinusReg(const MachineInstr &MI, unsigned Op) const;
  // Scaled register offset in address mode 2
  bool isAm2ScaledReg(const MachineInstr &MI, unsigned Op) const;
  // Load multiple, base reg in list
  bool isLDMBaseRegInList(const MachineInstr &MI) const;
  // get LDM variable defs size
  unsigned getLDMVariableDefsSize(const MachineInstr &MI) const;

  /// GetInstSize - Returns the size of the specified MachineInstr.
  ///
  unsigned getInstSizeInBytes(const MachineInstr &MI) const override;

  unsigned isLoadFromStackSlot(const MachineInstr &MI,
                               int &FrameIndex) const override;
  unsigned isStoreToStackSlot(const MachineInstr &MI,
                              int &FrameIndex) const override;
  unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
                                     int &FrameIndex) const override;
  unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
                                    int &FrameIndex) const override;

  void copyToCPSR(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                  unsigned SrcReg, bool KillSrc,
                  const ARMSubtarget &Subtarget) const;
  void copyFromCPSR(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                    unsigned DestReg, bool KillSrc,
                    const ARMSubtarget &Subtarget) const;

  void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                   const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
                   bool KillSrc) const override;

  void storeRegToStackSlot(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MBBI,
                           unsigned SrcReg, bool isKill, int FrameIndex,
                           const TargetRegisterClass *RC,
                           const TargetRegisterInfo *TRI) const override;

  void loadRegFromStackSlot(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MBBI,
                            unsigned DestReg, int FrameIndex,
                            const TargetRegisterClass *RC,
                            const TargetRegisterInfo *TRI) const override;

  bool expandPostRAPseudo(MachineInstr &MI) const override;

  bool shouldSink(const MachineInstr &MI) const override;

  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                     unsigned DestReg, unsigned SubIdx,
                     const MachineInstr &Orig,
                     const TargetRegisterInfo &TRI) const override;

  MachineInstr &
  duplicate(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
            const MachineInstr &Orig) const override;

  const MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
                                     unsigned SubIdx, unsigned State,
                                     const TargetRegisterInfo *TRI) const;

  bool produceSameValue(const MachineInstr &MI0, const MachineInstr &MI1,
                        const MachineRegisterInfo *MRI) const override;

  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
  /// determine if two loads are loading from the same base address. It should
  /// only return true if the base pointers are the same and the only
  /// differences between the two addresses is the offset. It also returns the
  /// offsets by reference.
  bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
                               int64_t &Offset2) const override;

  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
  /// should be scheduled togther. On some targets if two loads are loading from
  /// addresses in the same cache line, it's better if they are scheduled
  /// together. This function takes two integers that represent the load offsets
  /// from the common base address. It returns true if it decides it's desirable
  /// to schedule the two loads together. "NumLoads" is the number of loads that
  /// have already been scheduled after Load1.
  bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
                               int64_t Offset1, int64_t Offset2,
                               unsigned NumLoads) const override;

  bool isSchedulingBoundary(const MachineInstr &MI,
                            const MachineBasicBlock *MBB,
                            const MachineFunction &MF) const override;

  bool isProfitableToIfCvt(MachineBasicBlock &MBB,
                           unsigned NumCycles, unsigned ExtraPredCycles,
                           BranchProbability Probability) const override;

  bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumT,
                           unsigned ExtraT, MachineBasicBlock &FMBB,
                           unsigned NumF, unsigned ExtraF,
                           BranchProbability Probability) const override;

  bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
                                 BranchProbability Probability) const override {
    return NumCycles == 1;
  }

  unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
                                            unsigned NumInsts) const override;
  unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const override;

  bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
                                 MachineBasicBlock &FMBB) const override;

  /// analyzeCompare - For a comparison instruction, return the source registers
  /// in SrcReg and SrcReg2 if having two register operands, and the value it
  /// compares against in CmpValue. Return true if the comparison instruction
  /// can be analyzed.
  bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
                      unsigned &SrcReg2, int &CmpMask,
                      int &CmpValue) const override;

  /// optimizeCompareInstr - Convert the instruction to set the zero flag so
  /// that we can remove a "comparison with zero"; Remove a redundant CMP
  /// instruction if the flags can be updated in the same way by an earlier
  /// instruction such as SUB.
  bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
                            unsigned SrcReg2, int CmpMask, int CmpValue,
                            const MachineRegisterInfo *MRI) const override;

  bool analyzeSelect(const MachineInstr &MI,
                     SmallVectorImpl<MachineOperand> &Cond, unsigned &TrueOp,
                     unsigned &FalseOp, bool &Optimizable) const override;

  MachineInstr *optimizeSelect(MachineInstr &MI,
                               SmallPtrSetImpl<MachineInstr *> &SeenMIs,
                               bool) const override;

  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
  /// instruction, try to fold the immediate into the use instruction.
  bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, unsigned Reg,
                     MachineRegisterInfo *MRI) const override;

  unsigned getNumMicroOps(const InstrItineraryData *ItinData,
                          const MachineInstr &MI) const override;

  int getOperandLatency(const InstrItineraryData *ItinData,
                        const MachineInstr &DefMI, unsigned DefIdx,
                        const MachineInstr &UseMI,
                        unsigned UseIdx) const override;
  int getOperandLatency(const InstrItineraryData *ItinData,
                        SDNode *DefNode, unsigned DefIdx,
                        SDNode *UseNode, unsigned UseIdx) const override;

  /// VFP/NEON execution domains.
  std::pair<uint16_t, uint16_t>
  getExecutionDomain(const MachineInstr &MI) const override;
  void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;

  unsigned
  getPartialRegUpdateClearance(const MachineInstr &, unsigned,
                               const TargetRegisterInfo *) const override;
  void breakPartialRegDependency(MachineInstr &, unsigned,
                                 const TargetRegisterInfo *TRI) const override;

  /// Get the number of addresses by LDM or VLDM or zero for unknown.
  unsigned getNumLDMAddresses(const MachineInstr &MI) const;

  std::pair<unsigned, unsigned>
  decomposeMachineOperandsTargetFlags(unsigned TF) const override;
  ArrayRef<std::pair<unsigned, const char *>>
  getSerializableDirectMachineOperandTargetFlags() const override;
  ArrayRef<std::pair<unsigned, const char *>>
  getSerializableBitmaskMachineOperandTargetFlags() const override;

private:
  unsigned getInstBundleLength(const MachineInstr &MI) const;

  int getVLDMDefCycle(const InstrItineraryData *ItinData,
                      const MCInstrDesc &DefMCID,
                      unsigned DefClass,
                      unsigned DefIdx, unsigned DefAlign) const;
  int getLDMDefCycle(const InstrItineraryData *ItinData,
                     const MCInstrDesc &DefMCID,
                     unsigned DefClass,
                     unsigned DefIdx, unsigned DefAlign) const;
  int getVSTMUseCycle(const InstrItineraryData *ItinData,
                      const MCInstrDesc &UseMCID,
                      unsigned UseClass,
                      unsigned UseIdx, unsigned UseAlign) const;
  int getSTMUseCycle(const InstrItineraryData *ItinData,
                     const MCInstrDesc &UseMCID,
                     unsigned UseClass,
                     unsigned UseIdx, unsigned UseAlign) const;
  int getOperandLatency(const InstrItineraryData *ItinData,
                        const MCInstrDesc &DefMCID,
                        unsigned DefIdx, unsigned DefAlign,
                        const MCInstrDesc &UseMCID,
                        unsigned UseIdx, unsigned UseAlign) const;

  int getOperandLatencyImpl(const InstrItineraryData *ItinData,
                            const MachineInstr &DefMI, unsigned DefIdx,
                            const MCInstrDesc &DefMCID, unsigned DefAdj,
                            const MachineOperand &DefMO, unsigned Reg,
                            const MachineInstr &UseMI, unsigned UseIdx,
                            const MCInstrDesc &UseMCID, unsigned UseAdj) const;

  unsigned getPredicationCost(const MachineInstr &MI) const override;

  unsigned getInstrLatency(const InstrItineraryData *ItinData,
                           const MachineInstr &MI,
                           unsigned *PredCost = nullptr) const override;

  int getInstrLatency(const InstrItineraryData *ItinData,
                      SDNode *Node) const override;

  bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
                             const MachineRegisterInfo *MRI,
                             const MachineInstr &DefMI, unsigned DefIdx,
                             const MachineInstr &UseMI,
                             unsigned UseIdx) const override;
  bool hasLowDefLatency(const TargetSchedModel &SchedModel,
                        const MachineInstr &DefMI,
                        unsigned DefIdx) const override;

  /// verifyInstruction - Perform target specific instruction verification.
  bool verifyInstruction(const MachineInstr &MI,
                         StringRef &ErrInfo) const override;

  virtual void expandLoadStackGuard(MachineBasicBlock::iterator MI) const = 0;

  void expandMEMCPY(MachineBasicBlock::iterator) const;

  /// Identify instructions that can be folded into a MOVCC instruction, and
  /// return the defining instruction.
  MachineInstr *canFoldIntoMOVCC(unsigned Reg, const MachineRegisterInfo &MRI,
                                 const TargetInstrInfo *TII) const;

private:
  /// Modeling special VFP / NEON fp MLA / MLS hazards.

  /// MLxEntryMap - Map fp MLA / MLS to the corresponding entry in the internal
  /// MLx table.
  DenseMap<unsigned, unsigned> MLxEntryMap;

  /// MLxHazardOpcodes - Set of add / sub and multiply opcodes that would cause
  /// stalls when scheduled together with fp MLA / MLS opcodes.
  SmallSet<unsigned, 16> MLxHazardOpcodes;

public:
  /// isFpMLxInstruction - Return true if the specified opcode is a fp MLA / MLS
  /// instruction.
  bool isFpMLxInstruction(unsigned Opcode) const {
    return MLxEntryMap.count(Opcode);
  }

  /// isFpMLxInstruction - This version also returns the multiply opcode and the
  /// addition / subtraction opcode to expand to. Return true for 'HasLane' for
  /// the MLX instructions with an extra lane operand.
  bool isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
                          unsigned &AddSubOpc, bool &NegAcc,
                          bool &HasLane) const;

  /// canCauseFpMLxStall - Return true if an instruction of the specified opcode
  /// will cause stalls when scheduled after (within 4-cycle window) a fp
  /// MLA / MLS instruction.
  bool canCauseFpMLxStall(unsigned Opcode) const {
    return MLxHazardOpcodes.count(Opcode);
  }

  /// Returns true if the instruction has a shift by immediate that can be
  /// executed in one cycle less.
  bool isSwiftFastImmShift(const MachineInstr *MI) const;

  /// Returns predicate register associated with the given frame instruction.
  unsigned getFramePred(const MachineInstr &MI) const {
    assert(isFrameInstr(MI));
    // Operands of ADJCALLSTACKDOWN/ADJCALLSTACKUP:
    // - argument declared in the pattern:
    // 0 - frame size
    // 1 - arg of CALLSEQ_START/CALLSEQ_END
    // 2 - predicate code (like ARMCC::AL)
    // - added by predOps:
    // 3 - predicate reg
    return MI.getOperand(3).getReg();
  }

  Optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
                                      Register Reg) const override;
};

/// Get the operands corresponding to the given \p Pred value. By default, the
/// predicate register is assumed to be 0 (no register), but you can pass in a
/// \p PredReg if that is not the case.
static inline std::array<MachineOperand, 2> predOps(ARMCC::CondCodes Pred,
                                                    unsigned PredReg = 0) {
  return {{MachineOperand::CreateImm(static_cast<int64_t>(Pred)),
           MachineOperand::CreateReg(PredReg, false)}};
}

/// Get the operand corresponding to the conditional code result. By default,
/// this is 0 (no register).
static inline MachineOperand condCodeOp(unsigned CCReg = 0) {
  return MachineOperand::CreateReg(CCReg, false);
}

/// Get the operand corresponding to the conditional code result for Thumb1.
/// This operand will always refer to CPSR and it will have the Define flag set.
/// You can optionally set the Dead flag by means of \p isDead.
static inline MachineOperand t1CondCodeOp(bool isDead = false) {
  return MachineOperand::CreateReg(ARM::CPSR,
                                   /*Define*/ true, /*Implicit*/ false,
                                   /*Kill*/ false, isDead);
}

static inline
bool isUncondBranchOpcode(int Opc) {
  return Opc == ARM::B || Opc == ARM::tB || Opc == ARM::t2B;
}

// This table shows the VPT instruction variants, i.e. the different
// mask field encodings, see also B5.6. Predication/conditional execution in
// the ArmARM.
enum VPTMaskValue {
  T     =  8, // 0b1000
  TT    =  4, // 0b0100
  TE    = 12, // 0b1100
  TTT   =  2, // 0b0010
  TTE   =  6, // 0b0110
  TEE   = 10, // 0b1010
  TET   = 14, // 0b1110
  TTTT  =  1, // 0b0001
  TTTE  =  3, // 0b0011
  TTEE  =  5, // 0b0101
  TTET  =  7, // 0b0111
  TEEE  =  9, // 0b1001
  TEET  = 11, // 0b1011
  TETT  = 13, // 0b1101
  TETE  = 15  // 0b1111
};

static inline bool isVPTOpcode(int Opc) {
  return Opc == ARM::MVE_VPTv16i8 || Opc == ARM::MVE_VPTv16u8 ||
         Opc == ARM::MVE_VPTv16s8 || Opc == ARM::MVE_VPTv8i16 ||
         Opc == ARM::MVE_VPTv8u16 || Opc == ARM::MVE_VPTv8s16 ||
         Opc == ARM::MVE_VPTv4i32 || Opc == ARM::MVE_VPTv4u32 ||
         Opc == ARM::MVE_VPTv4s32 || Opc == ARM::MVE_VPTv4f32 ||
         Opc == ARM::MVE_VPTv8f16 || Opc == ARM::MVE_VPTv16i8r ||
         Opc == ARM::MVE_VPTv16u8r || Opc == ARM::MVE_VPTv16s8r ||
         Opc == ARM::MVE_VPTv8i16r || Opc == ARM::MVE_VPTv8u16r ||
         Opc == ARM::MVE_VPTv8s16r || Opc == ARM::MVE_VPTv4i32r ||
         Opc == ARM::MVE_VPTv4u32r || Opc == ARM::MVE_VPTv4s32r ||
         Opc == ARM::MVE_VPTv4f32r || Opc == ARM::MVE_VPTv8f16r ||
         Opc == ARM::MVE_VPST;
}

static inline
unsigned VCMPOpcodeToVPT(unsigned Opcode) {
  switch (Opcode) {
  default:
    return 0;
  case ARM::MVE_VCMPf32:
    return ARM::MVE_VPTv4f32;
  case ARM::MVE_VCMPf16:
    return ARM::MVE_VPTv8f16;
  case ARM::MVE_VCMPi8:
    return ARM::MVE_VPTv16i8;
  case ARM::MVE_VCMPi16:
    return ARM::MVE_VPTv8i16;
  case ARM::MVE_VCMPi32:
    return ARM::MVE_VPTv4i32;
  case ARM::MVE_VCMPu8:
    return ARM::MVE_VPTv16u8;
  case ARM::MVE_VCMPu16:
    return ARM::MVE_VPTv8u16;
  case ARM::MVE_VCMPu32:
    return ARM::MVE_VPTv4u32;
  case ARM::MVE_VCMPs8:
    return ARM::MVE_VPTv16s8;
  case ARM::MVE_VCMPs16:
    return ARM::MVE_VPTv8s16;
  case ARM::MVE_VCMPs32:
    return ARM::MVE_VPTv4s32;

  case ARM::MVE_VCMPf32r:
    return ARM::MVE_VPTv4f32r;
  case ARM::MVE_VCMPf16r:
    return ARM::MVE_VPTv8f16r;
  case ARM::MVE_VCMPi8r:
    return ARM::MVE_VPTv16i8r;
  case ARM::MVE_VCMPi16r:
    return ARM::MVE_VPTv8i16r;
  case ARM::MVE_VCMPi32r:
    return ARM::MVE_VPTv4i32r;
  case ARM::MVE_VCMPu8r:
    return ARM::MVE_VPTv16u8r;
  case ARM::MVE_VCMPu16r:
    return ARM::MVE_VPTv8u16r;
  case ARM::MVE_VCMPu32r:
    return ARM::MVE_VPTv4u32r;
  case ARM::MVE_VCMPs8r:
    return ARM::MVE_VPTv16s8r;
  case ARM::MVE_VCMPs16r:
    return ARM::MVE_VPTv8s16r;
  case ARM::MVE_VCMPs32r:
    return ARM::MVE_VPTv4s32r;
  }
}

static inline
unsigned VCTPOpcodeToLSTP(unsigned Opcode, bool IsDoLoop) {
  switch (Opcode) {
  default:
    llvm_unreachable("unhandled vctp opcode");
    break;
  case ARM::MVE_VCTP8:
    return IsDoLoop ? ARM::MVE_DLSTP_8 : ARM::MVE_WLSTP_8;
  case ARM::MVE_VCTP16:
    return IsDoLoop ? ARM::MVE_DLSTP_16 : ARM::MVE_WLSTP_16;
  case ARM::MVE_VCTP32:
    return IsDoLoop ? ARM::MVE_DLSTP_32 : ARM::MVE_WLSTP_32;
  case ARM::MVE_VCTP64:
    return IsDoLoop ? ARM::MVE_DLSTP_64 : ARM::MVE_WLSTP_64;
  }
  return 0;
}

static inline
bool isVCTP(MachineInstr *MI) {
  switch (MI->getOpcode()) {
  default:
    break;
  case ARM::MVE_VCTP8:
  case ARM::MVE_VCTP16:
  case ARM::MVE_VCTP32:
  case ARM::MVE_VCTP64:
    return true;
  }
  return false;
}

static inline
bool isLoopStart(MachineInstr &MI) {
  return MI.getOpcode() == ARM::t2DoLoopStart ||
         MI.getOpcode() == ARM::t2WhileLoopStart;
}

static inline
bool isCondBranchOpcode(int Opc) {
  return Opc == ARM::Bcc || Opc == ARM::tBcc || Opc == ARM::t2Bcc;
}

static inline bool isJumpTableBranchOpcode(int Opc) {
  return Opc == ARM::BR_JTr || Opc == ARM::BR_JTm_i12 ||
         Opc == ARM::BR_JTm_rs || Opc == ARM::BR_JTadd || Opc == ARM::tBR_JTr ||
         Opc == ARM::t2BR_JT;
}

static inline
bool isIndirectBranchOpcode(int Opc) {
  return Opc == ARM::BX || Opc == ARM::MOVPCRX || Opc == ARM::tBRIND;
}

static inline bool isPopOpcode(int Opc) {
  return Opc == ARM::tPOP_RET || Opc == ARM::LDMIA_RET ||
         Opc == ARM::t2LDMIA_RET || Opc == ARM::tPOP || Opc == ARM::LDMIA_UPD ||
         Opc == ARM::t2LDMIA_UPD || Opc == ARM::VLDMDIA_UPD;
}

static inline bool isPushOpcode(int Opc) {
  return Opc == ARM::tPUSH || Opc == ARM::t2STMDB_UPD ||
         Opc == ARM::STMDB_UPD || Opc == ARM::VSTMDDB_UPD;
}

/// isValidCoprocessorNumber - decide whether an explicit coprocessor
/// number is legal in generic instructions like CDP. The answer can
/// vary with the subtarget.
static inline bool isValidCoprocessorNumber(unsigned Num,
                                            const FeatureBitset& featureBits) {
  // Armv8-A disallows everything *other* than 111x (CP14 and CP15).
  if (featureBits[ARM::HasV8Ops] && (Num & 0xE) != 0xE)
    return false;

  // Armv7 disallows 101x (CP10 and CP11), which clash with VFP/NEON.
  if (featureBits[ARM::HasV7Ops] && (Num & 0xE) == 0xA)
    return false;

  // Armv8.1-M also disallows 100x (CP8,CP9) and 111x (CP14,CP15)
  // which clash with MVE.
  if (featureBits[ARM::HasV8_1MMainlineOps] &&
      ((Num & 0xE) == 0x8 || (Num & 0xE) == 0xE))
    return false;

  return true;
}

/// getInstrPredicate - If instruction is predicated, returns its predicate
/// condition, otherwise returns AL. It also returns the condition code
/// register by reference.
ARMCC::CondCodes getInstrPredicate(const MachineInstr &MI, unsigned &PredReg);

unsigned getMatchingCondBranchOpcode(unsigned Opc);

/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether
/// the instruction is encoded with an 'S' bit is determined by the optional
/// CPSR def operand.
unsigned convertAddSubFlagsOpcode(unsigned OldOpc);

/// emitARMRegPlusImmediate / emitT2RegPlusImmediate - Emits a series of
/// instructions to materializea destreg = basereg + immediate in ARM / Thumb2
/// code.
void emitARMRegPlusImmediate(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator &MBBI,
                             const DebugLoc &dl, unsigned DestReg,
                             unsigned BaseReg, int NumBytes,
                             ARMCC::CondCodes Pred, unsigned PredReg,
                             const ARMBaseInstrInfo &TII, unsigned MIFlags = 0);

void emitT2RegPlusImmediate(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator &MBBI,
                            const DebugLoc &dl, unsigned DestReg,
                            unsigned BaseReg, int NumBytes,
                            ARMCC::CondCodes Pred, unsigned PredReg,
                            const ARMBaseInstrInfo &TII, unsigned MIFlags = 0);
void emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
                               MachineBasicBlock::iterator &MBBI,
                               const DebugLoc &dl, unsigned DestReg,
                               unsigned BaseReg, int NumBytes,
                               const TargetInstrInfo &TII,
                               const ARMBaseRegisterInfo &MRI,
                               unsigned MIFlags = 0);

/// Tries to add registers to the reglist of a given base-updating
/// push/pop instruction to adjust the stack by an additional
/// NumBytes. This can save a few bytes per function in code-size, but
/// obviously generates more memory traffic. As such, it only takes
/// effect in functions being optimised for size.
bool tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
                                MachineFunction &MF, MachineInstr *MI,
                                unsigned NumBytes);

/// rewriteARMFrameIndex / rewriteT2FrameIndex -
/// Rewrite MI to access 'Offset' bytes from the FP. Return false if the
/// offset could not be handled directly in MI, and return the left-over
/// portion by reference.
bool rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
                          unsigned FrameReg, int &Offset,
                          const ARMBaseInstrInfo &TII);

bool rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
                         unsigned FrameReg, int &Offset,
                         const ARMBaseInstrInfo &TII,
                         const TargetRegisterInfo *TRI);

/// Return true if Reg is defd between From and To
bool registerDefinedBetween(unsigned Reg, MachineBasicBlock::iterator From,
                            MachineBasicBlock::iterator To,
                            const TargetRegisterInfo *TRI);

/// Search backwards from a tBcc to find a tCMPi8 against 0, meaning
/// we can convert them to a tCBZ or tCBNZ. Return nullptr if not found.
MachineInstr *findCMPToFoldIntoCBZ(MachineInstr *Br,
                                   const TargetRegisterInfo *TRI);

void addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB);
void addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, unsigned DestReg);

void addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond);
void addPredicatedMveVpredROp(MachineInstrBuilder &MIB, unsigned Cond,
                              unsigned Inactive);

/// Returns the number of instructions required to materialize the given
/// constant in a register, or 3 if a literal pool load is needed.
/// If ForCodesize is specified, an approximate cost in bytes is returned.
unsigned ConstantMaterializationCost(unsigned Val,
                                     const ARMSubtarget *Subtarget,
                                     bool ForCodesize = false);

/// Returns true if Val1 has a lower Constant Materialization Cost than Val2.
/// Uses the cost from ConstantMaterializationCost, first with ForCodesize as
/// specified. If the scores are equal, return the comparison for !ForCodesize.
bool HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
                                         const ARMSubtarget *Subtarget,
                                         bool ForCodesize = false);

} // end namespace llvm

#endif // LLVM_LIB_TARGET_ARM_ARMBASEINSTRINFO_H