ARMAsmParser.cpp 443 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975
//===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ARMFeatures.h"
#include "ARMBaseInstrInfo.h"
#include "Utils/ARMBaseInfo.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "MCTargetDesc/ARMInstPrinter.h"
#include "MCTargetDesc/ARMMCExpr.h"
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "TargetInfo/ARMTargetInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCAsmParserExtension.h"
#include "llvm/MC/MCParser/MCAsmParserUtils.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/ARMEHABI.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#define DEBUG_TYPE "asm-parser"

using namespace llvm;

namespace llvm {
extern const MCInstrDesc ARMInsts[];
} // end namespace llvm

namespace {

enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };

static cl::opt<ImplicitItModeTy> ImplicitItMode(
    "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
    cl::desc("Allow conditional instructions outdside of an IT block"),
    cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
                          "Accept in both ISAs, emit implicit ITs in Thumb"),
               clEnumValN(ImplicitItModeTy::Never, "never",
                          "Warn in ARM, reject in Thumb"),
               clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
                          "Accept in ARM, reject in Thumb"),
               clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
                          "Warn in ARM, emit implicit ITs in Thumb")));

static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
                                        cl::init(false));

enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };

static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) {
  // Position==0 means we're not in an IT block at all. Position==1
  // means we want the first state bit, which is always 0 (Then).
  // Position==2 means we want the second state bit, stored at bit 3
  // of Mask, and so on downwards. So (5 - Position) will shift the
  // right bit down to bit 0, including the always-0 bit at bit 4 for
  // the mandatory initial Then.
  return (Mask >> (5 - Position) & 1);
}

class UnwindContext {
  using Locs = SmallVector<SMLoc, 4>;

  MCAsmParser &Parser;
  Locs FnStartLocs;
  Locs CantUnwindLocs;
  Locs PersonalityLocs;
  Locs PersonalityIndexLocs;
  Locs HandlerDataLocs;
  int FPReg;

public:
  UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}

  bool hasFnStart() const { return !FnStartLocs.empty(); }
  bool cantUnwind() const { return !CantUnwindLocs.empty(); }
  bool hasHandlerData() const { return !HandlerDataLocs.empty(); }

  bool hasPersonality() const {
    return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
  }

  void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
  void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
  void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
  void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
  void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }

  void saveFPReg(int Reg) { FPReg = Reg; }
  int getFPReg() const { return FPReg; }

  void emitFnStartLocNotes() const {
    for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
         FI != FE; ++FI)
      Parser.Note(*FI, ".fnstart was specified here");
  }

  void emitCantUnwindLocNotes() const {
    for (Locs::const_iterator UI = CantUnwindLocs.begin(),
                              UE = CantUnwindLocs.end(); UI != UE; ++UI)
      Parser.Note(*UI, ".cantunwind was specified here");
  }

  void emitHandlerDataLocNotes() const {
    for (Locs::const_iterator HI = HandlerDataLocs.begin(),
                              HE = HandlerDataLocs.end(); HI != HE; ++HI)
      Parser.Note(*HI, ".handlerdata was specified here");
  }

  void emitPersonalityLocNotes() const {
    for (Locs::const_iterator PI = PersonalityLocs.begin(),
                              PE = PersonalityLocs.end(),
                              PII = PersonalityIndexLocs.begin(),
                              PIE = PersonalityIndexLocs.end();
         PI != PE || PII != PIE;) {
      if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
        Parser.Note(*PI++, ".personality was specified here");
      else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
        Parser.Note(*PII++, ".personalityindex was specified here");
      else
        llvm_unreachable(".personality and .personalityindex cannot be "
                         "at the same location");
    }
  }

  void reset() {
    FnStartLocs = Locs();
    CantUnwindLocs = Locs();
    PersonalityLocs = Locs();
    HandlerDataLocs = Locs();
    PersonalityIndexLocs = Locs();
    FPReg = ARM::SP;
  }
};


class ARMAsmParser : public MCTargetAsmParser {
  const MCRegisterInfo *MRI;
  UnwindContext UC;

  ARMTargetStreamer &getTargetStreamer() {
    assert(getParser().getStreamer().getTargetStreamer() &&
           "do not have a target streamer");
    MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
    return static_cast<ARMTargetStreamer &>(TS);
  }

  // Map of register aliases registers via the .req directive.
  StringMap<unsigned> RegisterReqs;

  bool NextSymbolIsThumb;

  bool useImplicitITThumb() const {
    return ImplicitItMode == ImplicitItModeTy::Always ||
           ImplicitItMode == ImplicitItModeTy::ThumbOnly;
  }

  bool useImplicitITARM() const {
    return ImplicitItMode == ImplicitItModeTy::Always ||
           ImplicitItMode == ImplicitItModeTy::ARMOnly;
  }

  struct {
    ARMCC::CondCodes Cond;    // Condition for IT block.
    unsigned Mask:4;          // Condition mask for instructions.
                              // Starting at first 1 (from lsb).
                              //   '1'  condition as indicated in IT.
                              //   '0'  inverse of condition (else).
                              // Count of instructions in IT block is
                              // 4 - trailingzeroes(mask)
                              // Note that this does not have the same encoding
                              // as in the IT instruction, which also depends
                              // on the low bit of the condition code.

    unsigned CurPosition;     // Current position in parsing of IT
                              // block. In range [0,4], with 0 being the IT
                              // instruction itself. Initialized according to
                              // count of instructions in block.  ~0U if no
                              // active IT block.

    bool IsExplicit;          // true  - The IT instruction was present in the
                              //         input, we should not modify it.
                              // false - The IT instruction was added
                              //         implicitly, we can extend it if that
                              //         would be legal.
  } ITState;

  SmallVector<MCInst, 4> PendingConditionalInsts;

  void flushPendingInstructions(MCStreamer &Out) override {
    if (!inImplicitITBlock()) {
      assert(PendingConditionalInsts.size() == 0);
      return;
    }

    // Emit the IT instruction
    MCInst ITInst;
    ITInst.setOpcode(ARM::t2IT);
    ITInst.addOperand(MCOperand::createImm(ITState.Cond));
    ITInst.addOperand(MCOperand::createImm(ITState.Mask));
    Out.EmitInstruction(ITInst, getSTI());

    // Emit the conditonal instructions
    assert(PendingConditionalInsts.size() <= 4);
    for (const MCInst &Inst : PendingConditionalInsts) {
      Out.EmitInstruction(Inst, getSTI());
    }
    PendingConditionalInsts.clear();

    // Clear the IT state
    ITState.Mask = 0;
    ITState.CurPosition = ~0U;
  }

  bool inITBlock() { return ITState.CurPosition != ~0U; }
  bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
  bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }

  bool lastInITBlock() {
    return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
  }

  void forwardITPosition() {
    if (!inITBlock()) return;
    // Move to the next instruction in the IT block, if there is one. If not,
    // mark the block as done, except for implicit IT blocks, which we leave
    // open until we find an instruction that can't be added to it.
    unsigned TZ = countTrailingZeros(ITState.Mask);
    if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
      ITState.CurPosition = ~0U; // Done with the IT block after this.
  }

  // Rewind the state of the current IT block, removing the last slot from it.
  void rewindImplicitITPosition() {
    assert(inImplicitITBlock());
    assert(ITState.CurPosition > 1);
    ITState.CurPosition--;
    unsigned TZ = countTrailingZeros(ITState.Mask);
    unsigned NewMask = 0;
    NewMask |= ITState.Mask & (0xC << TZ);
    NewMask |= 0x2 << TZ;
    ITState.Mask = NewMask;
  }

  // Rewind the state of the current IT block, removing the last slot from it.
  // If we were at the first slot, this closes the IT block.
  void discardImplicitITBlock() {
    assert(inImplicitITBlock());
    assert(ITState.CurPosition == 1);
    ITState.CurPosition = ~0U;
  }

  // Return the low-subreg of a given Q register.
  unsigned getDRegFromQReg(unsigned QReg) const {
    return MRI->getSubReg(QReg, ARM::dsub_0);
  }

  // Get the condition code corresponding to the current IT block slot.
  ARMCC::CondCodes currentITCond() {
    unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition);
    return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond;
  }

  // Invert the condition of the current IT block slot without changing any
  // other slots in the same block.
  void invertCurrentITCondition() {
    if (ITState.CurPosition == 1) {
      ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
    } else {
      ITState.Mask ^= 1 << (5 - ITState.CurPosition);
    }
  }

  // Returns true if the current IT block is full (all 4 slots used).
  bool isITBlockFull() {
    return inITBlock() && (ITState.Mask & 1);
  }

  // Extend the current implicit IT block to have one more slot with the given
  // condition code.
  void extendImplicitITBlock(ARMCC::CondCodes Cond) {
    assert(inImplicitITBlock());
    assert(!isITBlockFull());
    assert(Cond == ITState.Cond ||
           Cond == ARMCC::getOppositeCondition(ITState.Cond));
    unsigned TZ = countTrailingZeros(ITState.Mask);
    unsigned NewMask = 0;
    // Keep any existing condition bits.
    NewMask |= ITState.Mask & (0xE << TZ);
    // Insert the new condition bit.
    NewMask |= (Cond != ITState.Cond) << TZ;
    // Move the trailing 1 down one bit.
    NewMask |= 1 << (TZ - 1);
    ITState.Mask = NewMask;
  }

  // Create a new implicit IT block with a dummy condition code.
  void startImplicitITBlock() {
    assert(!inITBlock());
    ITState.Cond = ARMCC::AL;
    ITState.Mask = 8;
    ITState.CurPosition = 1;
    ITState.IsExplicit = false;
  }

  // Create a new explicit IT block with the given condition and mask.
  // The mask should be in the format used in ARMOperand and
  // MCOperand, with a 1 implying 'e', regardless of the low bit of
  // the condition.
  void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
    assert(!inITBlock());
    ITState.Cond = Cond;
    ITState.Mask = Mask;
    ITState.CurPosition = 0;
    ITState.IsExplicit = true;
  }

  struct {
    unsigned Mask : 4;
    unsigned CurPosition;
  } VPTState;
  bool inVPTBlock() { return VPTState.CurPosition != ~0U; }
  void forwardVPTPosition() {
    if (!inVPTBlock()) return;
    unsigned TZ = countTrailingZeros(VPTState.Mask);
    if (++VPTState.CurPosition == 5 - TZ)
      VPTState.CurPosition = ~0U;
  }

  void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
    return getParser().Note(L, Msg, Range);
  }

  bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
    return getParser().Warning(L, Msg, Range);
  }

  bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
    return getParser().Error(L, Msg, Range);
  }

  bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
                           unsigned ListNo, bool IsARPop = false);
  bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
                           unsigned ListNo);

  int tryParseRegister();
  bool tryParseRegisterWithWriteBack(OperandVector &);
  int tryParseShiftRegister(OperandVector &);
  bool parseRegisterList(OperandVector &, bool EnforceOrder = true);
  bool parseMemory(OperandVector &);
  bool parseOperand(OperandVector &, StringRef Mnemonic);
  bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
  bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
                              unsigned &ShiftAmount);
  bool parseLiteralValues(unsigned Size, SMLoc L);
  bool parseDirectiveThumb(SMLoc L);
  bool parseDirectiveARM(SMLoc L);
  bool parseDirectiveThumbFunc(SMLoc L);
  bool parseDirectiveCode(SMLoc L);
  bool parseDirectiveSyntax(SMLoc L);
  bool parseDirectiveReq(StringRef Name, SMLoc L);
  bool parseDirectiveUnreq(SMLoc L);
  bool parseDirectiveArch(SMLoc L);
  bool parseDirectiveEabiAttr(SMLoc L);
  bool parseDirectiveCPU(SMLoc L);
  bool parseDirectiveFPU(SMLoc L);
  bool parseDirectiveFnStart(SMLoc L);
  bool parseDirectiveFnEnd(SMLoc L);
  bool parseDirectiveCantUnwind(SMLoc L);
  bool parseDirectivePersonality(SMLoc L);
  bool parseDirectiveHandlerData(SMLoc L);
  bool parseDirectiveSetFP(SMLoc L);
  bool parseDirectivePad(SMLoc L);
  bool parseDirectiveRegSave(SMLoc L, bool IsVector);
  bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
  bool parseDirectiveLtorg(SMLoc L);
  bool parseDirectiveEven(SMLoc L);
  bool parseDirectivePersonalityIndex(SMLoc L);
  bool parseDirectiveUnwindRaw(SMLoc L);
  bool parseDirectiveTLSDescSeq(SMLoc L);
  bool parseDirectiveMovSP(SMLoc L);
  bool parseDirectiveObjectArch(SMLoc L);
  bool parseDirectiveArchExtension(SMLoc L);
  bool parseDirectiveAlign(SMLoc L);
  bool parseDirectiveThumbSet(SMLoc L);

  bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken);
  StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken,
                          unsigned &PredicationCode,
                          unsigned &VPTPredicationCode, bool &CarrySetting,
                          unsigned &ProcessorIMod, StringRef &ITMask);
  void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken,
                             StringRef FullInst, bool &CanAcceptCarrySet,
                             bool &CanAcceptPredicationCode,
                             bool &CanAcceptVPTPredicationCode);

  void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
                                     OperandVector &Operands);
  bool isThumb() const {
    // FIXME: Can tablegen auto-generate this?
    return getSTI().getFeatureBits()[ARM::ModeThumb];
  }

  bool isThumbOne() const {
    return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
  }

  bool isThumbTwo() const {
    return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
  }

  bool hasThumb() const {
    return getSTI().getFeatureBits()[ARM::HasV4TOps];
  }

  bool hasThumb2() const {
    return getSTI().getFeatureBits()[ARM::FeatureThumb2];
  }

  bool hasV6Ops() const {
    return getSTI().getFeatureBits()[ARM::HasV6Ops];
  }

  bool hasV6T2Ops() const {
    return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
  }

  bool hasV6MOps() const {
    return getSTI().getFeatureBits()[ARM::HasV6MOps];
  }

  bool hasV7Ops() const {
    return getSTI().getFeatureBits()[ARM::HasV7Ops];
  }

  bool hasV8Ops() const {
    return getSTI().getFeatureBits()[ARM::HasV8Ops];
  }

  bool hasV8MBaseline() const {
    return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
  }

  bool hasV8MMainline() const {
    return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
  }
  bool hasV8_1MMainline() const {
    return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps];
  }
  bool hasMVE() const {
    return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps];
  }
  bool hasMVEFloat() const {
    return getSTI().getFeatureBits()[ARM::HasMVEFloatOps];
  }
  bool has8MSecExt() const {
    return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
  }

  bool hasARM() const {
    return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
  }

  bool hasDSP() const {
    return getSTI().getFeatureBits()[ARM::FeatureDSP];
  }

  bool hasD32() const {
    return getSTI().getFeatureBits()[ARM::FeatureD32];
  }

  bool hasV8_1aOps() const {
    return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
  }

  bool hasRAS() const {
    return getSTI().getFeatureBits()[ARM::FeatureRAS];
  }

  void SwitchMode() {
    MCSubtargetInfo &STI = copySTI();
    auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
    setAvailableFeatures(FB);
  }

  void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);

  bool isMClass() const {
    return getSTI().getFeatureBits()[ARM::FeatureMClass];
  }

  /// @name Auto-generated Match Functions
  /// {

#define GET_ASSEMBLER_HEADER
#include "ARMGenAsmMatcher.inc"

  /// }

  OperandMatchResultTy parseITCondCode(OperandVector &);
  OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
  OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
  OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
  OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
  OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
  OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
  OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
  OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
  OperandMatchResultTy parseBankedRegOperand(OperandVector &);
  OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
                                   int High);
  OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
    return parsePKHImm(O, "lsl", 0, 31);
  }
  OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
    return parsePKHImm(O, "asr", 1, 32);
  }
  OperandMatchResultTy parseSetEndImm(OperandVector &);
  OperandMatchResultTy parseShifterImm(OperandVector &);
  OperandMatchResultTy parseRotImm(OperandVector &);
  OperandMatchResultTy parseModImm(OperandVector &);
  OperandMatchResultTy parseBitfield(OperandVector &);
  OperandMatchResultTy parsePostIdxReg(OperandVector &);
  OperandMatchResultTy parseAM3Offset(OperandVector &);
  OperandMatchResultTy parseFPImm(OperandVector &);
  OperandMatchResultTy parseVectorList(OperandVector &);
  OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
                                       SMLoc &EndLoc);

  // Asm Match Converter Methods
  void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
  void cvtThumbBranches(MCInst &Inst, const OperandVector &);
  void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &);

  bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
  bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
  bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
  bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
  bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
  bool isITBlockTerminator(MCInst &Inst) const;
  void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
  bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
                        bool Load, bool ARMMode, bool Writeback);

public:
  enum ARMMatchResultTy {
    Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
    Match_RequiresNotITBlock,
    Match_RequiresV6,
    Match_RequiresThumb2,
    Match_RequiresV8,
    Match_RequiresFlagSetting,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "ARMGenAsmMatcher.inc"

  };

  ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
               const MCInstrInfo &MII, const MCTargetOptions &Options)
    : MCTargetAsmParser(Options, STI, MII), UC(Parser) {
    MCAsmParserExtension::Initialize(Parser);

    // Cache the MCRegisterInfo.
    MRI = getContext().getRegisterInfo();

    // Initialize the set of available features.
    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));

    // Add build attributes based on the selected target.
    if (AddBuildAttributes)
      getTargetStreamer().emitTargetAttributes(STI);

    // Not in an ITBlock to start with.
    ITState.CurPosition = ~0U;

    VPTState.CurPosition = ~0U;

    NextSymbolIsThumb = false;
  }

  // Implementation of the MCTargetAsmParser interface:
  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
                        SMLoc NameLoc, OperandVector &Operands) override;
  bool ParseDirective(AsmToken DirectiveID) override;

  unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
                                      unsigned Kind) override;
  unsigned checkTargetMatchPredicate(MCInst &Inst) override;

  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
                               OperandVector &Operands, MCStreamer &Out,
                               uint64_t &ErrorInfo,
                               bool MatchingInlineAsm) override;
  unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
                            SmallVectorImpl<NearMissInfo> &NearMisses,
                            bool MatchingInlineAsm, bool &EmitInITBlock,
                            MCStreamer &Out);

  struct NearMissMessage {
    SMLoc Loc;
    SmallString<128> Message;
  };

  const char *getCustomOperandDiag(ARMMatchResultTy MatchError);

  void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
                        SmallVectorImpl<NearMissMessage> &NearMissesOut,
                        SMLoc IDLoc, OperandVector &Operands);
  void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
                        OperandVector &Operands);

  void doBeforeLabelEmit(MCSymbol *Symbol) override;

  void onLabelParsed(MCSymbol *Symbol) override;
};

/// ARMOperand - Instances of this class represent a parsed ARM machine
/// operand.
class ARMOperand : public MCParsedAsmOperand {
  enum KindTy {
    k_CondCode,
    k_VPTPred,
    k_CCOut,
    k_ITCondMask,
    k_CoprocNum,
    k_CoprocReg,
    k_CoprocOption,
    k_Immediate,
    k_MemBarrierOpt,
    k_InstSyncBarrierOpt,
    k_TraceSyncBarrierOpt,
    k_Memory,
    k_PostIndexRegister,
    k_MSRMask,
    k_BankedReg,
    k_ProcIFlags,
    k_VectorIndex,
    k_Register,
    k_RegisterList,
    k_RegisterListWithAPSR,
    k_DPRRegisterList,
    k_SPRRegisterList,
    k_FPSRegisterListWithVPR,
    k_FPDRegisterListWithVPR,
    k_VectorList,
    k_VectorListAllLanes,
    k_VectorListIndexed,
    k_ShiftedRegister,
    k_ShiftedImmediate,
    k_ShifterImmediate,
    k_RotateImmediate,
    k_ModifiedImmediate,
    k_ConstantPoolImmediate,
    k_BitfieldDescriptor,
    k_Token,
  } Kind;

  SMLoc StartLoc, EndLoc, AlignmentLoc;
  SmallVector<unsigned, 8> Registers;

  struct CCOp {
    ARMCC::CondCodes Val;
  };

  struct VCCOp {
    ARMVCC::VPTCodes Val;
  };

  struct CopOp {
    unsigned Val;
  };

  struct CoprocOptionOp {
    unsigned Val;
  };

  struct ITMaskOp {
    unsigned Mask:4;
  };

  struct MBOptOp {
    ARM_MB::MemBOpt Val;
  };

  struct ISBOptOp {
    ARM_ISB::InstSyncBOpt Val;
  };

  struct TSBOptOp {
    ARM_TSB::TraceSyncBOpt Val;
  };

  struct IFlagsOp {
    ARM_PROC::IFlags Val;
  };

  struct MMaskOp {
    unsigned Val;
  };

  struct BankedRegOp {
    unsigned Val;
  };

  struct TokOp {
    const char *Data;
    unsigned Length;
  };

  struct RegOp {
    unsigned RegNum;
  };

  // A vector register list is a sequential list of 1 to 4 registers.
  struct VectorListOp {
    unsigned RegNum;
    unsigned Count;
    unsigned LaneIndex;
    bool isDoubleSpaced;
  };

  struct VectorIndexOp {
    unsigned Val;
  };

  struct ImmOp {
    const MCExpr *Val;
  };

  /// Combined record for all forms of ARM address expressions.
  struct MemoryOp {
    unsigned BaseRegNum;
    // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
    // was specified.
    const MCConstantExpr *OffsetImm;  // Offset immediate value
    unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
    ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
    unsigned ShiftImm;        // shift for OffsetReg.
    unsigned Alignment;       // 0 = no alignment specified
    // n = alignment in bytes (2, 4, 8, 16, or 32)
    unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
  };

  struct PostIdxRegOp {
    unsigned RegNum;
    bool isAdd;
    ARM_AM::ShiftOpc ShiftTy;
    unsigned ShiftImm;
  };

  struct ShifterImmOp {
    bool isASR;
    unsigned Imm;
  };

  struct RegShiftedRegOp {
    ARM_AM::ShiftOpc ShiftTy;
    unsigned SrcReg;
    unsigned ShiftReg;
    unsigned ShiftImm;
  };

  struct RegShiftedImmOp {
    ARM_AM::ShiftOpc ShiftTy;
    unsigned SrcReg;
    unsigned ShiftImm;
  };

  struct RotImmOp {
    unsigned Imm;
  };

  struct ModImmOp {
    unsigned Bits;
    unsigned Rot;
  };

  struct BitfieldOp {
    unsigned LSB;
    unsigned Width;
  };

  union {
    struct CCOp CC;
    struct VCCOp VCC;
    struct CopOp Cop;
    struct CoprocOptionOp CoprocOption;
    struct MBOptOp MBOpt;
    struct ISBOptOp ISBOpt;
    struct TSBOptOp TSBOpt;
    struct ITMaskOp ITMask;
    struct IFlagsOp IFlags;
    struct MMaskOp MMask;
    struct BankedRegOp BankedReg;
    struct TokOp Tok;
    struct RegOp Reg;
    struct VectorListOp VectorList;
    struct VectorIndexOp VectorIndex;
    struct ImmOp Imm;
    struct MemoryOp Memory;
    struct PostIdxRegOp PostIdxReg;
    struct ShifterImmOp ShifterImm;
    struct RegShiftedRegOp RegShiftedReg;
    struct RegShiftedImmOp RegShiftedImm;
    struct RotImmOp RotImm;
    struct ModImmOp ModImm;
    struct BitfieldOp Bitfield;
  };

public:
  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}

  /// getStartLoc - Get the location of the first token of this operand.
  SMLoc getStartLoc() const override { return StartLoc; }

  /// getEndLoc - Get the location of the last token of this operand.
  SMLoc getEndLoc() const override { return EndLoc; }

  /// getLocRange - Get the range between the first and last token of this
  /// operand.
  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }

  /// getAlignmentLoc - Get the location of the Alignment token of this operand.
  SMLoc getAlignmentLoc() const {
    assert(Kind == k_Memory && "Invalid access!");
    return AlignmentLoc;
  }

  ARMCC::CondCodes getCondCode() const {
    assert(Kind == k_CondCode && "Invalid access!");
    return CC.Val;
  }

  ARMVCC::VPTCodes getVPTPred() const {
    assert(isVPTPred() && "Invalid access!");
    return VCC.Val;
  }

  unsigned getCoproc() const {
    assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
    return Cop.Val;
  }

  StringRef getToken() const {
    assert(Kind == k_Token && "Invalid access!");
    return StringRef(Tok.Data, Tok.Length);
  }

  unsigned getReg() const override {
    assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
    return Reg.RegNum;
  }

  const SmallVectorImpl<unsigned> &getRegList() const {
    assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR ||
            Kind == k_DPRRegisterList || Kind == k_SPRRegisterList ||
            Kind == k_FPSRegisterListWithVPR ||
            Kind == k_FPDRegisterListWithVPR) &&
           "Invalid access!");
    return Registers;
  }

  const MCExpr *getImm() const {
    assert(isImm() && "Invalid access!");
    return Imm.Val;
  }

  const MCExpr *getConstantPoolImm() const {
    assert(isConstantPoolImm() && "Invalid access!");
    return Imm.Val;
  }

  unsigned getVectorIndex() const {
    assert(Kind == k_VectorIndex && "Invalid access!");
    return VectorIndex.Val;
  }

  ARM_MB::MemBOpt getMemBarrierOpt() const {
    assert(Kind == k_MemBarrierOpt && "Invalid access!");
    return MBOpt.Val;
  }

  ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
    assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
    return ISBOpt.Val;
  }

  ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
    assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
    return TSBOpt.Val;
  }

  ARM_PROC::IFlags getProcIFlags() const {
    assert(Kind == k_ProcIFlags && "Invalid access!");
    return IFlags.Val;
  }

  unsigned getMSRMask() const {
    assert(Kind == k_MSRMask && "Invalid access!");
    return MMask.Val;
  }

  unsigned getBankedReg() const {
    assert(Kind == k_BankedReg && "Invalid access!");
    return BankedReg.Val;
  }

  bool isCoprocNum() const { return Kind == k_CoprocNum; }
  bool isCoprocReg() const { return Kind == k_CoprocReg; }
  bool isCoprocOption() const { return Kind == k_CoprocOption; }
  bool isCondCode() const { return Kind == k_CondCode; }
  bool isVPTPred() const { return Kind == k_VPTPred; }
  bool isCCOut() const { return Kind == k_CCOut; }
  bool isITMask() const { return Kind == k_ITCondMask; }
  bool isITCondCode() const { return Kind == k_CondCode; }
  bool isImm() const override {
    return Kind == k_Immediate;
  }

  bool isARMBranchTarget() const {
    if (!isImm()) return false;

    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
      return CE->getValue() % 4 == 0;
    return true;
  }


  bool isThumbBranchTarget() const {
    if (!isImm()) return false;

    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
      return CE->getValue() % 2 == 0;
    return true;
  }

  // checks whether this operand is an unsigned offset which fits is a field
  // of specified width and scaled by a specific number of bits
  template<unsigned width, unsigned scale>
  bool isUnsignedOffset() const {
    if (!isImm()) return false;
    if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
      int64_t Val = CE->getValue();
      int64_t Align = 1LL << scale;
      int64_t Max = Align * ((1LL << width) - 1);
      return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
    }
    return false;
  }

  // checks whether this operand is an signed offset which fits is a field
  // of specified width and scaled by a specific number of bits
  template<unsigned width, unsigned scale>
  bool isSignedOffset() const {
    if (!isImm()) return false;
    if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
      int64_t Val = CE->getValue();
      int64_t Align = 1LL << scale;
      int64_t Max = Align * ((1LL << (width-1)) - 1);
      int64_t Min = -Align * (1LL << (width-1));
      return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
    }
    return false;
  }

  // checks whether this operand is an offset suitable for the LE /
  // LETP instructions in Arm v8.1M
  bool isLEOffset() const {
    if (!isImm()) return false;
    if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
      int64_t Val = CE->getValue();
      return Val < 0 && Val >= -4094 && (Val & 1) == 0;
    }
    return false;
  }

  // checks whether this operand is a memory operand computed as an offset
  // applied to PC. the offset may have 8 bits of magnitude and is represented
  // with two bits of shift. textually it may be either [pc, #imm], #imm or
  // relocable expression...
  bool isThumbMemPC() const {
    int64_t Val = 0;
    if (isImm()) {
      if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
      if (!CE) return false;
      Val = CE->getValue();
    }
    else if (isGPRMem()) {
      if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
      if(Memory.BaseRegNum != ARM::PC) return false;
      Val = Memory.OffsetImm->getValue();
    }
    else return false;
    return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
  }

  bool isFPImm() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
    return Val != -1;
  }

  template<int64_t N, int64_t M>
  bool isImmediate() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value >= N && Value <= M;
  }

  template<int64_t N, int64_t M>
  bool isImmediateS4() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return ((Value & 3) == 0) && Value >= N && Value <= M;
  }
  template<int64_t N, int64_t M>
  bool isImmediateS2() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return ((Value & 1) == 0) && Value >= N && Value <= M;
  }
  bool isFBits16() const {
    return isImmediate<0, 17>();
  }
  bool isFBits32() const {
    return isImmediate<1, 33>();
  }
  bool isImm8s4() const {
    return isImmediateS4<-1020, 1020>();
  }
  bool isImm7s4() const {
    return isImmediateS4<-508, 508>();
  }
  bool isImm7Shift0() const {
    return isImmediate<-127, 127>();
  }
  bool isImm7Shift1() const {
    return isImmediateS2<-255, 255>();
  }
  bool isImm7Shift2() const {
    return isImmediateS4<-511, 511>();
  }
  bool isImm7() const {
    return isImmediate<-127, 127>();
  }
  bool isImm0_1020s4() const {
    return isImmediateS4<0, 1020>();
  }
  bool isImm0_508s4() const {
    return isImmediateS4<0, 508>();
  }
  bool isImm0_508s4Neg() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = -CE->getValue();
    // explicitly exclude zero. we want that to use the normal 0_508 version.
    return ((Value & 3) == 0) && Value > 0 && Value <= 508;
  }

  bool isImm0_4095Neg() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    // isImm0_4095Neg is used with 32-bit immediates only.
    // 32-bit immediates are zero extended to 64-bit when parsed,
    // thus simple -CE->getValue() results in a big negative number,
    // not a small positive number as intended
    if ((CE->getValue() >> 32) > 0) return false;
    uint32_t Value = -static_cast<uint32_t>(CE->getValue());
    return Value > 0 && Value < 4096;
  }

  bool isImm0_7() const {
    return isImmediate<0, 7>();
  }

  bool isImm1_16() const {
    return isImmediate<1, 16>();
  }

  bool isImm1_32() const {
    return isImmediate<1, 32>();
  }

  bool isImm8_255() const {
    return isImmediate<8, 255>();
  }

  bool isImm256_65535Expr() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // If it's not a constant expression, it'll generate a fixup and be
    // handled later.
    if (!CE) return true;
    int64_t Value = CE->getValue();
    return Value >= 256 && Value < 65536;
  }

  bool isImm0_65535Expr() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // If it's not a constant expression, it'll generate a fixup and be
    // handled later.
    if (!CE) return true;
    int64_t Value = CE->getValue();
    return Value >= 0 && Value < 65536;
  }

  bool isImm24bit() const {
    return isImmediate<0, 0xffffff + 1>();
  }

  bool isImmThumbSR() const {
    return isImmediate<1, 33>();
  }

  template<int shift>
  bool isExpImmValue(uint64_t Value) const {
    uint64_t mask = (1 << shift) - 1;
    if ((Value & mask) != 0 || (Value >> shift) > 0xff)
      return false;
    return true;
  }

  template<int shift>
  bool isExpImm() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;

    return isExpImmValue<shift>(CE->getValue());
  }

  template<int shift, int size>
  bool isInvertedExpImm() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;

    uint64_t OriginalValue = CE->getValue();
    uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1);
    return isExpImmValue<shift>(InvertedValue);
  }

  bool isPKHLSLImm() const {
    return isImmediate<0, 32>();
  }

  bool isPKHASRImm() const {
    return isImmediate<0, 33>();
  }

  bool isAdrLabel() const {
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup.
    if (isImm() && !isa<MCConstantExpr>(getImm()))
      return true;

    // If it is a constant, it must fit into a modified immediate encoding.
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return (ARM_AM::getSOImmVal(Value) != -1 ||
            ARM_AM::getSOImmVal(-Value) != -1);
  }

  bool isT2SOImm() const {
    // If we have an immediate that's not a constant, treat it as an expression
    // needing a fixup.
    if (isImm() && !isa<MCConstantExpr>(getImm())) {
      // We want to avoid matching :upper16: and :lower16: as we want these
      // expressions to match in isImm0_65535Expr()
      const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
      return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
                             ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
    }
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return ARM_AM::getT2SOImmVal(Value) != -1;
  }

  bool isT2SOImmNot() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return ARM_AM::getT2SOImmVal(Value) == -1 &&
      ARM_AM::getT2SOImmVal(~Value) != -1;
  }

  bool isT2SOImmNeg() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    // Only use this when not representable as a plain so_imm.
    return ARM_AM::getT2SOImmVal(Value) == -1 &&
      ARM_AM::getT2SOImmVal(-Value) != -1;
  }

  bool isSetEndImm() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value == 1 || Value == 0;
  }

  bool isReg() const override { return Kind == k_Register; }
  bool isRegList() const { return Kind == k_RegisterList; }
  bool isRegListWithAPSR() const {
    return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList;
  }
  bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
  bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
  bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; }
  bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; }
  bool isToken() const override { return Kind == k_Token; }
  bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
  bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
  bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
  bool isMem() const override {
      return isGPRMem() || isMVEMem();
  }
  bool isMVEMem() const {
    if (Kind != k_Memory)
      return false;
    if (Memory.BaseRegNum &&
        !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) &&
        !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum))
      return false;
    if (Memory.OffsetRegNum &&
        !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
            Memory.OffsetRegNum))
      return false;
    return true;
  }
  bool isGPRMem() const {
    if (Kind != k_Memory)
      return false;
    if (Memory.BaseRegNum &&
        !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
      return false;
    if (Memory.OffsetRegNum &&
        !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
      return false;
    return true;
  }
  bool isShifterImm() const { return Kind == k_ShifterImmediate; }
  bool isRegShiftedReg() const {
    return Kind == k_ShiftedRegister &&
           ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
               RegShiftedReg.SrcReg) &&
           ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
               RegShiftedReg.ShiftReg);
  }
  bool isRegShiftedImm() const {
    return Kind == k_ShiftedImmediate &&
           ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
               RegShiftedImm.SrcReg);
  }
  bool isRotImm() const { return Kind == k_RotateImmediate; }

  template<unsigned Min, unsigned Max>
  bool isPowerTwoInRange() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return Value > 0 && countPopulation((uint64_t)Value) == 1 &&
           Value >= Min && Value <= Max;
  }
  bool isModImm() const { return Kind == k_ModifiedImmediate; }

  bool isModImmNot() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return ARM_AM::getSOImmVal(~Value) != -1;
  }

  bool isModImmNeg() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Value = CE->getValue();
    return ARM_AM::getSOImmVal(Value) == -1 &&
      ARM_AM::getSOImmVal(-Value) != -1;
  }

  bool isThumbModImmNeg1_7() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int32_t Value = -(int32_t)CE->getValue();
    return 0 < Value && Value < 8;
  }

  bool isThumbModImmNeg8_255() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int32_t Value = -(int32_t)CE->getValue();
    return 7 < Value && Value < 256;
  }

  bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
  bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
  bool isPostIdxRegShifted() const {
    return Kind == k_PostIndexRegister &&
           ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
  }
  bool isPostIdxReg() const {
    return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
  }
  bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
    if (!isGPRMem())
      return false;
    // No offset of any kind.
    return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
     (alignOK || Memory.Alignment == Alignment);
  }
  bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const {
    if (!isGPRMem())
      return false;

    if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
            Memory.BaseRegNum))
      return false;

    // No offset of any kind.
    return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
     (alignOK || Memory.Alignment == Alignment);
  }
  bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const {
    if (!isGPRMem())
      return false;

    if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains(
            Memory.BaseRegNum))
      return false;

    // No offset of any kind.
    return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
     (alignOK || Memory.Alignment == Alignment);
  }
  bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const {
    if (!isGPRMem())
      return false;

    if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains(
            Memory.BaseRegNum))
      return false;

    // No offset of any kind.
    return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
     (alignOK || Memory.Alignment == Alignment);
  }
  bool isMemPCRelImm12() const {
    if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Base register must be PC.
    if (Memory.BaseRegNum != ARM::PC)
      return false;
    // Immediate offset in range [-4095, 4095].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return (Val > -4096 && Val < 4096) ||
           (Val == std::numeric_limits<int32_t>::min());
  }

  bool isAlignedMemory() const {
    return isMemNoOffset(true);
  }

  bool isAlignedMemoryNone() const {
    return isMemNoOffset(false, 0);
  }

  bool isDupAlignedMemoryNone() const {
    return isMemNoOffset(false, 0);
  }

  bool isAlignedMemory16() const {
    if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
      return true;
    return isMemNoOffset(false, 0);
  }

  bool isDupAlignedMemory16() const {
    if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
      return true;
    return isMemNoOffset(false, 0);
  }

  bool isAlignedMemory32() const {
    if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
      return true;
    return isMemNoOffset(false, 0);
  }

  bool isDupAlignedMemory32() const {
    if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
      return true;
    return isMemNoOffset(false, 0);
  }

  bool isAlignedMemory64() const {
    if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
      return true;
    return isMemNoOffset(false, 0);
  }

  bool isDupAlignedMemory64() const {
    if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
      return true;
    return isMemNoOffset(false, 0);
  }

  bool isAlignedMemory64or128() const {
    if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
      return true;
    if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
      return true;
    return isMemNoOffset(false, 0);
  }

  bool isDupAlignedMemory64or128() const {
    if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
      return true;
    if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
      return true;
    return isMemNoOffset(false, 0);
  }

  bool isAlignedMemory64or128or256() const {
    if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
      return true;
    if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
      return true;
    if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
      return true;
    return isMemNoOffset(false, 0);
  }

  bool isAddrMode2() const {
    if (!isGPRMem() || Memory.Alignment != 0) return false;
    // Check for register offset.
    if (Memory.OffsetRegNum) return true;
    // Immediate offset in range [-4095, 4095].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val > -4096 && Val < 4096;
  }

  bool isAM2OffsetImm() const {
    if (!isImm()) return false;
    // Immediate offset in range [-4095, 4095].
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Val = CE->getValue();
    return (Val == std::numeric_limits<int32_t>::min()) ||
           (Val > -4096 && Val < 4096);
  }

  bool isAddrMode3() const {
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm() && !isa<MCConstantExpr>(getImm()))
      return true;
    if (!isGPRMem() || Memory.Alignment != 0) return false;
    // No shifts are legal for AM3.
    if (Memory.ShiftType != ARM_AM::no_shift) return false;
    // Check for register offset.
    if (Memory.OffsetRegNum) return true;
    // Immediate offset in range [-255, 255].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
    // have to check for this too.
    return (Val > -256 && Val < 256) ||
           Val == std::numeric_limits<int32_t>::min();
  }

  bool isAM3Offset() const {
    if (isPostIdxReg())
      return true;
    if (!isImm())
      return false;
    // Immediate offset in range [-255, 255].
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Val = CE->getValue();
    // Special case, #-0 is std::numeric_limits<int32_t>::min().
    return (Val > -256 && Val < 256) ||
           Val == std::numeric_limits<int32_t>::min();
  }

  bool isAddrMode5() const {
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm() && !isa<MCConstantExpr>(getImm()))
      return true;
    if (!isGPRMem() || Memory.Alignment != 0) return false;
    // Check for register offset.
    if (Memory.OffsetRegNum) return false;
    // Immediate offset in range [-1020, 1020] and a multiple of 4.
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
      Val == std::numeric_limits<int32_t>::min();
  }

  bool isAddrMode5FP16() const {
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm() && !isa<MCConstantExpr>(getImm()))
      return true;
    if (!isGPRMem() || Memory.Alignment != 0) return false;
    // Check for register offset.
    if (Memory.OffsetRegNum) return false;
    // Immediate offset in range [-510, 510] and a multiple of 2.
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
           Val == std::numeric_limits<int32_t>::min();
  }

  bool isMemTBB() const {
    if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
      return false;
    return true;
  }

  bool isMemTBH() const {
    if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
        Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
        Memory.Alignment != 0 )
      return false;
    return true;
  }

  bool isMemRegOffset() const {
    if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
      return false;
    return true;
  }

  bool isT2MemRegOffset() const {
    if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
        Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
      return false;
    // Only lsl #{0, 1, 2, 3} allowed.
    if (Memory.ShiftType == ARM_AM::no_shift)
      return true;
    if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
      return false;
    return true;
  }

  bool isMemThumbRR() const {
    // Thumb reg+reg addressing is simple. Just two registers, a base and
    // an offset. No shifts, negations or any other complicating factors.
    if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
      return false;
    return isARMLowRegister(Memory.BaseRegNum) &&
      (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
  }

  bool isMemThumbRIs4() const {
    if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
      return false;
    // Immediate offset, multiple of 4 in range [0, 124].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val >= 0 && Val <= 124 && (Val % 4) == 0;
  }

  bool isMemThumbRIs2() const {
    if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
      return false;
    // Immediate offset, multiple of 4 in range [0, 62].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val >= 0 && Val <= 62 && (Val % 2) == 0;
  }

  bool isMemThumbRIs1() const {
    if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
      return false;
    // Immediate offset in range [0, 31].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val >= 0 && Val <= 31;
  }

  bool isMemThumbSPI() const {
    if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
        Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
      return false;
    // Immediate offset, multiple of 4 in range [0, 1020].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
  }

  bool isMemImm8s4Offset() const {
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm() && !isa<MCConstantExpr>(getImm()))
      return true;
    if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Immediate offset a multiple of 4 in range [-1020, 1020].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    // Special case, #-0 is std::numeric_limits<int32_t>::min().
    return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
           Val == std::numeric_limits<int32_t>::min();
  }
  bool isMemImm7s4Offset() const {
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm() && !isa<MCConstantExpr>(getImm()))
      return true;
    if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
        !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
            Memory.BaseRegNum))
      return false;
    // Immediate offset a multiple of 4 in range [-508, 508].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    // Special case, #-0 is INT32_MIN.
    return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN;
  }
  bool isMemImm0_1020s4Offset() const {
    if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Immediate offset a multiple of 4 in range [0, 1020].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
  }

  bool isMemImm8Offset() const {
    if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Base reg of PC isn't allowed for these encodings.
    if (Memory.BaseRegNum == ARM::PC) return false;
    // Immediate offset in range [-255, 255].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return (Val == std::numeric_limits<int32_t>::min()) ||
           (Val > -256 && Val < 256);
  }

  template<unsigned Bits, unsigned RegClassID>
  bool isMemImm7ShiftedOffset() const {
    if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
        !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum))
      return false;

    // Expect an immediate offset equal to an element of the range
    // [-127, 127], shifted left by Bits.

    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();

    // INT32_MIN is a special-case value (indicating the encoding with
    // zero offset and the subtract bit set)
    if (Val == INT32_MIN)
      return true;

    unsigned Divisor = 1U << Bits;

    // Check that the low bits are zero
    if (Val % Divisor != 0)
      return false;

    // Check that the remaining offset is within range.
    Val /= Divisor;
    return (Val >= -127 && Val <= 127);
  }

  template <int shift> bool isMemRegRQOffset() const {
    if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0)
      return false;

    if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
            Memory.BaseRegNum))
      return false;
    if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
            Memory.OffsetRegNum))
      return false;

    if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift)
      return false;

    if (shift > 0 &&
        (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift))
      return false;

    return true;
  }

  template <int shift> bool isMemRegQOffset() const {
    if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;

    if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
            Memory.BaseRegNum))
      return false;

    if(!Memory.OffsetImm) return true;
    static_assert(shift < 56,
                  "Such that we dont shift by a value higher than 62");
    int64_t Val = Memory.OffsetImm->getValue();

    // The value must be a multiple of (1 << shift)
    if ((Val & ((1U << shift) - 1)) != 0)
      return false;

    // And be in the right range, depending on the amount that it is shifted
    // by.  Shift 0, is equal to 7 unsigned bits, the sign bit is set
    // separately.
    int64_t Range = (1U << (7+shift)) - 1;
    return (Val == INT32_MIN) || (Val > -Range && Val < Range);
  }

  bool isMemPosImm8Offset() const {
    if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Immediate offset in range [0, 255].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return Val >= 0 && Val < 256;
  }

  bool isMemNegImm8Offset() const {
    if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Base reg of PC isn't allowed for these encodings.
    if (Memory.BaseRegNum == ARM::PC) return false;
    // Immediate offset in range [-255, -1].
    if (!Memory.OffsetImm) return false;
    int64_t Val = Memory.OffsetImm->getValue();
    return (Val == std::numeric_limits<int32_t>::min()) ||
           (Val > -256 && Val < 0);
  }

  bool isMemUImm12Offset() const {
    if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Immediate offset in range [0, 4095].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return (Val >= 0 && Val < 4096);
  }

  bool isMemImm12Offset() const {
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.

    if (isImm() && !isa<MCConstantExpr>(getImm()))
      return true;

    if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
      return false;
    // Immediate offset in range [-4095, 4095].
    if (!Memory.OffsetImm) return true;
    int64_t Val = Memory.OffsetImm->getValue();
    return (Val > -4096 && Val < 4096) ||
           (Val == std::numeric_limits<int32_t>::min());
  }

  bool isConstPoolAsmImm() const {
    // Delay processing of Constant Pool Immediate, this will turn into
    // a constant. Match no other operand
    return (isConstantPoolImm());
  }

  bool isPostIdxImm8() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Val = CE->getValue();
    return (Val > -256 && Val < 256) ||
           (Val == std::numeric_limits<int32_t>::min());
  }

  bool isPostIdxImm8s4() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    int64_t Val = CE->getValue();
    return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
           (Val == std::numeric_limits<int32_t>::min());
  }

  bool isMSRMask() const { return Kind == k_MSRMask; }
  bool isBankedReg() const { return Kind == k_BankedReg; }
  bool isProcIFlags() const { return Kind == k_ProcIFlags; }

  // NEON operands.
  bool isSingleSpacedVectorList() const {
    return Kind == k_VectorList && !VectorList.isDoubleSpaced;
  }

  bool isDoubleSpacedVectorList() const {
    return Kind == k_VectorList && VectorList.isDoubleSpaced;
  }

  bool isVecListOneD() const {
    if (!isSingleSpacedVectorList()) return false;
    return VectorList.Count == 1;
  }

  bool isVecListTwoMQ() const {
    return isSingleSpacedVectorList() && VectorList.Count == 2 &&
           ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
               VectorList.RegNum);
  }

  bool isVecListDPair() const {
    if (!isSingleSpacedVectorList()) return false;
    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
              .contains(VectorList.RegNum));
  }

  bool isVecListThreeD() const {
    if (!isSingleSpacedVectorList()) return false;
    return VectorList.Count == 3;
  }

  bool isVecListFourD() const {
    if (!isSingleSpacedVectorList()) return false;
    return VectorList.Count == 4;
  }

  bool isVecListDPairSpaced() const {
    if (Kind != k_VectorList) return false;
    if (isSingleSpacedVectorList()) return false;
    return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
              .contains(VectorList.RegNum));
  }

  bool isVecListThreeQ() const {
    if (!isDoubleSpacedVectorList()) return false;
    return VectorList.Count == 3;
  }

  bool isVecListFourQ() const {
    if (!isDoubleSpacedVectorList()) return false;
    return VectorList.Count == 4;
  }

  bool isVecListFourMQ() const {
    return isSingleSpacedVectorList() && VectorList.Count == 4 &&
           ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
               VectorList.RegNum);
  }

  bool isSingleSpacedVectorAllLanes() const {
    return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
  }

  bool isDoubleSpacedVectorAllLanes() const {
    return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
  }

  bool isVecListOneDAllLanes() const {
    if (!isSingleSpacedVectorAllLanes()) return false;
    return VectorList.Count == 1;
  }

  bool isVecListDPairAllLanes() const {
    if (!isSingleSpacedVectorAllLanes()) return false;
    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
              .contains(VectorList.RegNum));
  }

  bool isVecListDPairSpacedAllLanes() const {
    if (!isDoubleSpacedVectorAllLanes()) return false;
    return VectorList.Count == 2;
  }

  bool isVecListThreeDAllLanes() const {
    if (!isSingleSpacedVectorAllLanes()) return false;
    return VectorList.Count == 3;
  }

  bool isVecListThreeQAllLanes() const {
    if (!isDoubleSpacedVectorAllLanes()) return false;
    return VectorList.Count == 3;
  }

  bool isVecListFourDAllLanes() const {
    if (!isSingleSpacedVectorAllLanes()) return false;
    return VectorList.Count == 4;
  }

  bool isVecListFourQAllLanes() const {
    if (!isDoubleSpacedVectorAllLanes()) return false;
    return VectorList.Count == 4;
  }

  bool isSingleSpacedVectorIndexed() const {
    return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
  }

  bool isDoubleSpacedVectorIndexed() const {
    return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
  }

  bool isVecListOneDByteIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
  }

  bool isVecListOneDHWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
  }

  bool isVecListOneDWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
  }

  bool isVecListTwoDByteIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
  }

  bool isVecListTwoDHWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
  }

  bool isVecListTwoQWordIndexed() const {
    if (!isDoubleSpacedVectorIndexed()) return false;
    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
  }

  bool isVecListTwoQHWordIndexed() const {
    if (!isDoubleSpacedVectorIndexed()) return false;
    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
  }

  bool isVecListTwoDWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
  }

  bool isVecListThreeDByteIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
  }

  bool isVecListThreeDHWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
  }

  bool isVecListThreeQWordIndexed() const {
    if (!isDoubleSpacedVectorIndexed()) return false;
    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
  }

  bool isVecListThreeQHWordIndexed() const {
    if (!isDoubleSpacedVectorIndexed()) return false;
    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
  }

  bool isVecListThreeDWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
  }

  bool isVecListFourDByteIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
  }

  bool isVecListFourDHWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
  }

  bool isVecListFourQWordIndexed() const {
    if (!isDoubleSpacedVectorIndexed()) return false;
    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
  }

  bool isVecListFourQHWordIndexed() const {
    if (!isDoubleSpacedVectorIndexed()) return false;
    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
  }

  bool isVecListFourDWordIndexed() const {
    if (!isSingleSpacedVectorIndexed()) return false;
    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
  }

  bool isVectorIndex() const { return Kind == k_VectorIndex; }

  template <unsigned NumLanes>
  bool isVectorIndexInRange() const {
    if (Kind != k_VectorIndex) return false;
    return VectorIndex.Val < NumLanes;
  }

  bool isVectorIndex8()  const { return isVectorIndexInRange<8>(); }
  bool isVectorIndex16() const { return isVectorIndexInRange<4>(); }
  bool isVectorIndex32() const { return isVectorIndexInRange<2>(); }
  bool isVectorIndex64() const { return isVectorIndexInRange<1>(); }

  template<int PermittedValue, int OtherPermittedValue>
  bool isMVEPairVectorIndex() const {
    if (Kind != k_VectorIndex) return false;
    return VectorIndex.Val == PermittedValue ||
           VectorIndex.Val == OtherPermittedValue;
  }

  bool isNEONi8splat() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    int64_t Value = CE->getValue();
    // i8 value splatted across 8 bytes. The immediate is just the 8 byte
    // value.
    return Value >= 0 && Value < 256;
  }

  bool isNEONi16splat() const {
    if (isNEONByteReplicate(2))
      return false; // Leave that for bytes replication and forbid by default.
    if (!isImm())
      return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    unsigned Value = CE->getValue();
    return ARM_AM::isNEONi16splat(Value);
  }

  bool isNEONi16splatNot() const {
    if (!isImm())
      return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    unsigned Value = CE->getValue();
    return ARM_AM::isNEONi16splat(~Value & 0xffff);
  }

  bool isNEONi32splat() const {
    if (isNEONByteReplicate(4))
      return false; // Leave that for bytes replication and forbid by default.
    if (!isImm())
      return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    unsigned Value = CE->getValue();
    return ARM_AM::isNEONi32splat(Value);
  }

  bool isNEONi32splatNot() const {
    if (!isImm())
      return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    unsigned Value = CE->getValue();
    return ARM_AM::isNEONi32splat(~Value);
  }

  static bool isValidNEONi32vmovImm(int64_t Value) {
    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
    return ((Value & 0xffffffffffffff00) == 0) ||
           ((Value & 0xffffffffffff00ff) == 0) ||
           ((Value & 0xffffffffff00ffff) == 0) ||
           ((Value & 0xffffffff00ffffff) == 0) ||
           ((Value & 0xffffffffffff00ff) == 0xff) ||
           ((Value & 0xffffffffff00ffff) == 0xffff);
  }

  bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
    assert((Width == 8 || Width == 16 || Width == 32) &&
           "Invalid element width");
    assert(NumElems * Width <= 64 && "Invalid result width");

    if (!isImm())
      return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE)
      return false;
    int64_t Value = CE->getValue();
    if (!Value)
      return false; // Don't bother with zero.
    if (Inv)
      Value = ~Value;

    uint64_t Mask = (1ull << Width) - 1;
    uint64_t Elem = Value & Mask;
    if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
      return false;
    if (Width == 32 && !isValidNEONi32vmovImm(Elem))
      return false;

    for (unsigned i = 1; i < NumElems; ++i) {
      Value >>= Width;
      if ((Value & Mask) != Elem)
        return false;
    }
    return true;
  }

  bool isNEONByteReplicate(unsigned NumBytes) const {
    return isNEONReplicate(8, NumBytes, false);
  }

  static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
    assert((FromW == 8 || FromW == 16 || FromW == 32) &&
           "Invalid source width");
    assert((ToW == 16 || ToW == 32 || ToW == 64) &&
           "Invalid destination width");
    assert(FromW < ToW && "ToW is not less than FromW");
  }

  template<unsigned FromW, unsigned ToW>
  bool isNEONmovReplicate() const {
    checkNeonReplicateArgs(FromW, ToW);
    if (ToW == 64 && isNEONi64splat())
      return false;
    return isNEONReplicate(FromW, ToW / FromW, false);
  }

  template<unsigned FromW, unsigned ToW>
  bool isNEONinvReplicate() const {
    checkNeonReplicateArgs(FromW, ToW);
    return isNEONReplicate(FromW, ToW / FromW, true);
  }

  bool isNEONi32vmov() const {
    if (isNEONByteReplicate(4))
      return false; // Let it to be classified as byte-replicate case.
    if (!isImm())
      return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE)
      return false;
    return isValidNEONi32vmovImm(CE->getValue());
  }

  bool isNEONi32vmovNeg() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    return isValidNEONi32vmovImm(~CE->getValue());
  }

  bool isNEONi64splat() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    uint64_t Value = CE->getValue();
    // i64 value with each byte being either 0 or 0xff.
    for (unsigned i = 0; i < 8; ++i, Value >>= 8)
      if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
    return true;
  }

  template<int64_t Angle, int64_t Remainder>
  bool isComplexRotation() const {
    if (!isImm()) return false;

    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    uint64_t Value = CE->getValue();

    return (Value % Angle == Remainder && Value <= 270);
  }

  bool isMVELongShift() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    // Must be a constant.
    if (!CE) return false;
    uint64_t Value = CE->getValue();
    return Value >= 1 && Value <= 32;
  }

  bool isMveSaturateOp() const {
    if (!isImm()) return false;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    if (!CE) return false;
    uint64_t Value = CE->getValue();
    return Value == 48 || Value == 64;
  }

  bool isITCondCodeNoAL() const {
    if (!isITCondCode()) return false;
    ARMCC::CondCodes CC = getCondCode();
    return CC != ARMCC::AL;
  }

  bool isITCondCodeRestrictedI() const {
    if (!isITCondCode())
      return false;
    ARMCC::CondCodes CC = getCondCode();
    return CC == ARMCC::EQ || CC == ARMCC::NE;
  }

  bool isITCondCodeRestrictedS() const {
    if (!isITCondCode())
      return false;
    ARMCC::CondCodes CC = getCondCode();
    return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE ||
           CC == ARMCC::GE;
  }

  bool isITCondCodeRestrictedU() const {
    if (!isITCondCode())
      return false;
    ARMCC::CondCodes CC = getCondCode();
    return CC == ARMCC::HS || CC == ARMCC::HI;
  }

  bool isITCondCodeRestrictedFP() const {
    if (!isITCondCode())
      return false;
    ARMCC::CondCodes CC = getCondCode();
    return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT ||
           CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE;
  }

  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
    // Add as immediates when possible.  Null MCExpr = 0.
    if (!Expr)
      Inst.addOperand(MCOperand::createImm(0));
    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
      Inst.addOperand(MCOperand::createImm(CE->getValue()));
    else
      Inst.addOperand(MCOperand::createExpr(Expr));
  }

  void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    addExpr(Inst, getImm());
  }

  void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    addExpr(Inst, getImm());
  }

  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
    Inst.addOperand(MCOperand::createReg(RegNum));
  }

  void addVPTPredNOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred())));
    unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0;
    Inst.addOperand(MCOperand::createReg(RegNum));
  }

  void addVPTPredROperands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands!");
    addVPTPredNOperands(Inst, N-1);
    unsigned RegNum;
    if (getVPTPred() == ARMVCC::None) {
      RegNum = 0;
    } else {
      unsigned NextOpIndex = Inst.getNumOperands();
      const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()];
      int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO);
      assert(TiedOp >= 0 &&
             "Inactive register in vpred_r is not tied to an output!");
      RegNum = Inst.getOperand(TiedOp).getReg();
    }
    Inst.addOperand(MCOperand::createReg(RegNum));
  }

  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getCoproc()));
  }

  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getCoproc()));
  }

  void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
  }

  void addITMaskOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(ITMask.Mask));
  }

  void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
  }

  void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode()))));
  }

  void addCCOutOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(getReg()));
  }

  void addRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(getReg()));
  }

  void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands!");
    assert(isRegShiftedReg() &&
           "addRegShiftedRegOperands() on non-RegShiftedReg!");
    Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
    Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
    Inst.addOperand(MCOperand::createImm(
      ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
  }

  void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    assert(isRegShiftedImm() &&
           "addRegShiftedImmOperands() on non-RegShiftedImm!");
    Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
    // Shift of #32 is encoded as 0 where permitted
    unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
    Inst.addOperand(MCOperand::createImm(
      ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
  }

  void addShifterImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
                                         ShifterImm.Imm));
  }

  void addRegListOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const SmallVectorImpl<unsigned> &RegList = getRegList();
    for (SmallVectorImpl<unsigned>::const_iterator
           I = RegList.begin(), E = RegList.end(); I != E; ++I)
      Inst.addOperand(MCOperand::createReg(*I));
  }

  void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const SmallVectorImpl<unsigned> &RegList = getRegList();
    for (SmallVectorImpl<unsigned>::const_iterator
           I = RegList.begin(), E = RegList.end(); I != E; ++I)
      Inst.addOperand(MCOperand::createReg(*I));
  }

  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
    addRegListOperands(Inst, N);
  }

  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
    addRegListOperands(Inst, N);
  }

  void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const {
    addRegListOperands(Inst, N);
  }

  void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const {
    addRegListOperands(Inst, N);
  }

  void addRotImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // Encoded as val>>3. The printer handles display as 8, 16, 24.
    Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
  }

  void addModImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");

    // Support for fixups (MCFixup)
    if (isImm())
      return addImmOperands(Inst, N);

    Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
  }

  void addModImmNotOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
    Inst.addOperand(MCOperand::createImm(Enc));
  }

  void addModImmNegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
    Inst.addOperand(MCOperand::createImm(Enc));
  }

  void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    uint32_t Val = -CE->getValue();
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    uint32_t Val = -CE->getValue();
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addBitfieldOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // Munge the lsb/width into a bitfield mask.
    unsigned lsb = Bitfield.LSB;
    unsigned width = Bitfield.Width;
    // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
    uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
                      (32 - (lsb + width)));
    Inst.addOperand(MCOperand::createImm(Mask));
  }

  void addImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    addExpr(Inst, getImm());
  }

  void addFBits16Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
  }

  void addFBits32Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
  }

  void addFPImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addImm8s4Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // FIXME: We really want to scale the value here, but the LDRD/STRD
    // instruction don't encode operands that way yet.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(CE->getValue()));
  }

  void addImm7s4Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR
    // instruction don't encode operands that way yet.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(CE->getValue()));
  }

  void addImm7Shift0Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(CE->getValue()));
  }

  void addImm7Shift1Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(CE->getValue()));
  }

  void addImm7Shift2Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(CE->getValue()));
  }

  void addImm7Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(CE->getValue()));
  }

  void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate is scaled by four in the encoding and is stored
    // in the MCInst as such. Lop off the low two bits here.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
  }

  void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate is scaled by four in the encoding and is stored
    // in the MCInst as such. Lop off the low two bits here.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
  }

  void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate is scaled by four in the encoding and is stored
    // in the MCInst as such. Lop off the low two bits here.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
  }

  void addImm1_16Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The constant encodes as the immediate-1, and we store in the instruction
    // the bits as encoded, so subtract off one here.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
  }

  void addImm1_32Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The constant encodes as the immediate-1, and we store in the instruction
    // the bits as encoded, so subtract off one here.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
  }

  void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The constant encodes as the immediate, except for 32, which encodes as
    // zero.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    unsigned Imm = CE->getValue();
    Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
  }

  void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // An ASR value of 32 encodes as 0, so that's how we want to add it to
    // the instruction as well.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    int Val = CE->getValue();
    Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
  }

  void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The operand is actually a t2_so_imm, but we have its bitwise
    // negation in the assembly source, so twiddle it here.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
  }

  void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The operand is actually a t2_so_imm, but we have its
    // negation in the assembly source, so twiddle it here.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
  }

  void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The operand is actually an imm0_4095, but we have its
    // negation in the assembly source, so twiddle it here.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
  }

  void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
    if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
      Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
      return;
    }
    const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
    Inst.addOperand(MCOperand::createExpr(SR));
  }

  void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    if (isImm()) {
      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
      if (CE) {
        Inst.addOperand(MCOperand::createImm(CE->getValue()));
        return;
      }
      const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
      Inst.addOperand(MCOperand::createExpr(SR));
      return;
    }

    assert(isGPRMem()  && "Unknown value type!");
    assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
    Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue()));
  }

  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
  }

  void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
  }

  void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
  }

  void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
  }

  void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
  }

  void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
  }

  void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
  }

  void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    int32_t Imm = Memory.OffsetImm->getValue();
    Inst.addOperand(MCOperand::createImm(Imm));
  }

  void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    assert(isImm() && "Not an immediate!");

    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup.
    if (!isa<MCConstantExpr>(getImm())) {
      Inst.addOperand(MCOperand::createExpr(getImm()));
      return;
    }

    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    int Val = CE->getValue();
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createImm(Memory.Alignment));
  }

  void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
    addAlignedMemoryOperands(Inst, N);
  }

  void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
    addAlignedMemoryOperands(Inst, N);
  }

  void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
    addAlignedMemoryOperands(Inst, N);
  }

  void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
    addAlignedMemoryOperands(Inst, N);
  }

  void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
    addAlignedMemoryOperands(Inst, N);
  }

  void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
    addAlignedMemoryOperands(Inst, N);
  }

  void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
    addAlignedMemoryOperands(Inst, N);
  }

  void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
    addAlignedMemoryOperands(Inst, N);
  }

  void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
    addAlignedMemoryOperands(Inst, N);
  }

  void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
    addAlignedMemoryOperands(Inst, N);
  }

  void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
    addAlignedMemoryOperands(Inst, N);
  }

  void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands!");
    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
    if (!Memory.OffsetRegNum) {
      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
      // Special case for #-0
      if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
      if (Val < 0) Val = -Val;
      Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
    } else {
      // For register offset, we encode the shift type and negation flag
      // here.
      Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
                              Memory.ShiftImm, Memory.ShiftType);
    }
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    assert(CE && "non-constant AM2OffsetImm operand!");
    int32_t Val = CE->getValue();
    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
    // Special case for #-0
    if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
    if (Val < 0) Val = -Val;
    Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
    Inst.addOperand(MCOperand::createReg(0));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands!");
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm()) {
      Inst.addOperand(MCOperand::createExpr(getImm()));
      Inst.addOperand(MCOperand::createReg(0));
      Inst.addOperand(MCOperand::createImm(0));
      return;
    }

    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
    if (!Memory.OffsetRegNum) {
      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
      // Special case for #-0
      if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
      if (Val < 0) Val = -Val;
      Val = ARM_AM::getAM3Opc(AddSub, Val);
    } else {
      // For register offset, we encode the shift type and negation flag
      // here.
      Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
    }
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    if (Kind == k_PostIndexRegister) {
      int32_t Val =
        ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
      Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
      Inst.addOperand(MCOperand::createImm(Val));
      return;
    }

    // Constant offset.
    const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
    int32_t Val = CE->getValue();
    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
    // Special case for #-0
    if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
    if (Val < 0) Val = -Val;
    Val = ARM_AM::getAM3Opc(AddSub, Val);
    Inst.addOperand(MCOperand::createReg(0));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm()) {
      Inst.addOperand(MCOperand::createExpr(getImm()));
      Inst.addOperand(MCOperand::createImm(0));
      return;
    }

    // The lower two bits are always zero and as such are not encoded.
    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
    // Special case for #-0
    if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
    if (Val < 0) Val = -Val;
    Val = ARM_AM::getAM5Opc(AddSub, Val);
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm()) {
      Inst.addOperand(MCOperand::createExpr(getImm()));
      Inst.addOperand(MCOperand::createImm(0));
      return;
    }

    // The lower bit is always zero and as such is not encoded.
    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0;
    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
    // Special case for #-0
    if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
    if (Val < 0) Val = -Val;
    Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm()) {
      Inst.addOperand(MCOperand::createExpr(getImm()));
      Inst.addOperand(MCOperand::createImm(0));
      return;
    }

    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    // If we have an immediate that's not a constant, treat it as a label
    // reference needing a fixup. If it is a constant, it's something else
    // and we reject it.
    if (isImm()) {
      Inst.addOperand(MCOperand::createExpr(getImm()));
      Inst.addOperand(MCOperand::createImm(0));
      return;
    }

    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    // The lower two bits are always zero and as such are not encoded.
    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
  }

  void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    // If this is an immediate, it's a label reference.
    if (isImm()) {
      addExpr(Inst, getImm());
      Inst.addOperand(MCOperand::createImm(0));
      return;
    }

    // Otherwise, it's a normal memory reg+offset.
    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    // If this is an immediate, it's a label reference.
    if (isImm()) {
      addExpr(Inst, getImm());
      Inst.addOperand(MCOperand::createImm(0));
      return;
    }

    // Otherwise, it's a normal memory reg+offset.
    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // This is container for the immediate that we will create the constant
    // pool from
    addExpr(Inst, getConstantPoolImm());
    return;
  }

  void addMemTBBOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
  }

  void addMemTBHOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
  }

  void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands!");
    unsigned Val =
      ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
                        Memory.ShiftImm, Memory.ShiftType);
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
    Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
  }

  void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
  }

  void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
    Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
    Inst.addOperand(MCOperand::createImm(Val));
  }

  void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    assert(CE && "non-constant post-idx-imm8 operand!");
    int Imm = CE->getValue();
    bool isAdd = Imm >= 0;
    if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
    Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
    Inst.addOperand(MCOperand::createImm(Imm));
  }

  void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    assert(CE && "non-constant post-idx-imm8s4 operand!");
    int Imm = CE->getValue();
    bool isAdd = Imm >= 0;
    if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
    // Immediate is scaled by 4.
    Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
    Inst.addOperand(MCOperand::createImm(Imm));
  }

  void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
    Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
  }

  void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
    // The sign, shift type, and shift amount are encoded in a single operand
    // using the AM2 encoding helpers.
    ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
    unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
                                     PostIdxReg.ShiftTy);
    Inst.addOperand(MCOperand::createImm(Imm));
  }

  void addPowerTwoOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(CE->getValue()));
  }

  void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
  }

  void addBankedRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
  }

  void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
  }

  void addVecListOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
  }

  void addMVEVecListOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");

    // When we come here, the VectorList field will identify a range
    // of q-registers by its base register and length, and it will
    // have already been error-checked to be the expected length of
    // range and contain only q-regs in the range q0-q7. So we can
    // count on the base register being in the range q0-q6 (for 2
    // regs) or q0-q4 (for 4)
    //
    // The MVE instructions taking a register range of this kind will
    // need an operand in the QQPR or QQQQPR class, representing the
    // entire range as a unit. So we must translate into that class,
    // by finding the index of the base register in the MQPR reg
    // class, and returning the super-register at the corresponding
    // index in the target class.

    const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID];
    const MCRegisterClass *RC_out = (VectorList.Count == 2) ?
      &ARMMCRegisterClasses[ARM::QQPRRegClassID] :
      &ARMMCRegisterClasses[ARM::QQQQPRRegClassID];

    unsigned I, E = RC_out->getNumRegs();
    for (I = 0; I < E; I++)
      if (RC_in->getRegister(I) == VectorList.RegNum)
        break;
    assert(I < E && "Invalid vector list start register!");

    Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I)));
  }

  void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
    Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
  }

  void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getVectorIndex()));
  }

  void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getVectorIndex()));
  }

  void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getVectorIndex()));
  }

  void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getVectorIndex()));
  }

  void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getVectorIndex()));
  }

  void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getVectorIndex()));
  }

  void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    // Mask in that this is an i8 splat.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
  }

  void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    unsigned Value = CE->getValue();
    Value = ARM_AM::encodeNEONi16splat(Value);
    Inst.addOperand(MCOperand::createImm(Value));
  }

  void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    unsigned Value = CE->getValue();
    Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
    Inst.addOperand(MCOperand::createImm(Value));
  }

  void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    unsigned Value = CE->getValue();
    Value = ARM_AM::encodeNEONi32splat(Value);
    Inst.addOperand(MCOperand::createImm(Value));
  }

  void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    unsigned Value = CE->getValue();
    Value = ARM_AM::encodeNEONi32splat(~Value);
    Inst.addOperand(MCOperand::createImm(Value));
  }

  void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
    // The immediate encodes the type of constant as well as the value.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
            Inst.getOpcode() == ARM::VMOVv16i8) &&
          "All instructions that wants to replicate non-zero byte "
          "always must be replaced with VMOVv8i8 or VMOVv16i8.");
    unsigned Value = CE->getValue();
    if (Inv)
      Value = ~Value;
    unsigned B = Value & 0xff;
    B |= 0xe00; // cmode = 0b1110
    Inst.addOperand(MCOperand::createImm(B));
  }

  void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    addNEONi8ReplicateOperands(Inst, true);
  }

  static unsigned encodeNeonVMOVImmediate(unsigned Value) {
    if (Value >= 256 && Value <= 0xffff)
      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
    else if (Value > 0xffff && Value <= 0xffffff)
      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
    else if (Value > 0xffffff)
      Value = (Value >> 24) | 0x600;
    return Value;
  }

  void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
    Inst.addOperand(MCOperand::createImm(Value));
  }

  void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    addNEONi8ReplicateOperands(Inst, false);
  }

  void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
            Inst.getOpcode() == ARM::VMOVv8i16 ||
            Inst.getOpcode() == ARM::VMVNv4i16 ||
            Inst.getOpcode() == ARM::VMVNv8i16) &&
          "All instructions that want to replicate non-zero half-word "
          "always must be replaced with V{MOV,MVN}v{4,8}i16.");
    uint64_t Value = CE->getValue();
    unsigned Elem = Value & 0xffff;
    if (Elem >= 256)
      Elem = (Elem >> 8) | 0x200;
    Inst.addOperand(MCOperand::createImm(Elem));
  }

  void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
    Inst.addOperand(MCOperand::createImm(Value));
  }

  void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
            Inst.getOpcode() == ARM::VMOVv4i32 ||
            Inst.getOpcode() == ARM::VMVNv2i32 ||
            Inst.getOpcode() == ARM::VMVNv4i32) &&
          "All instructions that want to replicate non-zero word "
          "always must be replaced with V{MOV,MVN}v{2,4}i32.");
    uint64_t Value = CE->getValue();
    unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
    Inst.addOperand(MCOperand::createImm(Elem));
  }

  void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // The immediate encodes the type of constant as well as the value.
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    uint64_t Value = CE->getValue();
    unsigned Imm = 0;
    for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
      Imm |= (Value & 1) << i;
    }
    Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
  }

  void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
  }

  void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
  }

  void addMveSaturateOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
    unsigned Imm = CE->getValue();
    assert((Imm == 48 || Imm == 64) && "Invalid saturate operand");
    Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0));
  }

  void print(raw_ostream &OS) const override;

  static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
    auto Op = std::make_unique<ARMOperand>(k_ITCondMask);
    Op->ITMask.Mask = Mask;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
                                                    SMLoc S) {
    auto Op = std::make_unique<ARMOperand>(k_CondCode);
    Op->CC.Val = CC;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC,
                                                   SMLoc S) {
    auto Op = std::make_unique<ARMOperand>(k_VPTPred);
    Op->VCC.Val = CC;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
    auto Op = std::make_unique<ARMOperand>(k_CoprocNum);
    Op->Cop.Val = CopVal;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
    auto Op = std::make_unique<ARMOperand>(k_CoprocReg);
    Op->Cop.Val = CopVal;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
                                                        SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_CoprocOption);
    Op->Cop.Val = Val;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
    auto Op = std::make_unique<ARMOperand>(k_CCOut);
    Op->Reg.RegNum = RegNum;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
    auto Op = std::make_unique<ARMOperand>(k_Token);
    Op->Tok.Data = Str.data();
    Op->Tok.Length = Str.size();
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
                                               SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_Register);
    Op->Reg.RegNum = RegNum;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand>
  CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
                        unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
                        SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister);
    Op->RegShiftedReg.ShiftTy = ShTy;
    Op->RegShiftedReg.SrcReg = SrcReg;
    Op->RegShiftedReg.ShiftReg = ShiftReg;
    Op->RegShiftedReg.ShiftImm = ShiftImm;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand>
  CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
                         unsigned ShiftImm, SMLoc S, SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate);
    Op->RegShiftedImm.ShiftTy = ShTy;
    Op->RegShiftedImm.SrcReg = SrcReg;
    Op->RegShiftedImm.ShiftImm = ShiftImm;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
                                                      SMLoc S, SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate);
    Op->ShifterImm.isASR = isASR;
    Op->ShifterImm.Imm = Imm;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
                                                  SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_RotateImmediate);
    Op->RotImm.Imm = Imm;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
                                                  SMLoc S, SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate);
    Op->ModImm.Bits = Bits;
    Op->ModImm.Rot = Rot;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand>
  CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate);
    Op->Imm.Val = Val;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand>
  CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor);
    Op->Bitfield.LSB = LSB;
    Op->Bitfield.Width = Width;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand>
  CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
                SMLoc StartLoc, SMLoc EndLoc) {
    assert(Regs.size() > 0 && "RegList contains no registers?");
    KindTy Kind = k_RegisterList;

    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
            Regs.front().second)) {
      if (Regs.back().second == ARM::VPR)
        Kind = k_FPDRegisterListWithVPR;
      else
        Kind = k_DPRRegisterList;
    } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
                   Regs.front().second)) {
      if (Regs.back().second == ARM::VPR)
        Kind = k_FPSRegisterListWithVPR;
      else
        Kind = k_SPRRegisterList;
    }

    if (Kind == k_RegisterList && Regs.back().second == ARM::APSR)
      Kind = k_RegisterListWithAPSR;

    assert(std::is_sorted(Regs.begin(), Regs.end()) &&
           "Register list must be sorted by encoding");

    auto Op = std::make_unique<ARMOperand>(Kind);
    for (const auto &P : Regs)
      Op->Registers.push_back(P.second);

    Op->StartLoc = StartLoc;
    Op->EndLoc = EndLoc;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
                                                      unsigned Count,
                                                      bool isDoubleSpaced,
                                                      SMLoc S, SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_VectorList);
    Op->VectorList.RegNum = RegNum;
    Op->VectorList.Count = Count;
    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand>
  CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
                           SMLoc S, SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes);
    Op->VectorList.RegNum = RegNum;
    Op->VectorList.Count = Count;
    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand>
  CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
                          bool isDoubleSpaced, SMLoc S, SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed);
    Op->VectorList.RegNum = RegNum;
    Op->VectorList.Count = Count;
    Op->VectorList.LaneIndex = Index;
    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand>
  CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
    auto Op = std::make_unique<ARMOperand>(k_VectorIndex);
    Op->VectorIndex.Val = Idx;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
                                               SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_Immediate);
    Op->Imm.Val = Val;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand>
  CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
            unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
            unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
            SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
    auto Op = std::make_unique<ARMOperand>(k_Memory);
    Op->Memory.BaseRegNum = BaseRegNum;
    Op->Memory.OffsetImm = OffsetImm;
    Op->Memory.OffsetRegNum = OffsetRegNum;
    Op->Memory.ShiftType = ShiftType;
    Op->Memory.ShiftImm = ShiftImm;
    Op->Memory.Alignment = Alignment;
    Op->Memory.isNegative = isNegative;
    Op->StartLoc = S;
    Op->EndLoc = E;
    Op->AlignmentLoc = AlignmentLoc;
    return Op;
  }

  static std::unique_ptr<ARMOperand>
  CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
                   unsigned ShiftImm, SMLoc S, SMLoc E) {
    auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister);
    Op->PostIdxReg.RegNum = RegNum;
    Op->PostIdxReg.isAdd = isAdd;
    Op->PostIdxReg.ShiftTy = ShiftTy;
    Op->PostIdxReg.ShiftImm = ShiftImm;
    Op->StartLoc = S;
    Op->EndLoc = E;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
                                                         SMLoc S) {
    auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt);
    Op->MBOpt.Val = Opt;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<ARMOperand>
  CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
    auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt);
    Op->ISBOpt.Val = Opt;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<ARMOperand>
  CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
    auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
    Op->TSBOpt.Val = Opt;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
                                                      SMLoc S) {
    auto Op = std::make_unique<ARMOperand>(k_ProcIFlags);
    Op->IFlags.Val = IFlags;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
    auto Op = std::make_unique<ARMOperand>(k_MSRMask);
    Op->MMask.Val = MMask;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }

  static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
    auto Op = std::make_unique<ARMOperand>(k_BankedReg);
    Op->BankedReg.Val = Reg;
    Op->StartLoc = S;
    Op->EndLoc = S;
    return Op;
  }
};

} // end anonymous namespace.

void ARMOperand::print(raw_ostream &OS) const {
  auto RegName = [](unsigned Reg) {
    if (Reg)
      return ARMInstPrinter::getRegisterName(Reg);
    else
      return "noreg";
  };

  switch (Kind) {
  case k_CondCode:
    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
    break;
  case k_VPTPred:
    OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">";
    break;
  case k_CCOut:
    OS << "<ccout " << RegName(getReg()) << ">";
    break;
  case k_ITCondMask: {
    static const char *const MaskStr[] = {
      "(invalid)", "(tttt)", "(ttt)", "(ttte)",
      "(tt)",      "(ttet)", "(tte)", "(ttee)",
      "(t)",       "(tett)", "(tet)", "(tete)",
      "(te)",      "(teet)", "(tee)", "(teee)",
    };
    assert((ITMask.Mask & 0xf) == ITMask.Mask);
    OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
    break;
  }
  case k_CoprocNum:
    OS << "<coprocessor number: " << getCoproc() << ">";
    break;
  case k_CoprocReg:
    OS << "<coprocessor register: " << getCoproc() << ">";
    break;
  case k_CoprocOption:
    OS << "<coprocessor option: " << CoprocOption.Val << ">";
    break;
  case k_MSRMask:
    OS << "<mask: " << getMSRMask() << ">";
    break;
  case k_BankedReg:
    OS << "<banked reg: " << getBankedReg() << ">";
    break;
  case k_Immediate:
    OS << *getImm();
    break;
  case k_MemBarrierOpt:
    OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
    break;
  case k_InstSyncBarrierOpt:
    OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
    break;
  case k_TraceSyncBarrierOpt:
    OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
    break;
  case k_Memory:
    OS << "<memory";
    if (Memory.BaseRegNum)
      OS << " base:" << RegName(Memory.BaseRegNum);
    if (Memory.OffsetImm)
      OS << " offset-imm:" << *Memory.OffsetImm;
    if (Memory.OffsetRegNum)
      OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
         << RegName(Memory.OffsetRegNum);
    if (Memory.ShiftType != ARM_AM::no_shift) {
      OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
      OS << " shift-imm:" << Memory.ShiftImm;
    }
    if (Memory.Alignment)
      OS << " alignment:" << Memory.Alignment;
    OS << ">";
    break;
  case k_PostIndexRegister:
    OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
       << RegName(PostIdxReg.RegNum);
    if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
      OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
         << PostIdxReg.ShiftImm;
    OS << ">";
    break;
  case k_ProcIFlags: {
    OS << "<ARM_PROC::";
    unsigned IFlags = getProcIFlags();
    for (int i=2; i >= 0; --i)
      if (IFlags & (1 << i))
        OS << ARM_PROC::IFlagsToString(1 << i);
    OS << ">";
    break;
  }
  case k_Register:
    OS << "<register " << RegName(getReg()) << ">";
    break;
  case k_ShifterImmediate:
    OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
       << " #" << ShifterImm.Imm << ">";
    break;
  case k_ShiftedRegister:
    OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
       << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
       << RegName(RegShiftedReg.ShiftReg) << ">";
    break;
  case k_ShiftedImmediate:
    OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
       << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
       << RegShiftedImm.ShiftImm << ">";
    break;
  case k_RotateImmediate:
    OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
    break;
  case k_ModifiedImmediate:
    OS << "<mod_imm #" << ModImm.Bits << ", #"
       <<  ModImm.Rot << ")>";
    break;
  case k_ConstantPoolImmediate:
    OS << "<constant_pool_imm #" << *getConstantPoolImm();
    break;
  case k_BitfieldDescriptor:
    OS << "<bitfield " << "lsb: " << Bitfield.LSB
       << ", width: " << Bitfield.Width << ">";
    break;
  case k_RegisterList:
  case k_RegisterListWithAPSR:
  case k_DPRRegisterList:
  case k_SPRRegisterList:
  case k_FPSRegisterListWithVPR:
  case k_FPDRegisterListWithVPR: {
    OS << "<register_list ";

    const SmallVectorImpl<unsigned> &RegList = getRegList();
    for (SmallVectorImpl<unsigned>::const_iterator
           I = RegList.begin(), E = RegList.end(); I != E; ) {
      OS << RegName(*I);
      if (++I < E) OS << ", ";
    }

    OS << ">";
    break;
  }
  case k_VectorList:
    OS << "<vector_list " << VectorList.Count << " * "
       << RegName(VectorList.RegNum) << ">";
    break;
  case k_VectorListAllLanes:
    OS << "<vector_list(all lanes) " << VectorList.Count << " * "
       << RegName(VectorList.RegNum) << ">";
    break;
  case k_VectorListIndexed:
    OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
       << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
    break;
  case k_Token:
    OS << "'" << getToken() << "'";
    break;
  case k_VectorIndex:
    OS << "<vectorindex " << getVectorIndex() << ">";
    break;
  }
}

/// @name Auto-generated Match Functions
/// {

static unsigned MatchRegisterName(StringRef Name);

/// }

bool ARMAsmParser::ParseRegister(unsigned &RegNo,
                                 SMLoc &StartLoc, SMLoc &EndLoc) {
  const AsmToken &Tok = getParser().getTok();
  StartLoc = Tok.getLoc();
  EndLoc = Tok.getEndLoc();
  RegNo = tryParseRegister();

  return (RegNo == (unsigned)-1);
}

/// Try to parse a register name.  The token must be an Identifier when called,
/// and if it is a register name the token is eaten and the register number is
/// returned.  Otherwise return -1.
int ARMAsmParser::tryParseRegister() {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier)) return -1;

  std::string lowerCase = Tok.getString().lower();
  unsigned RegNum = MatchRegisterName(lowerCase);
  if (!RegNum) {
    RegNum = StringSwitch<unsigned>(lowerCase)
      .Case("r13", ARM::SP)
      .Case("r14", ARM::LR)
      .Case("r15", ARM::PC)
      .Case("ip", ARM::R12)
      // Additional register name aliases for 'gas' compatibility.
      .Case("a1", ARM::R0)
      .Case("a2", ARM::R1)
      .Case("a3", ARM::R2)
      .Case("a4", ARM::R3)
      .Case("v1", ARM::R4)
      .Case("v2", ARM::R5)
      .Case("v3", ARM::R6)
      .Case("v4", ARM::R7)
      .Case("v5", ARM::R8)
      .Case("v6", ARM::R9)
      .Case("v7", ARM::R10)
      .Case("v8", ARM::R11)
      .Case("sb", ARM::R9)
      .Case("sl", ARM::R10)
      .Case("fp", ARM::R11)
      .Default(0);
  }
  if (!RegNum) {
    // Check for aliases registered via .req. Canonicalize to lower case.
    // That's more consistent since register names are case insensitive, and
    // it's how the original entry was passed in from MC/MCParser/AsmParser.
    StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
    // If no match, return failure.
    if (Entry == RegisterReqs.end())
      return -1;
    Parser.Lex(); // Eat identifier token.
    return Entry->getValue();
  }

  // Some FPUs only have 16 D registers, so D16-D31 are invalid
  if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
    return -1;

  Parser.Lex(); // Eat identifier token.

  return RegNum;
}

// Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
// If a recoverable error occurs, return 1. If an irrecoverable error
// occurs, return -1. An irrecoverable error is one where tokens have been
// consumed in the process of trying to parse the shifter (i.e., when it is
// indeed a shifter operand, but malformed).
int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier))
    return -1;

  std::string lowerCase = Tok.getString().lower();
  ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
      .Case("asl", ARM_AM::lsl)
      .Case("lsl", ARM_AM::lsl)
      .Case("lsr", ARM_AM::lsr)
      .Case("asr", ARM_AM::asr)
      .Case("ror", ARM_AM::ror)
      .Case("rrx", ARM_AM::rrx)
      .Default(ARM_AM::no_shift);

  if (ShiftTy == ARM_AM::no_shift)
    return 1;

  Parser.Lex(); // Eat the operator.

  // The source register for the shift has already been added to the
  // operand list, so we need to pop it off and combine it into the shifted
  // register operand instead.
  std::unique_ptr<ARMOperand> PrevOp(
      (ARMOperand *)Operands.pop_back_val().release());
  if (!PrevOp->isReg())
    return Error(PrevOp->getStartLoc(), "shift must be of a register");
  int SrcReg = PrevOp->getReg();

  SMLoc EndLoc;
  int64_t Imm = 0;
  int ShiftReg = 0;
  if (ShiftTy == ARM_AM::rrx) {
    // RRX Doesn't have an explicit shift amount. The encoder expects
    // the shift register to be the same as the source register. Seems odd,
    // but OK.
    ShiftReg = SrcReg;
  } else {
    // Figure out if this is shifted by a constant or a register (for non-RRX).
    if (Parser.getTok().is(AsmToken::Hash) ||
        Parser.getTok().is(AsmToken::Dollar)) {
      Parser.Lex(); // Eat hash.
      SMLoc ImmLoc = Parser.getTok().getLoc();
      const MCExpr *ShiftExpr = nullptr;
      if (getParser().parseExpression(ShiftExpr, EndLoc)) {
        Error(ImmLoc, "invalid immediate shift value");
        return -1;
      }
      // The expression must be evaluatable as an immediate.
      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
      if (!CE) {
        Error(ImmLoc, "invalid immediate shift value");
        return -1;
      }
      // Range check the immediate.
      // lsl, ror: 0 <= imm <= 31
      // lsr, asr: 0 <= imm <= 32
      Imm = CE->getValue();
      if (Imm < 0 ||
          ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
          ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
        Error(ImmLoc, "immediate shift value out of range");
        return -1;
      }
      // shift by zero is a nop. Always send it through as lsl.
      // ('as' compatibility)
      if (Imm == 0)
        ShiftTy = ARM_AM::lsl;
    } else if (Parser.getTok().is(AsmToken::Identifier)) {
      SMLoc L = Parser.getTok().getLoc();
      EndLoc = Parser.getTok().getEndLoc();
      ShiftReg = tryParseRegister();
      if (ShiftReg == -1) {
        Error(L, "expected immediate or register in shift operand");
        return -1;
      }
    } else {
      Error(Parser.getTok().getLoc(),
            "expected immediate or register in shift operand");
      return -1;
    }
  }

  if (ShiftReg && ShiftTy != ARM_AM::rrx)
    Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
                                                         ShiftReg, Imm,
                                                         S, EndLoc));
  else
    Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
                                                          S, EndLoc));

  return 0;
}

/// Try to parse a register name.  The token must be an Identifier when called.
/// If it's a register, an AsmOperand is created. Another AsmOperand is created
/// if there is a "writeback". 'true' if it's not a register.
///
/// TODO this is likely to change to allow different register types and or to
/// parse for a specific register type.
bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc RegStartLoc = Parser.getTok().getLoc();
  SMLoc RegEndLoc = Parser.getTok().getEndLoc();
  int RegNo = tryParseRegister();
  if (RegNo == -1)
    return true;

  Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));

  const AsmToken &ExclaimTok = Parser.getTok();
  if (ExclaimTok.is(AsmToken::Exclaim)) {
    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
                                               ExclaimTok.getLoc()));
    Parser.Lex(); // Eat exclaim token
    return false;
  }

  // Also check for an index operand. This is only legal for vector registers,
  // but that'll get caught OK in operand matching, so we don't need to
  // explicitly filter everything else out here.
  if (Parser.getTok().is(AsmToken::LBrac)) {
    SMLoc SIdx = Parser.getTok().getLoc();
    Parser.Lex(); // Eat left bracket token.

    const MCExpr *ImmVal;
    if (getParser().parseExpression(ImmVal))
      return true;
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
    if (!MCE)
      return TokError("immediate value expected for vector index");

    if (Parser.getTok().isNot(AsmToken::RBrac))
      return Error(Parser.getTok().getLoc(), "']' expected");

    SMLoc E = Parser.getTok().getEndLoc();
    Parser.Lex(); // Eat right bracket token.

    Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
                                                     SIdx, E,
                                                     getContext()));
  }

  return false;
}

/// MatchCoprocessorOperandName - Try to parse an coprocessor related
/// instruction with a symbolic operand name.
/// We accept "crN" syntax for GAS compatibility.
/// <operand-name> ::= <prefix><number>
/// If CoprocOp is 'c', then:
///   <prefix> ::= c | cr
/// If CoprocOp is 'p', then :
///   <prefix> ::= p
/// <number> ::= integer in range [0, 15]
static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
  // Use the same layout as the tablegen'erated register name matcher. Ugly,
  // but efficient.
  if (Name.size() < 2 || Name[0] != CoprocOp)
    return -1;
  Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();

  switch (Name.size()) {
  default: return -1;
  case 1:
    switch (Name[0]) {
    default:  return -1;
    case '0': return 0;
    case '1': return 1;
    case '2': return 2;
    case '3': return 3;
    case '4': return 4;
    case '5': return 5;
    case '6': return 6;
    case '7': return 7;
    case '8': return 8;
    case '9': return 9;
    }
  case 2:
    if (Name[0] != '1')
      return -1;
    switch (Name[1]) {
    default:  return -1;
    // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
    // However, old cores (v5/v6) did use them in that way.
    case '0': return 10;
    case '1': return 11;
    case '2': return 12;
    case '3': return 13;
    case '4': return 14;
    case '5': return 15;
    }
  }
}

/// parseITCondCode - Try to parse a condition code for an IT instruction.
OperandMatchResultTy
ARMAsmParser::parseITCondCode(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (!Tok.is(AsmToken::Identifier))
    return MatchOperand_NoMatch;
  unsigned CC = ARMCondCodeFromString(Tok.getString());
  if (CC == ~0U)
    return MatchOperand_NoMatch;
  Parser.Lex(); // Eat the token.

  Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));

  return MatchOperand_Success;
}

/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
/// token must be an Identifier when called, and if it is a coprocessor
/// number, the token is eaten and the operand is added to the operand list.
OperandMatchResultTy
ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier))
    return MatchOperand_NoMatch;

  int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p');
  if (Num == -1)
    return MatchOperand_NoMatch;
  if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits()))
    return MatchOperand_NoMatch;

  Parser.Lex(); // Eat identifier token.
  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
  return MatchOperand_Success;
}

/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
/// token must be an Identifier when called, and if it is a coprocessor
/// number, the token is eaten and the operand is added to the operand list.
OperandMatchResultTy
ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier))
    return MatchOperand_NoMatch;

  int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c');
  if (Reg == -1)
    return MatchOperand_NoMatch;

  Parser.Lex(); // Eat identifier token.
  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
  return MatchOperand_Success;
}

/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
/// coproc_option : '{' imm0_255 '}'
OperandMatchResultTy
ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = Parser.getTok().getLoc();

  // If this isn't a '{', this isn't a coprocessor immediate operand.
  if (Parser.getTok().isNot(AsmToken::LCurly))
    return MatchOperand_NoMatch;
  Parser.Lex(); // Eat the '{'

  const MCExpr *Expr;
  SMLoc Loc = Parser.getTok().getLoc();
  if (getParser().parseExpression(Expr)) {
    Error(Loc, "illegal expression");
    return MatchOperand_ParseFail;
  }
  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
  if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
    Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
    return MatchOperand_ParseFail;
  }
  int Val = CE->getValue();

  // Check for and consume the closing '}'
  if (Parser.getTok().isNot(AsmToken::RCurly))
    return MatchOperand_ParseFail;
  SMLoc E = Parser.getTok().getEndLoc();
  Parser.Lex(); // Eat the '}'

  Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
  return MatchOperand_Success;
}

// For register list parsing, we need to map from raw GPR register numbering
// to the enumeration values. The enumeration values aren't sorted by
// register number due to our using "sp", "lr" and "pc" as canonical names.
static unsigned getNextRegister(unsigned Reg) {
  // If this is a GPR, we need to do it manually, otherwise we can rely
  // on the sort ordering of the enumeration since the other reg-classes
  // are sane.
  if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
    return Reg + 1;
  switch(Reg) {
  default: llvm_unreachable("Invalid GPR number!");
  case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
  case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
  case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
  case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
  case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
  case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
  case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
  case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
  }
}

// Insert an <Encoding, Register> pair in an ordered vector. Return true on
// success, or false, if duplicate encoding found.
static bool
insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
                   unsigned Enc, unsigned Reg) {
  Regs.emplace_back(Enc, Reg);
  for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) {
    if (J->first == Enc) {
      Regs.erase(J.base());
      return false;
    }
    if (J->first < Enc)
      break;
    std::swap(*I, *J);
  }
  return true;
}

/// Parse a register list.
bool ARMAsmParser::parseRegisterList(OperandVector &Operands,
                                     bool EnforceOrder) {
  MCAsmParser &Parser = getParser();
  if (Parser.getTok().isNot(AsmToken::LCurly))
    return TokError("Token is not a Left Curly Brace");
  SMLoc S = Parser.getTok().getLoc();
  Parser.Lex(); // Eat '{' token.
  SMLoc RegLoc = Parser.getTok().getLoc();

  // Check the first register in the list to see what register class
  // this is a list of.
  int Reg = tryParseRegister();
  if (Reg == -1)
    return Error(RegLoc, "register expected");

  // The reglist instructions have at most 16 registers, so reserve
  // space for that many.
  int EReg = 0;
  SmallVector<std::pair<unsigned, unsigned>, 16> Registers;

  // Allow Q regs and just interpret them as the two D sub-registers.
  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
    Reg = getDRegFromQReg(Reg);
    EReg = MRI->getEncodingValue(Reg);
    Registers.emplace_back(EReg, Reg);
    ++Reg;
  }
  const MCRegisterClass *RC;
  if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
    RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
  else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
    RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
  else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
    RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
  else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
    RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
  else
    return Error(RegLoc, "invalid register in register list");

  // Store the register.
  EReg = MRI->getEncodingValue(Reg);
  Registers.emplace_back(EReg, Reg);

  // This starts immediately after the first register token in the list,
  // so we can see either a comma or a minus (range separator) as a legal
  // next token.
  while (Parser.getTok().is(AsmToken::Comma) ||
         Parser.getTok().is(AsmToken::Minus)) {
    if (Parser.getTok().is(AsmToken::Minus)) {
      Parser.Lex(); // Eat the minus.
      SMLoc AfterMinusLoc = Parser.getTok().getLoc();
      int EndReg = tryParseRegister();
      if (EndReg == -1)
        return Error(AfterMinusLoc, "register expected");
      // Allow Q regs and just interpret them as the two D sub-registers.
      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
        EndReg = getDRegFromQReg(EndReg) + 1;
      // If the register is the same as the start reg, there's nothing
      // more to do.
      if (Reg == EndReg)
        continue;
      // The register must be in the same register class as the first.
      if (!RC->contains(EndReg))
        return Error(AfterMinusLoc, "invalid register in register list");
      // Ranges must go from low to high.
      if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
        return Error(AfterMinusLoc, "bad range in register list");

      // Add all the registers in the range to the register list.
      while (Reg != EndReg) {
        Reg = getNextRegister(Reg);
        EReg = MRI->getEncodingValue(Reg);
        if (!insertNoDuplicates(Registers, EReg, Reg)) {
          Warning(AfterMinusLoc, StringRef("duplicated register (") +
                                     ARMInstPrinter::getRegisterName(Reg) +
                                     ") in register list");
        }
      }
      continue;
    }
    Parser.Lex(); // Eat the comma.
    RegLoc = Parser.getTok().getLoc();
    int OldReg = Reg;
    const AsmToken RegTok = Parser.getTok();
    Reg = tryParseRegister();
    if (Reg == -1)
      return Error(RegLoc, "register expected");
    // Allow Q regs and just interpret them as the two D sub-registers.
    bool isQReg = false;
    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
      Reg = getDRegFromQReg(Reg);
      isQReg = true;
    }
    if (!RC->contains(Reg) &&
        RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() &&
        ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) {
      // switch the register classes, as GPRwithAPSRnospRegClassID is a partial
      // subset of GPRRegClassId except it contains APSR as well.
      RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
    }
    if (Reg == ARM::VPR &&
        (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] ||
         RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] ||
         RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) {
      RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID];
      EReg = MRI->getEncodingValue(Reg);
      if (!insertNoDuplicates(Registers, EReg, Reg)) {
        Warning(RegLoc, "duplicated register (" + RegTok.getString() +
                            ") in register list");
      }
      continue;
    }
    // The register must be in the same register class as the first.
    if (!RC->contains(Reg))
      return Error(RegLoc, "invalid register in register list");
    // In most cases, the list must be monotonically increasing. An
    // exception is CLRM, which is order-independent anyway, so
    // there's no potential for confusion if you write clrm {r2,r1}
    // instead of clrm {r1,r2}.
    if (EnforceOrder &&
        MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
      if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
        Warning(RegLoc, "register list not in ascending order");
      else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
        return Error(RegLoc, "register list not in ascending order");
    }
    // VFP register lists must also be contiguous.
    if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
        RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] &&
        Reg != OldReg + 1)
      return Error(RegLoc, "non-contiguous register range");
    EReg = MRI->getEncodingValue(Reg);
    if (!insertNoDuplicates(Registers, EReg, Reg)) {
      Warning(RegLoc, "duplicated register (" + RegTok.getString() +
                          ") in register list");
    }
    if (isQReg) {
      EReg = MRI->getEncodingValue(++Reg);
      Registers.emplace_back(EReg, Reg);
    }
  }

  if (Parser.getTok().isNot(AsmToken::RCurly))
    return Error(Parser.getTok().getLoc(), "'}' expected");
  SMLoc E = Parser.getTok().getEndLoc();
  Parser.Lex(); // Eat '}' token.

  // Push the register list operand.
  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));

  // The ARM system instruction variants for LDM/STM have a '^' token here.
  if (Parser.getTok().is(AsmToken::Caret)) {
    Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
    Parser.Lex(); // Eat '^' token.
  }

  return false;
}

// Helper function to parse the lane index for vector lists.
OperandMatchResultTy ARMAsmParser::
parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
  MCAsmParser &Parser = getParser();
  Index = 0; // Always return a defined index value.
  if (Parser.getTok().is(AsmToken::LBrac)) {
    Parser.Lex(); // Eat the '['.
    if (Parser.getTok().is(AsmToken::RBrac)) {
      // "Dn[]" is the 'all lanes' syntax.
      LaneKind = AllLanes;
      EndLoc = Parser.getTok().getEndLoc();
      Parser.Lex(); // Eat the ']'.
      return MatchOperand_Success;
    }

    // There's an optional '#' token here. Normally there wouldn't be, but
    // inline assemble puts one in, and it's friendly to accept that.
    if (Parser.getTok().is(AsmToken::Hash))
      Parser.Lex(); // Eat '#' or '$'.

    const MCExpr *LaneIndex;
    SMLoc Loc = Parser.getTok().getLoc();
    if (getParser().parseExpression(LaneIndex)) {
      Error(Loc, "illegal expression");
      return MatchOperand_ParseFail;
    }
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
    if (!CE) {
      Error(Loc, "lane index must be empty or an integer");
      return MatchOperand_ParseFail;
    }
    if (Parser.getTok().isNot(AsmToken::RBrac)) {
      Error(Parser.getTok().getLoc(), "']' expected");
      return MatchOperand_ParseFail;
    }
    EndLoc = Parser.getTok().getEndLoc();
    Parser.Lex(); // Eat the ']'.
    int64_t Val = CE->getValue();

    // FIXME: Make this range check context sensitive for .8, .16, .32.
    if (Val < 0 || Val > 7) {
      Error(Parser.getTok().getLoc(), "lane index out of range");
      return MatchOperand_ParseFail;
    }
    Index = Val;
    LaneKind = IndexedLane;
    return MatchOperand_Success;
  }
  LaneKind = NoLanes;
  return MatchOperand_Success;
}

// parse a vector register list
OperandMatchResultTy
ARMAsmParser::parseVectorList(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  VectorLaneTy LaneKind;
  unsigned LaneIndex;
  SMLoc S = Parser.getTok().getLoc();
  // As an extension (to match gas), support a plain D register or Q register
  // (without encosing curly braces) as a single or double entry list,
  // respectively.
  if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) {
    SMLoc E = Parser.getTok().getEndLoc();
    int Reg = tryParseRegister();
    if (Reg == -1)
      return MatchOperand_NoMatch;
    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
      if (Res != MatchOperand_Success)
        return Res;
      switch (LaneKind) {
      case NoLanes:
        Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
        break;
      case AllLanes:
        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
                                                                S, E));
        break;
      case IndexedLane:
        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
                                                               LaneIndex,
                                                               false, S, E));
        break;
      }
      return MatchOperand_Success;
    }
    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
      Reg = getDRegFromQReg(Reg);
      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
      if (Res != MatchOperand_Success)
        return Res;
      switch (LaneKind) {
      case NoLanes:
        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
        Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
        break;
      case AllLanes:
        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
                                                                S, E));
        break;
      case IndexedLane:
        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
                                                               LaneIndex,
                                                               false, S, E));
        break;
      }
      return MatchOperand_Success;
    }
    Error(S, "vector register expected");
    return MatchOperand_ParseFail;
  }

  if (Parser.getTok().isNot(AsmToken::LCurly))
    return MatchOperand_NoMatch;

  Parser.Lex(); // Eat '{' token.
  SMLoc RegLoc = Parser.getTok().getLoc();

  int Reg = tryParseRegister();
  if (Reg == -1) {
    Error(RegLoc, "register expected");
    return MatchOperand_ParseFail;
  }
  unsigned Count = 1;
  int Spacing = 0;
  unsigned FirstReg = Reg;

  if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
      Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected");
      return MatchOperand_ParseFail;
  }
  // The list is of D registers, but we also allow Q regs and just interpret
  // them as the two D sub-registers.
  else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
    FirstReg = Reg = getDRegFromQReg(Reg);
    Spacing = 1; // double-spacing requires explicit D registers, otherwise
                 // it's ambiguous with four-register single spaced.
    ++Reg;
    ++Count;
  }

  SMLoc E;
  if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
    return MatchOperand_ParseFail;

  while (Parser.getTok().is(AsmToken::Comma) ||
         Parser.getTok().is(AsmToken::Minus)) {
    if (Parser.getTok().is(AsmToken::Minus)) {
      if (!Spacing)
        Spacing = 1; // Register range implies a single spaced list.
      else if (Spacing == 2) {
        Error(Parser.getTok().getLoc(),
              "sequential registers in double spaced list");
        return MatchOperand_ParseFail;
      }
      Parser.Lex(); // Eat the minus.
      SMLoc AfterMinusLoc = Parser.getTok().getLoc();
      int EndReg = tryParseRegister();
      if (EndReg == -1) {
        Error(AfterMinusLoc, "register expected");
        return MatchOperand_ParseFail;
      }
      // Allow Q regs and just interpret them as the two D sub-registers.
      if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
        EndReg = getDRegFromQReg(EndReg) + 1;
      // If the register is the same as the start reg, there's nothing
      // more to do.
      if (Reg == EndReg)
        continue;
      // The register must be in the same register class as the first.
      if ((hasMVE() &&
           !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) ||
          (!hasMVE() &&
           !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) {
        Error(AfterMinusLoc, "invalid register in register list");
        return MatchOperand_ParseFail;
      }
      // Ranges must go from low to high.
      if (Reg > EndReg) {
        Error(AfterMinusLoc, "bad range in register list");
        return MatchOperand_ParseFail;
      }
      // Parse the lane specifier if present.
      VectorLaneTy NextLaneKind;
      unsigned NextLaneIndex;
      if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
          MatchOperand_Success)
        return MatchOperand_ParseFail;
      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
        Error(AfterMinusLoc, "mismatched lane index in register list");
        return MatchOperand_ParseFail;
      }

      // Add all the registers in the range to the register list.
      Count += EndReg - Reg;
      Reg = EndReg;
      continue;
    }
    Parser.Lex(); // Eat the comma.
    RegLoc = Parser.getTok().getLoc();
    int OldReg = Reg;
    Reg = tryParseRegister();
    if (Reg == -1) {
      Error(RegLoc, "register expected");
      return MatchOperand_ParseFail;
    }

    if (hasMVE()) {
      if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
        Error(RegLoc, "vector register in range Q0-Q7 expected");
        return MatchOperand_ParseFail;
      }
      Spacing = 1;
    }
    // vector register lists must be contiguous.
    // It's OK to use the enumeration values directly here rather, as the
    // VFP register classes have the enum sorted properly.
    //
    // The list is of D registers, but we also allow Q regs and just interpret
    // them as the two D sub-registers.
    else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
      if (!Spacing)
        Spacing = 1; // Register range implies a single spaced list.
      else if (Spacing == 2) {
        Error(RegLoc,
              "invalid register in double-spaced list (must be 'D' register')");
        return MatchOperand_ParseFail;
      }
      Reg = getDRegFromQReg(Reg);
      if (Reg != OldReg + 1) {
        Error(RegLoc, "non-contiguous register range");
        return MatchOperand_ParseFail;
      }
      ++Reg;
      Count += 2;
      // Parse the lane specifier if present.
      VectorLaneTy NextLaneKind;
      unsigned NextLaneIndex;
      SMLoc LaneLoc = Parser.getTok().getLoc();
      if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
          MatchOperand_Success)
        return MatchOperand_ParseFail;
      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
        Error(LaneLoc, "mismatched lane index in register list");
        return MatchOperand_ParseFail;
      }
      continue;
    }
    // Normal D register.
    // Figure out the register spacing (single or double) of the list if
    // we don't know it already.
    if (!Spacing)
      Spacing = 1 + (Reg == OldReg + 2);

    // Just check that it's contiguous and keep going.
    if (Reg != OldReg + Spacing) {
      Error(RegLoc, "non-contiguous register range");
      return MatchOperand_ParseFail;
    }
    ++Count;
    // Parse the lane specifier if present.
    VectorLaneTy NextLaneKind;
    unsigned NextLaneIndex;
    SMLoc EndLoc = Parser.getTok().getLoc();
    if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
      return MatchOperand_ParseFail;
    if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
      Error(EndLoc, "mismatched lane index in register list");
      return MatchOperand_ParseFail;
    }
  }

  if (Parser.getTok().isNot(AsmToken::RCurly)) {
    Error(Parser.getTok().getLoc(), "'}' expected");
    return MatchOperand_ParseFail;
  }
  E = Parser.getTok().getEndLoc();
  Parser.Lex(); // Eat '}' token.

  switch (LaneKind) {
  case NoLanes:
  case AllLanes: {
    // Two-register operands have been converted to the
    // composite register classes.
    if (Count == 2 && !hasMVE()) {
      const MCRegisterClass *RC = (Spacing == 1) ?
        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
    }
    auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList :
                   ARMOperand::CreateVectorListAllLanes);
    Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E));
    break;
  }
  case IndexedLane:
    Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
                                                           LaneIndex,
                                                           (Spacing == 2),
                                                           S, E));
    break;
  }
  return MatchOperand_Success;
}

/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
OperandMatchResultTy
ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  unsigned Opt;

  if (Tok.is(AsmToken::Identifier)) {
    StringRef OptStr = Tok.getString();

    Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
      .Case("sy",    ARM_MB::SY)
      .Case("st",    ARM_MB::ST)
      .Case("ld",    ARM_MB::LD)
      .Case("sh",    ARM_MB::ISH)
      .Case("ish",   ARM_MB::ISH)
      .Case("shst",  ARM_MB::ISHST)
      .Case("ishst", ARM_MB::ISHST)
      .Case("ishld", ARM_MB::ISHLD)
      .Case("nsh",   ARM_MB::NSH)
      .Case("un",    ARM_MB::NSH)
      .Case("nshst", ARM_MB::NSHST)
      .Case("nshld", ARM_MB::NSHLD)
      .Case("unst",  ARM_MB::NSHST)
      .Case("osh",   ARM_MB::OSH)
      .Case("oshst", ARM_MB::OSHST)
      .Case("oshld", ARM_MB::OSHLD)
      .Default(~0U);

    // ishld, oshld, nshld and ld are only available from ARMv8.
    if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
                        Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
      Opt = ~0U;

    if (Opt == ~0U)
      return MatchOperand_NoMatch;

    Parser.Lex(); // Eat identifier token.
  } else if (Tok.is(AsmToken::Hash) ||
             Tok.is(AsmToken::Dollar) ||
             Tok.is(AsmToken::Integer)) {
    if (Parser.getTok().isNot(AsmToken::Integer))
      Parser.Lex(); // Eat '#' or '$'.
    SMLoc Loc = Parser.getTok().getLoc();

    const MCExpr *MemBarrierID;
    if (getParser().parseExpression(MemBarrierID)) {
      Error(Loc, "illegal expression");
      return MatchOperand_ParseFail;
    }

    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
    if (!CE) {
      Error(Loc, "constant expression expected");
      return MatchOperand_ParseFail;
    }

    int Val = CE->getValue();
    if (Val & ~0xf) {
      Error(Loc, "immediate value out of range");
      return MatchOperand_ParseFail;
    }

    Opt = ARM_MB::RESERVED_0 + Val;
  } else
    return MatchOperand_ParseFail;

  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
  return MatchOperand_Success;
}

OperandMatchResultTy
ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();

  if (Tok.isNot(AsmToken::Identifier))
     return MatchOperand_NoMatch;

  if (!Tok.getString().equals_lower("csync"))
    return MatchOperand_NoMatch;

  Parser.Lex(); // Eat identifier token.

  Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
  return MatchOperand_Success;
}

/// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
OperandMatchResultTy
ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  unsigned Opt;

  if (Tok.is(AsmToken::Identifier)) {
    StringRef OptStr = Tok.getString();

    if (OptStr.equals_lower("sy"))
      Opt = ARM_ISB::SY;
    else
      return MatchOperand_NoMatch;

    Parser.Lex(); // Eat identifier token.
  } else if (Tok.is(AsmToken::Hash) ||
             Tok.is(AsmToken::Dollar) ||
             Tok.is(AsmToken::Integer)) {
    if (Parser.getTok().isNot(AsmToken::Integer))
      Parser.Lex(); // Eat '#' or '$'.
    SMLoc Loc = Parser.getTok().getLoc();

    const MCExpr *ISBarrierID;
    if (getParser().parseExpression(ISBarrierID)) {
      Error(Loc, "illegal expression");
      return MatchOperand_ParseFail;
    }

    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
    if (!CE) {
      Error(Loc, "constant expression expected");
      return MatchOperand_ParseFail;
    }

    int Val = CE->getValue();
    if (Val & ~0xf) {
      Error(Loc, "immediate value out of range");
      return MatchOperand_ParseFail;
    }

    Opt = ARM_ISB::RESERVED_0 + Val;
  } else
    return MatchOperand_ParseFail;

  Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
          (ARM_ISB::InstSyncBOpt)Opt, S));
  return MatchOperand_Success;
}


/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
OperandMatchResultTy
ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (!Tok.is(AsmToken::Identifier))
    return MatchOperand_NoMatch;
  StringRef IFlagsStr = Tok.getString();

  // An iflags string of "none" is interpreted to mean that none of the AIF
  // bits are set.  Not a terribly useful instruction, but a valid encoding.
  unsigned IFlags = 0;
  if (IFlagsStr != "none") {
        for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
      unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
        .Case("a", ARM_PROC::A)
        .Case("i", ARM_PROC::I)
        .Case("f", ARM_PROC::F)
        .Default(~0U);

      // If some specific iflag is already set, it means that some letter is
      // present more than once, this is not acceptable.
      if (Flag == ~0U || (IFlags & Flag))
        return MatchOperand_NoMatch;

      IFlags |= Flag;
    }
  }

  Parser.Lex(); // Eat identifier token.
  Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
  return MatchOperand_Success;
}

/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
OperandMatchResultTy
ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();

  if (Tok.is(AsmToken::Integer)) {
    int64_t Val = Tok.getIntVal();
    if (Val > 255 || Val < 0) {
      return MatchOperand_NoMatch;
    }
    unsigned SYSmvalue = Val & 0xFF;
    Parser.Lex();
    Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
    return MatchOperand_Success;
  }

  if (!Tok.is(AsmToken::Identifier))
    return MatchOperand_NoMatch;
  StringRef Mask = Tok.getString();

  if (isMClass()) {
    auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
    if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
      return MatchOperand_NoMatch;

    unsigned SYSmvalue = TheReg->Encoding & 0xFFF;

    Parser.Lex(); // Eat identifier token.
    Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
    return MatchOperand_Success;
  }

  // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
  size_t Start = 0, Next = Mask.find('_');
  StringRef Flags = "";
  std::string SpecReg = Mask.slice(Start, Next).lower();
  if (Next != StringRef::npos)
    Flags = Mask.slice(Next+1, Mask.size());

  // FlagsVal contains the complete mask:
  // 3-0: Mask
  // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
  unsigned FlagsVal = 0;

  if (SpecReg == "apsr") {
    FlagsVal = StringSwitch<unsigned>(Flags)
    .Case("nzcvq",  0x8) // same as CPSR_f
    .Case("g",      0x4) // same as CPSR_s
    .Case("nzcvqg", 0xc) // same as CPSR_fs
    .Default(~0U);

    if (FlagsVal == ~0U) {
      if (!Flags.empty())
        return MatchOperand_NoMatch;
      else
        FlagsVal = 8; // No flag
    }
  } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
    // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
    if (Flags == "all" || Flags == "")
      Flags = "fc";
    for (int i = 0, e = Flags.size(); i != e; ++i) {
      unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
      .Case("c", 1)
      .Case("x", 2)
      .Case("s", 4)
      .Case("f", 8)
      .Default(~0U);

      // If some specific flag is already set, it means that some letter is
      // present more than once, this is not acceptable.
      if (Flag == ~0U || (FlagsVal & Flag))
        return MatchOperand_NoMatch;
      FlagsVal |= Flag;
    }
  } else // No match for special register.
    return MatchOperand_NoMatch;

  // Special register without flags is NOT equivalent to "fc" flags.
  // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
  // two lines would enable gas compatibility at the expense of breaking
  // round-tripping.
  //
  // if (!FlagsVal)
  //  FlagsVal = 0x9;

  // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
  if (SpecReg == "spsr")
    FlagsVal |= 16;

  Parser.Lex(); // Eat identifier token.
  Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
  return MatchOperand_Success;
}

/// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
/// use in the MRS/MSR instructions added to support virtualization.
OperandMatchResultTy
ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (!Tok.is(AsmToken::Identifier))
    return MatchOperand_NoMatch;
  StringRef RegName = Tok.getString();

  auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
  if (!TheReg)
    return MatchOperand_NoMatch;
  unsigned Encoding = TheReg->Encoding;

  Parser.Lex(); // Eat identifier token.
  Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
  return MatchOperand_Success;
}

OperandMatchResultTy
ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
                          int High) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier)) {
    Error(Parser.getTok().getLoc(), Op + " operand expected.");
    return MatchOperand_ParseFail;
  }
  StringRef ShiftName = Tok.getString();
  std::string LowerOp = Op.lower();
  std::string UpperOp = Op.upper();
  if (ShiftName != LowerOp && ShiftName != UpperOp) {
    Error(Parser.getTok().getLoc(), Op + " operand expected.");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat shift type token.

  // There must be a '#' and a shift amount.
  if (Parser.getTok().isNot(AsmToken::Hash) &&
      Parser.getTok().isNot(AsmToken::Dollar)) {
    Error(Parser.getTok().getLoc(), "'#' expected");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat hash token.

  const MCExpr *ShiftAmount;
  SMLoc Loc = Parser.getTok().getLoc();
  SMLoc EndLoc;
  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
    Error(Loc, "illegal expression");
    return MatchOperand_ParseFail;
  }
  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
  if (!CE) {
    Error(Loc, "constant expression expected");
    return MatchOperand_ParseFail;
  }
  int Val = CE->getValue();
  if (Val < Low || Val > High) {
    Error(Loc, "immediate value out of range");
    return MatchOperand_ParseFail;
  }

  Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));

  return MatchOperand_Success;
}

OperandMatchResultTy
ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  SMLoc S = Tok.getLoc();
  if (Tok.isNot(AsmToken::Identifier)) {
    Error(S, "'be' or 'le' operand expected");
    return MatchOperand_ParseFail;
  }
  int Val = StringSwitch<int>(Tok.getString().lower())
    .Case("be", 1)
    .Case("le", 0)
    .Default(-1);
  Parser.Lex(); // Eat the token.

  if (Val == -1) {
    Error(S, "'be' or 'le' operand expected");
    return MatchOperand_ParseFail;
  }
  Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
                                                                  getContext()),
                                           S, Tok.getEndLoc()));
  return MatchOperand_Success;
}

/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
/// instructions. Legal values are:
///     lsl #n  'n' in [0,31]
///     asr #n  'n' in [1,32]
///             n == 32 encoded as n == 0.
OperandMatchResultTy
ARMAsmParser::parseShifterImm(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  SMLoc S = Tok.getLoc();
  if (Tok.isNot(AsmToken::Identifier)) {
    Error(S, "shift operator 'asr' or 'lsl' expected");
    return MatchOperand_ParseFail;
  }
  StringRef ShiftName = Tok.getString();
  bool isASR;
  if (ShiftName == "lsl" || ShiftName == "LSL")
    isASR = false;
  else if (ShiftName == "asr" || ShiftName == "ASR")
    isASR = true;
  else {
    Error(S, "shift operator 'asr' or 'lsl' expected");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat the operator.

  // A '#' and a shift amount.
  if (Parser.getTok().isNot(AsmToken::Hash) &&
      Parser.getTok().isNot(AsmToken::Dollar)) {
    Error(Parser.getTok().getLoc(), "'#' expected");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat hash token.
  SMLoc ExLoc = Parser.getTok().getLoc();

  const MCExpr *ShiftAmount;
  SMLoc EndLoc;
  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
    Error(ExLoc, "malformed shift expression");
    return MatchOperand_ParseFail;
  }
  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
  if (!CE) {
    Error(ExLoc, "shift amount must be an immediate");
    return MatchOperand_ParseFail;
  }

  int64_t Val = CE->getValue();
  if (isASR) {
    // Shift amount must be in [1,32]
    if (Val < 1 || Val > 32) {
      Error(ExLoc, "'asr' shift amount must be in range [1,32]");
      return MatchOperand_ParseFail;
    }
    // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
    if (isThumb() && Val == 32) {
      Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
      return MatchOperand_ParseFail;
    }
    if (Val == 32) Val = 0;
  } else {
    // Shift amount must be in [1,32]
    if (Val < 0 || Val > 31) {
      Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
      return MatchOperand_ParseFail;
    }
  }

  Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));

  return MatchOperand_Success;
}

/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
/// of instructions. Legal values are:
///     ror #n  'n' in {0, 8, 16, 24}
OperandMatchResultTy
ARMAsmParser::parseRotImm(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  SMLoc S = Tok.getLoc();
  if (Tok.isNot(AsmToken::Identifier))
    return MatchOperand_NoMatch;
  StringRef ShiftName = Tok.getString();
  if (ShiftName != "ror" && ShiftName != "ROR")
    return MatchOperand_NoMatch;
  Parser.Lex(); // Eat the operator.

  // A '#' and a rotate amount.
  if (Parser.getTok().isNot(AsmToken::Hash) &&
      Parser.getTok().isNot(AsmToken::Dollar)) {
    Error(Parser.getTok().getLoc(), "'#' expected");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat hash token.
  SMLoc ExLoc = Parser.getTok().getLoc();

  const MCExpr *ShiftAmount;
  SMLoc EndLoc;
  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
    Error(ExLoc, "malformed rotate expression");
    return MatchOperand_ParseFail;
  }
  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
  if (!CE) {
    Error(ExLoc, "rotate amount must be an immediate");
    return MatchOperand_ParseFail;
  }

  int64_t Val = CE->getValue();
  // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
  // normally, zero is represented in asm by omitting the rotate operand
  // entirely.
  if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
    Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
    return MatchOperand_ParseFail;
  }

  Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));

  return MatchOperand_Success;
}

OperandMatchResultTy
ARMAsmParser::parseModImm(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  MCAsmLexer &Lexer = getLexer();
  int64_t Imm1, Imm2;

  SMLoc S = Parser.getTok().getLoc();

  // 1) A mod_imm operand can appear in the place of a register name:
  //   add r0, #mod_imm
  //   add r0, r0, #mod_imm
  // to correctly handle the latter, we bail out as soon as we see an
  // identifier.
  //
  // 2) Similarly, we do not want to parse into complex operands:
  //   mov r0, #mod_imm
  //   mov r0, :lower16:(_foo)
  if (Parser.getTok().is(AsmToken::Identifier) ||
      Parser.getTok().is(AsmToken::Colon))
    return MatchOperand_NoMatch;

  // Hash (dollar) is optional as per the ARMARM
  if (Parser.getTok().is(AsmToken::Hash) ||
      Parser.getTok().is(AsmToken::Dollar)) {
    // Avoid parsing into complex operands (#:)
    if (Lexer.peekTok().is(AsmToken::Colon))
      return MatchOperand_NoMatch;

    // Eat the hash (dollar)
    Parser.Lex();
  }

  SMLoc Sx1, Ex1;
  Sx1 = Parser.getTok().getLoc();
  const MCExpr *Imm1Exp;
  if (getParser().parseExpression(Imm1Exp, Ex1)) {
    Error(Sx1, "malformed expression");
    return MatchOperand_ParseFail;
  }

  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);

  if (CE) {
    // Immediate must fit within 32-bits
    Imm1 = CE->getValue();
    int Enc = ARM_AM::getSOImmVal(Imm1);
    if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
      // We have a match!
      Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
                                                  (Enc & 0xF00) >> 7,
                                                  Sx1, Ex1));
      return MatchOperand_Success;
    }

    // We have parsed an immediate which is not for us, fallback to a plain
    // immediate. This can happen for instruction aliases. For an example,
    // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
    // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
    // instruction with a mod_imm operand. The alias is defined such that the
    // parser method is shared, that's why we have to do this here.
    if (Parser.getTok().is(AsmToken::EndOfStatement)) {
      Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
      return MatchOperand_Success;
    }
  } else {
    // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
    // MCFixup). Fallback to a plain immediate.
    Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
    return MatchOperand_Success;
  }

  // From this point onward, we expect the input to be a (#bits, #rot) pair
  if (Parser.getTok().isNot(AsmToken::Comma)) {
    Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
    return MatchOperand_ParseFail;
  }

  if (Imm1 & ~0xFF) {
    Error(Sx1, "immediate operand must a number in the range [0, 255]");
    return MatchOperand_ParseFail;
  }

  // Eat the comma
  Parser.Lex();

  // Repeat for #rot
  SMLoc Sx2, Ex2;
  Sx2 = Parser.getTok().getLoc();

  // Eat the optional hash (dollar)
  if (Parser.getTok().is(AsmToken::Hash) ||
      Parser.getTok().is(AsmToken::Dollar))
    Parser.Lex();

  const MCExpr *Imm2Exp;
  if (getParser().parseExpression(Imm2Exp, Ex2)) {
    Error(Sx2, "malformed expression");
    return MatchOperand_ParseFail;
  }

  CE = dyn_cast<MCConstantExpr>(Imm2Exp);

  if (CE) {
    Imm2 = CE->getValue();
    if (!(Imm2 & ~0x1E)) {
      // We have a match!
      Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
      return MatchOperand_Success;
    }
    Error(Sx2, "immediate operand must an even number in the range [0, 30]");
    return MatchOperand_ParseFail;
  } else {
    Error(Sx2, "constant expression expected");
    return MatchOperand_ParseFail;
  }
}

OperandMatchResultTy
ARMAsmParser::parseBitfield(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S = Parser.getTok().getLoc();
  // The bitfield descriptor is really two operands, the LSB and the width.
  if (Parser.getTok().isNot(AsmToken::Hash) &&
      Parser.getTok().isNot(AsmToken::Dollar)) {
    Error(Parser.getTok().getLoc(), "'#' expected");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat hash token.

  const MCExpr *LSBExpr;
  SMLoc E = Parser.getTok().getLoc();
  if (getParser().parseExpression(LSBExpr)) {
    Error(E, "malformed immediate expression");
    return MatchOperand_ParseFail;
  }
  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
  if (!CE) {
    Error(E, "'lsb' operand must be an immediate");
    return MatchOperand_ParseFail;
  }

  int64_t LSB = CE->getValue();
  // The LSB must be in the range [0,31]
  if (LSB < 0 || LSB > 31) {
    Error(E, "'lsb' operand must be in the range [0,31]");
    return MatchOperand_ParseFail;
  }
  E = Parser.getTok().getLoc();

  // Expect another immediate operand.
  if (Parser.getTok().isNot(AsmToken::Comma)) {
    Error(Parser.getTok().getLoc(), "too few operands");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat hash token.
  if (Parser.getTok().isNot(AsmToken::Hash) &&
      Parser.getTok().isNot(AsmToken::Dollar)) {
    Error(Parser.getTok().getLoc(), "'#' expected");
    return MatchOperand_ParseFail;
  }
  Parser.Lex(); // Eat hash token.

  const MCExpr *WidthExpr;
  SMLoc EndLoc;
  if (getParser().parseExpression(WidthExpr, EndLoc)) {
    Error(E, "malformed immediate expression");
    return MatchOperand_ParseFail;
  }
  CE = dyn_cast<MCConstantExpr>(WidthExpr);
  if (!CE) {
    Error(E, "'width' operand must be an immediate");
    return MatchOperand_ParseFail;
  }

  int64_t Width = CE->getValue();
  // The LSB must be in the range [1,32-lsb]
  if (Width < 1 || Width > 32 - LSB) {
    Error(E, "'width' operand must be in the range [1,32-lsb]");
    return MatchOperand_ParseFail;
  }

  Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));

  return MatchOperand_Success;
}

OperandMatchResultTy
ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
  // Check for a post-index addressing register operand. Specifically:
  // postidx_reg := '+' register {, shift}
  //              | '-' register {, shift}
  //              | register {, shift}

  // This method must return MatchOperand_NoMatch without consuming any tokens
  // in the case where there is no match, as other alternatives take other
  // parse methods.
  MCAsmParser &Parser = getParser();
  AsmToken Tok = Parser.getTok();
  SMLoc S = Tok.getLoc();
  bool haveEaten = false;
  bool isAdd = true;
  if (Tok.is(AsmToken::Plus)) {
    Parser.Lex(); // Eat the '+' token.
    haveEaten = true;
  } else if (Tok.is(AsmToken::Minus)) {
    Parser.Lex(); // Eat the '-' token.
    isAdd = false;
    haveEaten = true;
  }

  SMLoc E = Parser.getTok().getEndLoc();
  int Reg = tryParseRegister();
  if (Reg == -1) {
    if (!haveEaten)
      return MatchOperand_NoMatch;
    Error(Parser.getTok().getLoc(), "register expected");
    return MatchOperand_ParseFail;
  }

  ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
  unsigned ShiftImm = 0;
  if (Parser.getTok().is(AsmToken::Comma)) {
    Parser.Lex(); // Eat the ','.
    if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
      return MatchOperand_ParseFail;

    // FIXME: Only approximates end...may include intervening whitespace.
    E = Parser.getTok().getLoc();
  }

  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
                                                  ShiftImm, S, E));

  return MatchOperand_Success;
}

OperandMatchResultTy
ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
  // Check for a post-index addressing register operand. Specifically:
  // am3offset := '+' register
  //              | '-' register
  //              | register
  //              | # imm
  //              | # + imm
  //              | # - imm

  // This method must return MatchOperand_NoMatch without consuming any tokens
  // in the case where there is no match, as other alternatives take other
  // parse methods.
  MCAsmParser &Parser = getParser();
  AsmToken Tok = Parser.getTok();
  SMLoc S = Tok.getLoc();

  // Do immediates first, as we always parse those if we have a '#'.
  if (Parser.getTok().is(AsmToken::Hash) ||
      Parser.getTok().is(AsmToken::Dollar)) {
    Parser.Lex(); // Eat '#' or '$'.
    // Explicitly look for a '-', as we need to encode negative zero
    // differently.
    bool isNegative = Parser.getTok().is(AsmToken::Minus);
    const MCExpr *Offset;
    SMLoc E;
    if (getParser().parseExpression(Offset, E))
      return MatchOperand_ParseFail;
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
    if (!CE) {
      Error(S, "constant expression expected");
      return MatchOperand_ParseFail;
    }
    // Negative zero is encoded as the flag value
    // std::numeric_limits<int32_t>::min().
    int32_t Val = CE->getValue();
    if (isNegative && Val == 0)
      Val = std::numeric_limits<int32_t>::min();

    Operands.push_back(
      ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));

    return MatchOperand_Success;
  }

  bool haveEaten = false;
  bool isAdd = true;
  if (Tok.is(AsmToken::Plus)) {
    Parser.Lex(); // Eat the '+' token.
    haveEaten = true;
  } else if (Tok.is(AsmToken::Minus)) {
    Parser.Lex(); // Eat the '-' token.
    isAdd = false;
    haveEaten = true;
  }

  Tok = Parser.getTok();
  int Reg = tryParseRegister();
  if (Reg == -1) {
    if (!haveEaten)
      return MatchOperand_NoMatch;
    Error(Tok.getLoc(), "register expected");
    return MatchOperand_ParseFail;
  }

  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
                                                  0, S, Tok.getEndLoc()));

  return MatchOperand_Success;
}

/// Convert parsed operands to MCInst.  Needed here because this instruction
/// only has two register operands, but multiplication is commutative so
/// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
                                    const OperandVector &Operands) {
  ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
  ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
  // If we have a three-operand form, make sure to set Rn to be the operand
  // that isn't the same as Rd.
  unsigned RegOp = 4;
  if (Operands.size() == 6 &&
      ((ARMOperand &)*Operands[4]).getReg() ==
          ((ARMOperand &)*Operands[3]).getReg())
    RegOp = 5;
  ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
  Inst.addOperand(Inst.getOperand(0));
  ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
}

void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
                                    const OperandVector &Operands) {
  int CondOp = -1, ImmOp = -1;
  switch(Inst.getOpcode()) {
    case ARM::tB:
    case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;

    case ARM::t2B:
    case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;

    default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
  }
  // first decide whether or not the branch should be conditional
  // by looking at it's location relative to an IT block
  if(inITBlock()) {
    // inside an IT block we cannot have any conditional branches. any
    // such instructions needs to be converted to unconditional form
    switch(Inst.getOpcode()) {
      case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
      case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
    }
  } else {
    // outside IT blocks we can only have unconditional branches with AL
    // condition code or conditional branches with non-AL condition code
    unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
    switch(Inst.getOpcode()) {
      case ARM::tB:
      case ARM::tBcc:
        Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
        break;
      case ARM::t2B:
      case ARM::t2Bcc:
        Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
        break;
    }
  }

  // now decide on encoding size based on branch target range
  switch(Inst.getOpcode()) {
    // classify tB as either t2B or t1B based on range of immediate operand
    case ARM::tB: {
      ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
      if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
        Inst.setOpcode(ARM::t2B);
      break;
    }
    // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
    case ARM::tBcc: {
      ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
      if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
        Inst.setOpcode(ARM::t2Bcc);
      break;
    }
  }
  ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
  ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
}

void ARMAsmParser::cvtMVEVMOVQtoDReg(
  MCInst &Inst, const OperandVector &Operands) {

  // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2
  assert(Operands.size() == 8);

  ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt
  ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2
  ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd
  ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx
  // skip second copy of Qd in Operands[6]
  ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2
  ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code
}

/// Parse an ARM memory expression, return false if successful else return true
/// or an error.  The first token must be a '[' when called.
bool ARMAsmParser::parseMemory(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  SMLoc S, E;
  if (Parser.getTok().isNot(AsmToken::LBrac))
    return TokError("Token is not a Left Bracket");
  S = Parser.getTok().getLoc();
  Parser.Lex(); // Eat left bracket token.

  const AsmToken &BaseRegTok = Parser.getTok();
  int BaseRegNum = tryParseRegister();
  if (BaseRegNum == -1)
    return Error(BaseRegTok.getLoc(), "register expected");

  // The next token must either be a comma, a colon or a closing bracket.
  const AsmToken &Tok = Parser.getTok();
  if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
      !Tok.is(AsmToken::RBrac))
    return Error(Tok.getLoc(), "malformed memory operand");

  if (Tok.is(AsmToken::RBrac)) {
    E = Tok.getEndLoc();
    Parser.Lex(); // Eat right bracket token.

    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
                                             ARM_AM::no_shift, 0, 0, false,
                                             S, E));

    // If there's a pre-indexing writeback marker, '!', just add it as a token
    // operand. It's rather odd, but syntactically valid.
    if (Parser.getTok().is(AsmToken::Exclaim)) {
      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
      Parser.Lex(); // Eat the '!'.
    }

    return false;
  }

  assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
         "Lost colon or comma in memory operand?!");
  if (Tok.is(AsmToken::Comma)) {
    Parser.Lex(); // Eat the comma.
  }

  // If we have a ':', it's an alignment specifier.
  if (Parser.getTok().is(AsmToken::Colon)) {
    Parser.Lex(); // Eat the ':'.
    E = Parser.getTok().getLoc();
    SMLoc AlignmentLoc = Tok.getLoc();

    const MCExpr *Expr;
    if (getParser().parseExpression(Expr))
     return true;

    // The expression has to be a constant. Memory references with relocations
    // don't come through here, as they use the <label> forms of the relevant
    // instructions.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
    if (!CE)
      return Error (E, "constant expression expected");

    unsigned Align = 0;
    switch (CE->getValue()) {
    default:
      return Error(E,
                   "alignment specifier must be 16, 32, 64, 128, or 256 bits");
    case 16:  Align = 2; break;
    case 32:  Align = 4; break;
    case 64:  Align = 8; break;
    case 128: Align = 16; break;
    case 256: Align = 32; break;
    }

    // Now we should have the closing ']'
    if (Parser.getTok().isNot(AsmToken::RBrac))
      return Error(Parser.getTok().getLoc(), "']' expected");
    E = Parser.getTok().getEndLoc();
    Parser.Lex(); // Eat right bracket token.

    // Don't worry about range checking the value here. That's handled by
    // the is*() predicates.
    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
                                             ARM_AM::no_shift, 0, Align,
                                             false, S, E, AlignmentLoc));

    // If there's a pre-indexing writeback marker, '!', just add it as a token
    // operand.
    if (Parser.getTok().is(AsmToken::Exclaim)) {
      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
      Parser.Lex(); // Eat the '!'.
    }

    return false;
  }

  // If we have a '#' or '$', it's an immediate offset, else assume it's a
  // register offset. Be friendly and also accept a plain integer or expression
  // (without a leading hash) for gas compatibility.
  if (Parser.getTok().is(AsmToken::Hash) ||
      Parser.getTok().is(AsmToken::Dollar) ||
      Parser.getTok().is(AsmToken::LParen) ||
      Parser.getTok().is(AsmToken::Integer)) {
    if (Parser.getTok().is(AsmToken::Hash) ||
        Parser.getTok().is(AsmToken::Dollar))
      Parser.Lex(); // Eat '#' or '$'
    E = Parser.getTok().getLoc();

    bool isNegative = getParser().getTok().is(AsmToken::Minus);
    const MCExpr *Offset;
    if (getParser().parseExpression(Offset))
     return true;

    // The expression has to be a constant. Memory references with relocations
    // don't come through here, as they use the <label> forms of the relevant
    // instructions.
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
    if (!CE)
      return Error (E, "constant expression expected");

    // If the constant was #-0, represent it as
    // std::numeric_limits<int32_t>::min().
    int32_t Val = CE->getValue();
    if (isNegative && Val == 0)
      CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
                                  getContext());

    // Now we should have the closing ']'
    if (Parser.getTok().isNot(AsmToken::RBrac))
      return Error(Parser.getTok().getLoc(), "']' expected");
    E = Parser.getTok().getEndLoc();
    Parser.Lex(); // Eat right bracket token.

    // Don't worry about range checking the value here. That's handled by
    // the is*() predicates.
    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
                                             ARM_AM::no_shift, 0, 0,
                                             false, S, E));

    // If there's a pre-indexing writeback marker, '!', just add it as a token
    // operand.
    if (Parser.getTok().is(AsmToken::Exclaim)) {
      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
      Parser.Lex(); // Eat the '!'.
    }

    return false;
  }

  // The register offset is optionally preceded by a '+' or '-'
  bool isNegative = false;
  if (Parser.getTok().is(AsmToken::Minus)) {
    isNegative = true;
    Parser.Lex(); // Eat the '-'.
  } else if (Parser.getTok().is(AsmToken::Plus)) {
    // Nothing to do.
    Parser.Lex(); // Eat the '+'.
  }

  E = Parser.getTok().getLoc();
  int OffsetRegNum = tryParseRegister();
  if (OffsetRegNum == -1)
    return Error(E, "register expected");

  // If there's a shift operator, handle it.
  ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
  unsigned ShiftImm = 0;
  if (Parser.getTok().is(AsmToken::Comma)) {
    Parser.Lex(); // Eat the ','.
    if (parseMemRegOffsetShift(ShiftType, ShiftImm))
      return true;
  }

  // Now we should have the closing ']'
  if (Parser.getTok().isNot(AsmToken::RBrac))
    return Error(Parser.getTok().getLoc(), "']' expected");
  E = Parser.getTok().getEndLoc();
  Parser.Lex(); // Eat right bracket token.

  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
                                           ShiftType, ShiftImm, 0, isNegative,
                                           S, E));

  // If there's a pre-indexing writeback marker, '!', just add it as a token
  // operand.
  if (Parser.getTok().is(AsmToken::Exclaim)) {
    Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
    Parser.Lex(); // Eat the '!'.
  }

  return false;
}

/// parseMemRegOffsetShift - one of these two:
///   ( lsl | lsr | asr | ror ) , # shift_amount
///   rrx
/// return true if it parses a shift otherwise it returns false.
bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
                                          unsigned &Amount) {
  MCAsmParser &Parser = getParser();
  SMLoc Loc = Parser.getTok().getLoc();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier))
    return Error(Loc, "illegal shift operator");
  StringRef ShiftName = Tok.getString();
  if (ShiftName == "lsl" || ShiftName == "LSL" ||
      ShiftName == "asl" || ShiftName == "ASL")
    St = ARM_AM::lsl;
  else if (ShiftName == "lsr" || ShiftName == "LSR")
    St = ARM_AM::lsr;
  else if (ShiftName == "asr" || ShiftName == "ASR")
    St = ARM_AM::asr;
  else if (ShiftName == "ror" || ShiftName == "ROR")
    St = ARM_AM::ror;
  else if (ShiftName == "rrx" || ShiftName == "RRX")
    St = ARM_AM::rrx;
  else if (ShiftName == "uxtw" || ShiftName == "UXTW")
    St = ARM_AM::uxtw;
  else
    return Error(Loc, "illegal shift operator");
  Parser.Lex(); // Eat shift type token.

  // rrx stands alone.
  Amount = 0;
  if (St != ARM_AM::rrx) {
    Loc = Parser.getTok().getLoc();
    // A '#' and a shift amount.
    const AsmToken &HashTok = Parser.getTok();
    if (HashTok.isNot(AsmToken::Hash) &&
        HashTok.isNot(AsmToken::Dollar))
      return Error(HashTok.getLoc(), "'#' expected");
    Parser.Lex(); // Eat hash token.

    const MCExpr *Expr;
    if (getParser().parseExpression(Expr))
      return true;
    // Range check the immediate.
    // lsl, ror: 0 <= imm <= 31
    // lsr, asr: 0 <= imm <= 32
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
    if (!CE)
      return Error(Loc, "shift amount must be an immediate");
    int64_t Imm = CE->getValue();
    if (Imm < 0 ||
        ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
        ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
      return Error(Loc, "immediate shift value out of range");
    // If <ShiftTy> #0, turn it into a no_shift.
    if (Imm == 0)
      St = ARM_AM::lsl;
    // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
    if (Imm == 32)
      Imm = 0;
    Amount = Imm;
  }

  return false;
}

/// parseFPImm - A floating point immediate expression operand.
OperandMatchResultTy
ARMAsmParser::parseFPImm(OperandVector &Operands) {
  MCAsmParser &Parser = getParser();
  // Anything that can accept a floating point constant as an operand
  // needs to go through here, as the regular parseExpression is
  // integer only.
  //
  // This routine still creates a generic Immediate operand, containing
  // a bitcast of the 64-bit floating point value. The various operands
  // that accept floats can check whether the value is valid for them
  // via the standard is*() predicates.

  SMLoc S = Parser.getTok().getLoc();

  if (Parser.getTok().isNot(AsmToken::Hash) &&
      Parser.getTok().isNot(AsmToken::Dollar))
    return MatchOperand_NoMatch;

  // Disambiguate the VMOV forms that can accept an FP immediate.
  // vmov.f32 <sreg>, #imm
  // vmov.f64 <dreg>, #imm
  // vmov.f32 <dreg>, #imm  @ vector f32x2
  // vmov.f32 <qreg>, #imm  @ vector f32x4
  //
  // There are also the NEON VMOV instructions which expect an
  // integer constant. Make sure we don't try to parse an FPImm
  // for these:
  // vmov.i{8|16|32|64} <dreg|qreg>, #imm
  ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
  bool isVmovf = TyOp.isToken() &&
                 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
                  TyOp.getToken() == ".f16");
  ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
  bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
                                         Mnemonic.getToken() == "fconsts");
  if (!(isVmovf || isFconst))
    return MatchOperand_NoMatch;

  Parser.Lex(); // Eat '#' or '$'.

  // Handle negation, as that still comes through as a separate token.
  bool isNegative = false;
  if (Parser.getTok().is(AsmToken::Minus)) {
    isNegative = true;
    Parser.Lex();
  }
  const AsmToken &Tok = Parser.getTok();
  SMLoc Loc = Tok.getLoc();
  if (Tok.is(AsmToken::Real) && isVmovf) {
    APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
    uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
    // If we had a '-' in front, toggle the sign bit.
    IntVal ^= (uint64_t)isNegative << 31;
    Parser.Lex(); // Eat the token.
    Operands.push_back(ARMOperand::CreateImm(
          MCConstantExpr::create(IntVal, getContext()),
          S, Parser.getTok().getLoc()));
    return MatchOperand_Success;
  }
  // Also handle plain integers. Instructions which allow floating point
  // immediates also allow a raw encoded 8-bit value.
  if (Tok.is(AsmToken::Integer) && isFconst) {
    int64_t Val = Tok.getIntVal();
    Parser.Lex(); // Eat the token.
    if (Val > 255 || Val < 0) {
      Error(Loc, "encoded floating point value out of range");
      return MatchOperand_ParseFail;
    }
    float RealVal = ARM_AM::getFPImmFloat(Val);
    Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();

    Operands.push_back(ARMOperand::CreateImm(
        MCConstantExpr::create(Val, getContext()), S,
        Parser.getTok().getLoc()));
    return MatchOperand_Success;
  }

  Error(Loc, "invalid floating point immediate");
  return MatchOperand_ParseFail;
}

/// Parse a arm instruction operand.  For now this parses the operand regardless
/// of the mnemonic.
bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
  MCAsmParser &Parser = getParser();
  SMLoc S, E;

  // Check if the current operand has a custom associated parser, if so, try to
  // custom parse the operand, or fallback to the general approach.
  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
  if (ResTy == MatchOperand_Success)
    return false;
  // If there wasn't a custom match, try the generic matcher below. Otherwise,
  // there was a match, but an error occurred, in which case, just return that
  // the operand parsing failed.
  if (ResTy == MatchOperand_ParseFail)
    return true;

  switch (getLexer().getKind()) {
  default:
    Error(Parser.getTok().getLoc(), "unexpected token in operand");
    return true;
  case AsmToken::Identifier: {
    // If we've seen a branch mnemonic, the next operand must be a label.  This
    // is true even if the label is a register name.  So "br r1" means branch to
    // label "r1".
    bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
    if (!ExpectLabel) {
      if (!tryParseRegisterWithWriteBack(Operands))
        return false;
      int Res = tryParseShiftRegister(Operands);
      if (Res == 0) // success
        return false;
      else if (Res == -1) // irrecoverable error
        return true;
      // If this is VMRS, check for the apsr_nzcv operand.
      if (Mnemonic == "vmrs" &&
          Parser.getTok().getString().equals_lower("apsr_nzcv")) {
        S = Parser.getTok().getLoc();
        Parser.Lex();
        Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
        return false;
      }
    }

    // Fall though for the Identifier case that is not a register or a
    // special name.
    LLVM_FALLTHROUGH;
  }
  case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
  case AsmToken::Integer: // things like 1f and 2b as a branch targets
  case AsmToken::String:  // quoted label names.
  case AsmToken::Dot: {   // . as a branch target
    // This was not a register so parse other operands that start with an
    // identifier (like labels) as expressions and create them as immediates.
    const MCExpr *IdVal;
    S = Parser.getTok().getLoc();
    if (getParser().parseExpression(IdVal))
      return true;
    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
    return false;
  }
  case AsmToken::LBrac:
    return parseMemory(Operands);
  case AsmToken::LCurly:
    return parseRegisterList(Operands, !Mnemonic.startswith("clr"));
  case AsmToken::Dollar:
  case AsmToken::Hash:
    // #42 -> immediate.
    S = Parser.getTok().getLoc();
    Parser.Lex();

    if (Parser.getTok().isNot(AsmToken::Colon)) {
      bool isNegative = Parser.getTok().is(AsmToken::Minus);
      const MCExpr *ImmVal;
      if (getParser().parseExpression(ImmVal))
        return true;
      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
      if (CE) {
        int32_t Val = CE->getValue();
        if (isNegative && Val == 0)
          ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
                                          getContext());
      }
      E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
      Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));

      // There can be a trailing '!' on operands that we want as a separate
      // '!' Token operand. Handle that here. For example, the compatibility
      // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
      if (Parser.getTok().is(AsmToken::Exclaim)) {
        Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
                                                   Parser.getTok().getLoc()));
        Parser.Lex(); // Eat exclaim token
      }
      return false;
    }
    // w/ a ':' after the '#', it's just like a plain ':'.
    LLVM_FALLTHROUGH;

  case AsmToken::Colon: {
    S = Parser.getTok().getLoc();
    // ":lower16:" and ":upper16:" expression prefixes
    // FIXME: Check it's an expression prefix,
    // e.g. (FOO - :lower16:BAR) isn't legal.
    ARMMCExpr::VariantKind RefKind;
    if (parsePrefix(RefKind))
      return true;

    const MCExpr *SubExprVal;
    if (getParser().parseExpression(SubExprVal))
      return true;

    const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
                                              getContext());
    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
    return false;
  }
  case AsmToken::Equal: {
    S = Parser.getTok().getLoc();
    if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
      return Error(S, "unexpected token in operand");
    Parser.Lex(); // Eat '='
    const MCExpr *SubExprVal;
    if (getParser().parseExpression(SubExprVal))
      return true;
    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);

    // execute-only: we assume that assembly programmers know what they are
    // doing and allow literal pool creation here
    Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
    return false;
  }
  }
}

// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
//  :lower16: and :upper16:.
bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
  MCAsmParser &Parser = getParser();
  RefKind = ARMMCExpr::VK_ARM_None;

  // consume an optional '#' (GNU compatibility)
  if (getLexer().is(AsmToken::Hash))
    Parser.Lex();

  // :lower16: and :upper16: modifiers
  assert(getLexer().is(AsmToken::Colon) && "expected a :");
  Parser.Lex(); // Eat ':'

  if (getLexer().isNot(AsmToken::Identifier)) {
    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
    return true;
  }

  enum {
    COFF = (1 << MCObjectFileInfo::IsCOFF),
    ELF = (1 << MCObjectFileInfo::IsELF),
    MACHO = (1 << MCObjectFileInfo::IsMachO),
    WASM = (1 << MCObjectFileInfo::IsWasm),
  };
  static const struct PrefixEntry {
    const char *Spelling;
    ARMMCExpr::VariantKind VariantKind;
    uint8_t SupportedFormats;
  } PrefixEntries[] = {
    { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
    { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
  };

  StringRef IDVal = Parser.getTok().getIdentifier();

  const auto &Prefix =
      std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
                   [&IDVal](const PrefixEntry &PE) {
                      return PE.Spelling == IDVal;
                   });
  if (Prefix == std::end(PrefixEntries)) {
    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
    return true;
  }

  uint8_t CurrentFormat;
  switch (getContext().getObjectFileInfo()->getObjectFileType()) {
  case MCObjectFileInfo::IsMachO:
    CurrentFormat = MACHO;
    break;
  case MCObjectFileInfo::IsELF:
    CurrentFormat = ELF;
    break;
  case MCObjectFileInfo::IsCOFF:
    CurrentFormat = COFF;
    break;
  case MCObjectFileInfo::IsWasm:
    CurrentFormat = WASM;
    break;
  case MCObjectFileInfo::IsXCOFF:
    llvm_unreachable("unexpected object format");
    break;
  }

  if (~Prefix->SupportedFormats & CurrentFormat) {
    Error(Parser.getTok().getLoc(),
          "cannot represent relocation in the current file format");
    return true;
  }

  RefKind = Prefix->VariantKind;
  Parser.Lex();

  if (getLexer().isNot(AsmToken::Colon)) {
    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
    return true;
  }
  Parser.Lex(); // Eat the last ':'

  return false;
}

/// Given a mnemonic, split out possible predication code and carry
/// setting letters to form a canonical mnemonic and flags.
//
// FIXME: Would be nice to autogen this.
// FIXME: This is a bit of a maze of special cases.
StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
                                      StringRef ExtraToken,
                                      unsigned &PredicationCode,
                                      unsigned &VPTPredicationCode,
                                      bool &CarrySetting,
                                      unsigned &ProcessorIMod,
                                      StringRef &ITMask) {
  PredicationCode = ARMCC::AL;
  VPTPredicationCode = ARMVCC::None;
  CarrySetting = false;
  ProcessorIMod = 0;

  // Ignore some mnemonics we know aren't predicated forms.
  //
  // FIXME: Would be nice to autogen this.
  if ((Mnemonic == "movs" && isThumb()) ||
      Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
      Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
      Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
      Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
      Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
      Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
      Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
      Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
      Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
      Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
      Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
      Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
      Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
      Mnemonic == "bxns"  || Mnemonic == "blxns" ||
      Mnemonic == "vudot" || Mnemonic == "vsdot" ||
      Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
      Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
      Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" ||
      Mnemonic == "csel" || Mnemonic == "csinc" ||
      Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" ||
      Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" ||
      Mnemonic == "csetm")
    return Mnemonic;

  // First, split out any predication code. Ignore mnemonics we know aren't
  // predicated but do have a carry-set and so weren't caught above.
  if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
      Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
      Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
      Mnemonic != "sbcs" && Mnemonic != "rscs" &&
      !(hasMVE() &&
        (Mnemonic == "vmine" ||
         Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" ||
         Mnemonic == "vrshle" || Mnemonic == "vrshlt" ||
         Mnemonic == "vmvne" || Mnemonic == "vorne" ||
         Mnemonic == "vnege" || Mnemonic == "vnegt" ||
         Mnemonic == "vmule" || Mnemonic == "vmult" ||
         Mnemonic == "vrintne" ||
         Mnemonic == "vcmult" || Mnemonic == "vcmule" ||
         Mnemonic == "vpsele" || Mnemonic == "vpselt" ||
         Mnemonic.startswith("vq")))) {
    unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
    if (CC != ~0U) {
      Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
      PredicationCode = CC;
    }
  }

  // Next, determine if we have a carry setting bit. We explicitly ignore all
  // the instructions we know end in 's'.
  if (Mnemonic.endswith("s") &&
      !(Mnemonic == "cps" || Mnemonic == "mls" ||
        Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
        Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
        Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
        Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
        Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
        Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
        Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
        Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
        Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" ||
        Mnemonic == "vmlas" ||
        (Mnemonic == "movs" && isThumb()))) {
    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
    CarrySetting = true;
  }

  // The "cps" instruction can have a interrupt mode operand which is glued into
  // the mnemonic. Check if this is the case, split it and parse the imod op
  if (Mnemonic.startswith("cps")) {
    // Split out any imod code.
    unsigned IMod =
      StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
      .Case("ie", ARM_PROC::IE)
      .Case("id", ARM_PROC::ID)
      .Default(~0U);
    if (IMod != ~0U) {
      Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
      ProcessorIMod = IMod;
    }
  }

  if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" &&
      Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" &&
      Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" &&
      Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" &&
      Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" &&
      Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" &&
      Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") {
    unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1));
    if (CC != ~0U) {
      Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1);
      VPTPredicationCode = CC;
    }
    return Mnemonic;
  }

  // The "it" instruction has the condition mask on the end of the mnemonic.
  if (Mnemonic.startswith("it")) {
    ITMask = Mnemonic.slice(2, Mnemonic.size());
    Mnemonic = Mnemonic.slice(0, 2);
  }

  if (Mnemonic.startswith("vpst")) {
    ITMask = Mnemonic.slice(4, Mnemonic.size());
    Mnemonic = Mnemonic.slice(0, 4);
  }
  else if (Mnemonic.startswith("vpt")) {
    ITMask = Mnemonic.slice(3, Mnemonic.size());
    Mnemonic = Mnemonic.slice(0, 3);
  }

  return Mnemonic;
}

/// Given a canonical mnemonic, determine if the instruction ever allows
/// inclusion of carry set or predication code operands.
//
// FIXME: It would be nice to autogen this.
void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic,
                                         StringRef ExtraToken,
                                         StringRef FullInst,
                                         bool &CanAcceptCarrySet,
                                         bool &CanAcceptPredicationCode,
                                         bool &CanAcceptVPTPredicationCode) {
  CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken);

  CanAcceptCarrySet =
      Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
      Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
      Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
      Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
      Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
      Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
      (!isThumb() &&
       (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
        Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));

  if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
      Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
      Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
      Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
      Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
      Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
      Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
      Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
      Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
      Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
      (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
      Mnemonic == "vmovx" || Mnemonic == "vins" ||
      Mnemonic == "vudot" || Mnemonic == "vsdot" ||
      Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
      Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
      Mnemonic == "sb"    || Mnemonic == "ssbb"  ||
      Mnemonic == "pssbb" ||
      Mnemonic == "bfcsel" || Mnemonic == "wls" ||
      Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" ||
      Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" ||
      Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" ||
      Mnemonic == "cset" || Mnemonic == "csetm" ||
      Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") ||
      (hasMVE() &&
       (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") ||
        Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") ||
        Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") ||
        Mnemonic.startswith("letp")))) {
    // These mnemonics are never predicable
    CanAcceptPredicationCode = false;
  } else if (!isThumb()) {
    // Some instructions are only predicable in Thumb mode
    CanAcceptPredicationCode =
        Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
        Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
        Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
        Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
        Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
        Mnemonic != "stc2" && Mnemonic != "stc2l" &&
        Mnemonic != "tsb" &&
        !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
  } else if (isThumbOne()) {
    if (hasV6MOps())
      CanAcceptPredicationCode = Mnemonic != "movs";
    else
      CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
  } else
    CanAcceptPredicationCode = true;
}

// Some Thumb instructions have two operand forms that are not
// available as three operand, convert to two operand form if possible.
//
// FIXME: We would really like to be able to tablegen'erate this.
void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
                                                 bool CarrySetting,
                                                 OperandVector &Operands) {
  if (Operands.size() != 6)
    return;

  const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
        auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
  if (!Op3.isReg() || !Op4.isReg())
    return;

  auto Op3Reg = Op3.getReg();
  auto Op4Reg = Op4.getReg();

  // For most Thumb2 cases we just generate the 3 operand form and reduce
  // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
  // won't accept SP or PC so we do the transformation here taking care
  // with immediate range in the 'add sp, sp #imm' case.
  auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
  if (isThumbTwo()) {
    if (Mnemonic != "add")
      return;
    bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
                        (Op5.isReg() && Op5.getReg() == ARM::PC);
    if (!TryTransform) {
      TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
                      (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
                     !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
                       Op5.isImm() && !Op5.isImm0_508s4());
    }
    if (!TryTransform)
      return;
  } else if (!isThumbOne())
    return;

  if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
        Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
        Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
        Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
    return;

  // If first 2 operands of a 3 operand instruction are the same
  // then transform to 2 operand version of the same instruction
  // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
  bool Transform = Op3Reg == Op4Reg;

  // For communtative operations, we might be able to transform if we swap
  // Op4 and Op5.  The 'ADD Rdm, SP, Rdm' form is already handled specially
  // as tADDrsp.
  const ARMOperand *LastOp = &Op5;
  bool Swap = false;
  if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
      ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
       Mnemonic == "and" || Mnemonic == "eor" ||
       Mnemonic == "adc" || Mnemonic == "orr")) {
    Swap = true;
    LastOp = &Op4;
    Transform = true;
  }

  // If both registers are the same then remove one of them from
  // the operand list, with certain exceptions.
  if (Transform) {
    // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
    // 2 operand forms don't exist.
    if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
        LastOp->isReg())
      Transform = false;

    // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
    // 3-bits because the ARMARM says not to.
    if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
      Transform = false;
  }

  if (Transform) {
    if (Swap)
      std::swap(Op4, Op5);
    Operands.erase(Operands.begin() + 3);
  }
}

bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
                                          OperandVector &Operands) {
  // FIXME: This is all horribly hacky. We really need a better way to deal
  // with optional operands like this in the matcher table.

  // The 'mov' mnemonic is special. One variant has a cc_out operand, while
  // another does not. Specifically, the MOVW instruction does not. So we
  // special case it here and remove the defaulted (non-setting) cc_out
  // operand if that's the instruction we're trying to match.
  //
  // We do this as post-processing of the explicit operands rather than just
  // conditionally adding the cc_out in the first place because we need
  // to check the type of the parsed immediate operand.
  if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
      !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
      static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
      static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
    return true;

  // Register-register 'add' for thumb does not have a cc_out operand
  // when there are only two register operands.
  if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
      static_cast<ARMOperand &>(*Operands[3]).isReg() &&
      static_cast<ARMOperand &>(*Operands[4]).isReg() &&
      static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
    return true;
  // Register-register 'add' for thumb does not have a cc_out operand
  // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
  // have to check the immediate range here since Thumb2 has a variant
  // that can handle a different range and has a cc_out operand.
  if (((isThumb() && Mnemonic == "add") ||
       (isThumbTwo() && Mnemonic == "sub")) &&
      Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
      static_cast<ARMOperand &>(*Operands[4]).isReg() &&
      static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
      static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
      ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
       static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
    return true;
  // For Thumb2, add/sub immediate does not have a cc_out operand for the
  // imm0_4095 variant. That's the least-preferred variant when
  // selecting via the generic "add" mnemonic, so to know that we
  // should remove the cc_out operand, we have to explicitly check that
  // it's not one of the other variants. Ugh.
  if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
      Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
      static_cast<ARMOperand &>(*Operands[4]).isReg() &&
      static_cast<ARMOperand &>(*Operands[5]).isImm()) {
    // Nest conditions rather than one big 'if' statement for readability.
    //
    // If both registers are low, we're in an IT block, and the immediate is
    // in range, we should use encoding T1 instead, which has a cc_out.
    if (inITBlock() &&
        isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
        isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
        static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
      return false;
    // Check against T3. If the second register is the PC, this is an
    // alternate form of ADR, which uses encoding T4, so check for that too.
    if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
        (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() ||
         static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg()))
      return false;

    // Otherwise, we use encoding T4, which does not have a cc_out
    // operand.
    return true;
  }

  // The thumb2 multiply instruction doesn't have a CCOut register, so
  // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
  // use the 16-bit encoding or not.
  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
      static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
      static_cast<ARMOperand &>(*Operands[3]).isReg() &&
      static_cast<ARMOperand &>(*Operands[4]).isReg() &&
      static_cast<ARMOperand &>(*Operands[5]).isReg() &&
      // If the registers aren't low regs, the destination reg isn't the
      // same as one of the source regs, or the cc_out operand is zero
      // outside of an IT block, we have to use the 32-bit encoding, so
      // remove the cc_out operand.
      (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
       !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
       !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
       !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
                            static_cast<ARMOperand &>(*Operands[5]).getReg() &&
                        static_cast<ARMOperand &>(*Operands[3]).getReg() !=
                            static_cast<ARMOperand &>(*Operands[4]).getReg())))
    return true;

  // Also check the 'mul' syntax variant that doesn't specify an explicit
  // destination register.
  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
      static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
      static_cast<ARMOperand &>(*Operands[3]).isReg() &&
      static_cast<ARMOperand &>(*Operands[4]).isReg() &&
      // If the registers aren't low regs  or the cc_out operand is zero
      // outside of an IT block, we have to use the 32-bit encoding, so
      // remove the cc_out operand.
      (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
       !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
       !inITBlock()))
    return true;

  // Register-register 'add/sub' for thumb does not have a cc_out operand
  // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
  // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
  // right, this will result in better diagnostics (which operand is off)
  // anyway.
  if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
      (Operands.size() == 5 || Operands.size() == 6) &&
      static_cast<ARMOperand &>(*Operands[3]).isReg() &&
      static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
      static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
      (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
       (Operands.size() == 6 &&
        static_cast<ARMOperand &>(*Operands[5]).isImm()))) {
    // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out
    return (!(isThumbTwo() &&
              (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() ||
               static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg())));
  }
  // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case
  // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4)
  // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095
  if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
      (Operands.size() == 5) &&
      static_cast<ARMOperand &>(*Operands[3]).isReg() &&
      static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP &&
      static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC &&
      static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
      static_cast<ARMOperand &>(*Operands[4]).isImm()) {
    const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]);
    if (IMM.isT2SOImm() || IMM.isT2SOImmNeg())
      return false; // add.w / sub.w
    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) {
      const int64_t Value = CE->getValue();
      // Thumb1 imm8 sub / add
      if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) &&
          isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()))
        return false;
      return true; // Thumb2 T4 addw / subw
    }
  }
  return false;
}

bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
                                              OperandVector &Operands) {
  // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
  unsigned RegIdx = 3;
  if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) ||
      Mnemonic == "vrintr") &&
      (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
       static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
    if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
        (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
         static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
      RegIdx = 4;

    if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
        (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
             static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
         ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
             static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
      return true;
  }
  return false;
}

bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic,
                                                    OperandVector &Operands) {
  if (!hasMVE() || Operands.size() < 3)
    return true;

  if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") ||
      Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4"))
    return true;

  if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot"))
    return false;

  if (Mnemonic.startswith("vmov") &&
      !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") ||
        Mnemonic.startswith("vmovx"))) {
    for (auto &Operand : Operands) {
      if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
          ((*Operand).isReg() &&
           (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
             (*Operand).getReg()) ||
            ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
              (*Operand).getReg())))) {
        return true;
      }
    }
    return false;
  } else {
    for (auto &Operand : Operands) {
      // We check the larger class QPR instead of just the legal class
      // MQPR, to more accurately report errors when using Q registers
      // outside of the allowed range.
      if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
          (Operand->isReg() &&
           (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
             Operand->getReg()))))
        return false;
    }
    return true;
  }
}

static bool isDataTypeToken(StringRef Tok) {
  return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
    Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
    Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
    Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
    Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
    Tok == ".f" || Tok == ".d";
}

// FIXME: This bit should probably be handled via an explicit match class
// in the .td files that matches the suffix instead of having it be
// a literal string token the way it is now.
static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
  return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
}

static void applyMnemonicAliases(StringRef &Mnemonic,
                                 const FeatureBitset &Features,
                                 unsigned VariantID);

// The GNU assembler has aliases of ldrd and strd with the second register
// omitted. We don't have a way to do that in tablegen, so fix it up here.
//
// We have to be careful to not emit an invalid Rt2 here, because the rest of
// the assembly parser could then generate confusing diagnostics refering to
// it. If we do find anything that prevents us from doing the transformation we
// bail out, and let the assembly parser report an error on the instruction as
// it is written.
void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
                                     OperandVector &Operands) {
  if (Mnemonic != "ldrd" && Mnemonic != "strd")
    return;
  if (Operands.size() < 4)
    return;

  ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
  ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);

  if (!Op2.isReg())
    return;
  if (!Op3.isGPRMem())
    return;

  const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
  if (!GPR.contains(Op2.getReg()))
    return;

  unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
  if (!isThumb() && (RtEncoding & 1)) {
    // In ARM mode, the registers must be from an aligned pair, this
    // restriction does not apply in Thumb mode.
    return;
  }
  if (Op2.getReg() == ARM::PC)
    return;
  unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
  if (!PairedReg || PairedReg == ARM::PC ||
      (PairedReg == ARM::SP && !hasV8Ops()))
    return;

  Operands.insert(
      Operands.begin() + 3,
      ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
}

/// Parse an arm instruction mnemonic followed by its operands.
bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
                                    SMLoc NameLoc, OperandVector &Operands) {
  MCAsmParser &Parser = getParser();

  // Apply mnemonic aliases before doing anything else, as the destination
  // mnemonic may include suffices and we want to handle them normally.
  // The generic tblgen'erated code does this later, at the start of
  // MatchInstructionImpl(), but that's too late for aliases that include
  // any sort of suffix.
  const FeatureBitset &AvailableFeatures = getAvailableFeatures();
  unsigned AssemblerDialect = getParser().getAssemblerDialect();
  applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);

  // First check for the ARM-specific .req directive.
  if (Parser.getTok().is(AsmToken::Identifier) &&
      Parser.getTok().getIdentifier() == ".req") {
    parseDirectiveReq(Name, NameLoc);
    // We always return 'error' for this, as we're done with this
    // statement and don't need to match the 'instruction."
    return true;
  }

  // Create the leading tokens for the mnemonic, split by '.' characters.
  size_t Start = 0, Next = Name.find('.');
  StringRef Mnemonic = Name.slice(Start, Next);
  StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1));

  // Split out the predication code and carry setting flag from the mnemonic.
  unsigned PredicationCode;
  unsigned VPTPredicationCode;
  unsigned ProcessorIMod;
  bool CarrySetting;
  StringRef ITMask;
  Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode,
                           CarrySetting, ProcessorIMod, ITMask);

  // In Thumb1, only the branch (B) instruction can be predicated.
  if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
    return Error(NameLoc, "conditional execution not supported in Thumb1");
  }

  Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));

  // Handle the mask for IT and VPT instructions. In ARMOperand and
  // MCOperand, this is stored in a format independent of the
  // condition code: the lowest set bit indicates the end of the
  // encoding, and above that, a 1 bit indicates 'else', and an 0
  // indicates 'then'. E.g.
  //    IT    -> 1000
  //    ITx   -> x100    (ITT -> 0100, ITE -> 1100)
  //    ITxy  -> xy10    (e.g. ITET -> 1010)
  //    ITxyz -> xyz1    (e.g. ITEET -> 1101)
  if (Mnemonic == "it" || Mnemonic.startswith("vpt") ||
      Mnemonic.startswith("vpst")) {
    SMLoc Loc = Mnemonic == "it"  ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) :
                Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) :
                                    SMLoc::getFromPointer(NameLoc.getPointer() + 4);
    if (ITMask.size() > 3) {
      if (Mnemonic == "it")
        return Error(Loc, "too many conditions on IT instruction");
      return Error(Loc, "too many conditions on VPT instruction");
    }
    unsigned Mask = 8;
    for (unsigned i = ITMask.size(); i != 0; --i) {
      char pos = ITMask[i - 1];
      if (pos != 't' && pos != 'e') {
        return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
      }
      Mask >>= 1;
      if (ITMask[i - 1] == 'e')
        Mask |= 8;
    }
    Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
  }

  // FIXME: This is all a pretty gross hack. We should automatically handle
  // optional operands like this via tblgen.

  // Next, add the CCOut and ConditionCode operands, if needed.
  //
  // For mnemonics which can ever incorporate a carry setting bit or predication
  // code, our matching model involves us always generating CCOut and
  // ConditionCode operands to match the mnemonic "as written" and then we let
  // the matcher deal with finding the right instruction or generating an
  // appropriate error.
  bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode;
  getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet,
                        CanAcceptPredicationCode, CanAcceptVPTPredicationCode);

  // If we had a carry-set on an instruction that can't do that, issue an
  // error.
  if (!CanAcceptCarrySet && CarrySetting) {
    return Error(NameLoc, "instruction '" + Mnemonic +
                 "' can not set flags, but 's' suffix specified");
  }
  // If we had a predication code on an instruction that can't do that, issue an
  // error.
  if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
    return Error(NameLoc, "instruction '" + Mnemonic +
                 "' is not predicable, but condition code specified");
  }

  // If we had a VPT predication code on an instruction that can't do that, issue an
  // error.
  if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) {
    return Error(NameLoc, "instruction '" + Mnemonic +
                 "' is not VPT predicable, but VPT code T/E is specified");
  }

  // Add the carry setting operand, if necessary.
  if (CanAcceptCarrySet) {
    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
                                               Loc));
  }

  // Add the predication code operand, if necessary.
  if (CanAcceptPredicationCode) {
    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
                                      CarrySetting);
    Operands.push_back(ARMOperand::CreateCondCode(
                       ARMCC::CondCodes(PredicationCode), Loc));
  }

  // Add the VPT predication code operand, if necessary.
  // FIXME: We don't add them for the instructions filtered below as these can
  // have custom operands which need special parsing.  This parsing requires
  // the operand to be in the same place in the OperandVector as their
  // definition in tblgen.  Since these instructions may also have the
  // scalar predication operand we do not add the vector one and leave until
  // now to fix it up.
  if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" &&
      !Mnemonic.startswith("vcmp") &&
      !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" &&
        Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) {
    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
                                      CarrySetting);
    Operands.push_back(ARMOperand::CreateVPTPred(
                         ARMVCC::VPTCodes(VPTPredicationCode), Loc));
  }

  // Add the processor imod operand, if necessary.
  if (ProcessorIMod) {
    Operands.push_back(ARMOperand::CreateImm(
          MCConstantExpr::create(ProcessorIMod, getContext()),
                                 NameLoc, NameLoc));
  } else if (Mnemonic == "cps" && isMClass()) {
    return Error(NameLoc, "instruction 'cps' requires effect for M-class");
  }

  // Add the remaining tokens in the mnemonic.
  while (Next != StringRef::npos) {
    Start = Next;
    Next = Name.find('.', Start + 1);
    ExtraToken = Name.slice(Start, Next);

    // Some NEON instructions have an optional datatype suffix that is
    // completely ignored. Check for that.
    if (isDataTypeToken(ExtraToken) &&
        doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
      continue;

    // For for ARM mode generate an error if the .n qualifier is used.
    if (ExtraToken == ".n" && !isThumb()) {
      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
      return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
                   "arm mode");
    }

    // The .n qualifier is always discarded as that is what the tables
    // and matcher expect.  In ARM mode the .w qualifier has no effect,
    // so discard it to avoid errors that can be caused by the matcher.
    if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
      Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
    }
  }

  // Read the remaining operands.
  if (getLexer().isNot(AsmToken::EndOfStatement)) {
    // Read the first operand.
    if (parseOperand(Operands, Mnemonic)) {
      return true;
    }

    while (parseOptionalToken(AsmToken::Comma)) {
      // Parse and remember the operand.
      if (parseOperand(Operands, Mnemonic)) {
        return true;
      }
    }
  }

  if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
    return true;

  tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);

  // Some instructions, mostly Thumb, have forms for the same mnemonic that
  // do and don't have a cc_out optional-def operand. With some spot-checks
  // of the operand list, we can figure out which variant we're trying to
  // parse and adjust accordingly before actually matching. We shouldn't ever
  // try to remove a cc_out operand that was explicitly set on the
  // mnemonic, of course (CarrySetting == true). Reason number #317 the
  // table driven matcher doesn't fit well with the ARM instruction set.
  if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
    Operands.erase(Operands.begin() + 1);

  // Some instructions have the same mnemonic, but don't always
  // have a predicate. Distinguish them here and delete the
  // appropriate predicate if needed.  This could be either the scalar
  // predication code or the vector predication code.
  if (PredicationCode == ARMCC::AL &&
      shouldOmitPredicateOperand(Mnemonic, Operands))
    Operands.erase(Operands.begin() + 1);


  if (hasMVE()) {
    if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) &&
        Mnemonic == "vmov" && PredicationCode == ARMCC::LT) {
      // Very nasty hack to deal with the vector predicated variant of vmovlt
      // the scalar predicated vmov with condition 'lt'.  We can not tell them
      // apart until we have parsed their operands.
      Operands.erase(Operands.begin() + 1);
      Operands.erase(Operands.begin());
      SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
      SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
                                         Mnemonic.size() - 1 + CarrySetting);
      Operands.insert(Operands.begin(),
                      ARMOperand::CreateVPTPred(ARMVCC::None, PLoc));
      Operands.insert(Operands.begin(),
                      ARMOperand::CreateToken(StringRef("vmovlt"), MLoc));
    } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE &&
               !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
      // Another nasty hack to deal with the ambiguity between vcvt with scalar
      // predication 'ne' and vcvtn with vector predication 'e'.  As above we
      // can only distinguish between the two after we have parsed their
      // operands.
      Operands.erase(Operands.begin() + 1);
      Operands.erase(Operands.begin());
      SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
      SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
                                         Mnemonic.size() - 1 + CarrySetting);
      Operands.insert(Operands.begin(),
                      ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc));
      Operands.insert(Operands.begin(),
                      ARMOperand::CreateToken(StringRef("vcvtn"), MLoc));
    } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT &&
               !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
      // Another hack, this time to distinguish between scalar predicated vmul
      // with 'lt' predication code and the vector instruction vmullt with
      // vector predication code "none"
      Operands.erase(Operands.begin() + 1);
      Operands.erase(Operands.begin());
      SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
      Operands.insert(Operands.begin(),
                      ARMOperand::CreateToken(StringRef("vmullt"), MLoc));
    }
    // For vmov and vcmp, as mentioned earlier, we did not add the vector
    // predication code, since these may contain operands that require
    // special parsing.  So now we have to see if they require vector
    // predication and replace the scalar one with the vector predication
    // operand if that is the case.
    else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") ||
             (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") &&
              !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") &&
              !Mnemonic.startswith("vcvtm"))) {
      if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
        // We could not split the vector predicate off vcvt because it might
        // have been the scalar vcvtt instruction.  Now we know its a vector
        // instruction, we still need to check whether its the vector
        // predicated vcvt with 'Then' predication or the vector vcvtt.  We can
        // distinguish the two based on the suffixes, if it is any of
        // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt.
        if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) {
          auto Sz1 = static_cast<ARMOperand &>(*Operands[2]);
          auto Sz2 = static_cast<ARMOperand &>(*Operands[3]);
          if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") &&
              Sz2.isToken() && Sz2.getToken().startswith(".f"))) {
            Operands.erase(Operands.begin());
            SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
            VPTPredicationCode = ARMVCC::Then;

            Mnemonic = Mnemonic.substr(0, 4);
            Operands.insert(Operands.begin(),
                            ARMOperand::CreateToken(Mnemonic, MLoc));
          }
        }
        Operands.erase(Operands.begin() + 1);
        SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
                                          Mnemonic.size() + CarrySetting);
        Operands.insert(Operands.begin() + 1,
                        ARMOperand::CreateVPTPred(
                            ARMVCC::VPTCodes(VPTPredicationCode), PLoc));
      }
    } else if (CanAcceptVPTPredicationCode) {
      // For all other instructions, make sure only one of the two
      // predication operands is left behind, depending on whether we should
      // use the vector predication.
      if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
        if (CanAcceptPredicationCode)
          Operands.erase(Operands.begin() + 2);
        else
          Operands.erase(Operands.begin() + 1);
      } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) {
        Operands.erase(Operands.begin() + 1);
      }
    }
  }

  if (VPTPredicationCode != ARMVCC::None) {
    bool usedVPTPredicationCode = false;
    for (unsigned I = 1; I < Operands.size(); ++I)
      if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
        usedVPTPredicationCode = true;
    if (!usedVPTPredicationCode) {
      // If we have a VPT predication code and we haven't just turned it
      // into an operand, then it was a mistake for splitMnemonic to
      // separate it from the rest of the mnemonic in the first place,
      // and this may lead to wrong disassembly (e.g. scalar floating
      // point VCMPE is actually a different instruction from VCMP, so
      // we mustn't treat them the same). In that situation, glue it
      // back on.
      Mnemonic = Name.slice(0, Mnemonic.size() + 1);
      Operands.erase(Operands.begin());
      Operands.insert(Operands.begin(),
                      ARMOperand::CreateToken(Mnemonic, NameLoc));
    }
  }

    // ARM mode 'blx' need special handling, as the register operand version
    // is predicable, but the label operand version is not. So, we can't rely
    // on the Mnemonic based checking to correctly figure out when to put
    // a k_CondCode operand in the list. If we're trying to match the label
    // version, remove the k_CondCode operand here.
    if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
        static_cast<ARMOperand &>(*Operands[2]).isImm())
      Operands.erase(Operands.begin() + 1);

    // Adjust operands of ldrexd/strexd to MCK_GPRPair.
    // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
    // a single GPRPair reg operand is used in the .td file to replace the two
    // GPRs. However, when parsing from asm, the two GRPs cannot be
    // automatically
    // expressed as a GPRPair, so we have to manually merge them.
    // FIXME: We would really like to be able to tablegen'erate this.
    if (!isThumb() && Operands.size() > 4 &&
        (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
         Mnemonic == "stlexd")) {
      bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
      unsigned Idx = isLoad ? 2 : 3;
      ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
      ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);

      const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID);
      // Adjust only if Op1 and Op2 are GPRs.
      if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
          MRC.contains(Op2.getReg())) {
        unsigned Reg1 = Op1.getReg();
        unsigned Reg2 = Op2.getReg();
        unsigned Rt = MRI->getEncodingValue(Reg1);
        unsigned Rt2 = MRI->getEncodingValue(Reg2);

        // Rt2 must be Rt + 1 and Rt must be even.
        if (Rt + 1 != Rt2 || (Rt & 1)) {
          return Error(Op2.getStartLoc(),
                       isLoad ? "destination operands must be sequential"
                              : "source operands must be sequential");
        }
        unsigned NewReg = MRI->getMatchingSuperReg(
            Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID)));
        Operands[Idx] =
            ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
        Operands.erase(Operands.begin() + Idx + 1);
      }
  }

  // GNU Assembler extension (compatibility).
  fixupGNULDRDAlias(Mnemonic, Operands);

  // FIXME: As said above, this is all a pretty gross hack.  This instruction
  // does not fit with other "subs" and tblgen.
  // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
  // so the Mnemonic is the original name "subs" and delete the predicate
  // operand so it will match the table entry.
  if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
      static_cast<ARMOperand &>(*Operands[3]).isReg() &&
      static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
      static_cast<ARMOperand &>(*Operands[4]).isReg() &&
      static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
      static_cast<ARMOperand &>(*Operands[5]).isImm()) {
    Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
    Operands.erase(Operands.begin() + 1);
  }
  return false;
}

// Validate context-sensitive operand constraints.

// return 'true' if register list contains non-low GPR registers,
// 'false' otherwise. If Reg is in the register list or is HiReg, set
// 'containsReg' to true.
static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
                                 unsigned Reg, unsigned HiReg,
                                 bool &containsReg) {
  containsReg = false;
  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
    unsigned OpReg = Inst.getOperand(i).getReg();
    if (OpReg == Reg)
      containsReg = true;
    // Anything other than a low register isn't legal here.
    if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
      return true;
  }
  return false;
}

// Check if the specified regisgter is in the register list of the inst,
// starting at the indicated operand number.
static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
  for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
    unsigned OpReg = Inst.getOperand(i).getReg();
    if (OpReg == Reg)
      return true;
  }
  return false;
}

// Return true if instruction has the interesting property of being
// allowed in IT blocks, but not being predicable.
static bool instIsBreakpoint(const MCInst &Inst) {
    return Inst.getOpcode() == ARM::tBKPT ||
           Inst.getOpcode() == ARM::BKPT ||
           Inst.getOpcode() == ARM::tHLT ||
           Inst.getOpcode() == ARM::HLT;
}

bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
                                       const OperandVector &Operands,
                                       unsigned ListNo, bool IsARPop) {
  const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
  bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";

  bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
  bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
  bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);

  if (!IsARPop && ListContainsSP)
    return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
                 "SP may not be in the register list");
  else if (ListContainsPC && ListContainsLR)
    return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
                 "PC and LR may not be in the register list simultaneously");
  return false;
}

bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
                                       const OperandVector &Operands,
                                       unsigned ListNo) {
  const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
  bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";

  bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
  bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);

  if (ListContainsSP && ListContainsPC)
    return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
                 "SP and PC may not be in the register list");
  else if (ListContainsSP)
    return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
                 "SP may not be in the register list");
  else if (ListContainsPC)
    return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
                 "PC may not be in the register list");
  return false;
}

bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
                                    const OperandVector &Operands,
                                    bool Load, bool ARMMode, bool Writeback) {
  unsigned RtIndex = Load || !Writeback ? 0 : 1;
  unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
  unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());

  if (ARMMode) {
    // Rt can't be R14.
    if (Rt == 14)
      return Error(Operands[3]->getStartLoc(),
                  "Rt can't be R14");

    // Rt must be even-numbered.
    if ((Rt & 1) == 1)
      return Error(Operands[3]->getStartLoc(),
                   "Rt must be even-numbered");

    // Rt2 must be Rt + 1.
    if (Rt2 != Rt + 1) {
      if (Load)
        return Error(Operands[3]->getStartLoc(),
                     "destination operands must be sequential");
      else
        return Error(Operands[3]->getStartLoc(),
                     "source operands must be sequential");
    }

    // FIXME: Diagnose m == 15
    // FIXME: Diagnose ldrd with m == t || m == t2.
  }

  if (!ARMMode && Load) {
    if (Rt2 == Rt)
      return Error(Operands[3]->getStartLoc(),
                   "destination operands can't be identical");
  }

  if (Writeback) {
    unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());

    if (Rn == Rt || Rn == Rt2) {
      if (Load)
        return Error(Operands[3]->getStartLoc(),
                     "base register needs to be different from destination "
                     "registers");
      else
        return Error(Operands[3]->getStartLoc(),
                     "source register and base register can't be identical");
    }

    // FIXME: Diagnose ldrd/strd with writeback and n == 15.
    // (Except the immediate form of ldrd?)
  }

  return false;
}

static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) {
  for (unsigned i = 0; i < MCID.NumOperands; ++i) {
    if (ARM::isVpred(MCID.OpInfo[i].OperandType))
      return i;
  }
  return -1;
}

static bool isVectorPredicable(const MCInstrDesc &MCID) {
  return findFirstVectorPredOperandIdx(MCID) != -1;
}

// FIXME: We would really like to be able to tablegen'erate this.
bool ARMAsmParser::validateInstruction(MCInst &Inst,
                                       const OperandVector &Operands) {
  const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
  SMLoc Loc = Operands[0]->getStartLoc();

  // Check the IT block state first.
  // NOTE: BKPT and HLT instructions have the interesting property of being
  // allowed in IT blocks, but not being predicable. They just always execute.
  if (inITBlock() && !instIsBreakpoint(Inst)) {
    // The instruction must be predicable.
    if (!MCID.isPredicable())
      return Error(Loc, "instructions in IT block must be predicable");
    ARMCC::CondCodes Cond = ARMCC::CondCodes(
        Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
    if (Cond != currentITCond()) {
      // Find the condition code Operand to get its SMLoc information.
      SMLoc CondLoc;
      for (unsigned I = 1; I < Operands.size(); ++I)
        if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
          CondLoc = Operands[I]->getStartLoc();
      return Error(CondLoc, "incorrect condition in IT block; got '" +
                                StringRef(ARMCondCodeToString(Cond)) +
                                "', but expected '" +
                                ARMCondCodeToString(currentITCond()) + "'");
    }
  // Check for non-'al' condition codes outside of the IT block.
  } else if (isThumbTwo() && MCID.isPredicable() &&
             Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
             ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
             Inst.getOpcode() != ARM::t2Bcc &&
             Inst.getOpcode() != ARM::t2BFic) {
    return Error(Loc, "predicated instructions must be in IT block");
  } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
             Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
                 ARMCC::AL) {
    return Warning(Loc, "predicated instructions should be in IT block");
  } else if (!MCID.isPredicable()) {
    // Check the instruction doesn't have a predicate operand anyway
    // that it's not allowed to use. Sometimes this happens in order
    // to keep instructions the same shape even though one cannot
    // legally be predicated, e.g. vmul.f16 vs vmul.f32.
    for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
      if (MCID.OpInfo[i].isPredicate()) {
        if (Inst.getOperand(i).getImm() != ARMCC::AL)
          return Error(Loc, "instruction is not predicable");
        break;
      }
    }
  }

  // PC-setting instructions in an IT block, but not the last instruction of
  // the block, are UNPREDICTABLE.
  if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
    return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
  }

  if (inVPTBlock() && !instIsBreakpoint(Inst)) {
    unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition);
    if (!isVectorPredicable(MCID))
      return Error(Loc, "instruction in VPT block must be predicable");
    unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm();
    unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then;
    if (Pred != VPTPred) {
      SMLoc PredLoc;
      for (unsigned I = 1; I < Operands.size(); ++I)
        if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
          PredLoc = Operands[I]->getStartLoc();
      return Error(PredLoc, "incorrect predication in VPT block; got '" +
                   StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) +
                   "', but expected '" +
                   ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'");
    }
  }
  else if (isVectorPredicable(MCID) &&
           Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() !=
           ARMVCC::None)
    return Error(Loc, "VPT predicated instructions must be in VPT block");

  const unsigned Opcode = Inst.getOpcode();
  switch (Opcode) {
  case ARM::t2IT: {
    // Encoding is unpredictable if it ever results in a notional 'NV'
    // predicate. Since we don't parse 'NV' directly this means an 'AL'
    // predicate with an "else" mask bit.
    unsigned Cond = Inst.getOperand(0).getImm();
    unsigned Mask = Inst.getOperand(1).getImm();

    // Conditions only allowing a 't' are those with no set bit except
    // the lowest-order one that indicates the end of the sequence. In
    // other words, powers of 2.
    if (Cond == ARMCC::AL && countPopulation(Mask) != 1)
      return Error(Loc, "unpredictable IT predicate sequence");
    break;
  }
  case ARM::LDRD:
    if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
                         /*Writeback*/false))
      return true;
    break;
  case ARM::LDRD_PRE:
  case ARM::LDRD_POST:
    if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
                         /*Writeback*/true))
      return true;
    break;
  case ARM::t2LDRDi8:
    if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
                         /*Writeback*/false))
      return true;
    break;
  case ARM::t2LDRD_PRE:
  case ARM::t2LDRD_POST:
    if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
                         /*Writeback*/true))
      return true;
    break;
  case ARM::t2BXJ: {
    const unsigned RmReg = Inst.getOperand(0).getReg();
    // Rm = SP is no longer unpredictable in v8-A
    if (RmReg == ARM::SP && !hasV8Ops())
      return Error(Operands[2]->getStartLoc(),
                   "r13 (SP) is an unpredictable operand to BXJ");
    return false;
  }
  case ARM::STRD:
    if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
                         /*Writeback*/false))
      return true;
    break;
  case ARM::STRD_PRE:
  case ARM::STRD_POST:
    if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
                         /*Writeback*/true))
      return true;
    break;
  case ARM::t2STRD_PRE:
  case ARM::t2STRD_POST:
    if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
                         /*Writeback*/true))
      return true;
    break;
  case ARM::STR_PRE_IMM:
  case ARM::STR_PRE_REG:
  case ARM::t2STR_PRE:
  case ARM::STR_POST_IMM:
  case ARM::STR_POST_REG:
  case ARM::t2STR_POST:
  case ARM::STRH_PRE:
  case ARM::t2STRH_PRE:
  case ARM::STRH_POST:
  case ARM::t2STRH_POST:
  case ARM::STRB_PRE_IMM:
  case ARM::STRB_PRE_REG:
  case ARM::t2STRB_PRE:
  case ARM::STRB_POST_IMM:
  case ARM::STRB_POST_REG:
  case ARM::t2STRB_POST: {
    // Rt must be different from Rn.
    const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
    const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());

    if (Rt == Rn)
      return Error(Operands[3]->getStartLoc(),
                   "source register and base register can't be identical");
    return false;
  }
  case ARM::LDR_PRE_IMM:
  case ARM::LDR_PRE_REG:
  case ARM::t2LDR_PRE:
  case ARM::LDR_POST_IMM:
  case ARM::LDR_POST_REG:
  case ARM::t2LDR_POST:
  case ARM::LDRH_PRE:
  case ARM::t2LDRH_PRE:
  case ARM::LDRH_POST:
  case ARM::t2LDRH_POST:
  case ARM::LDRSH_PRE:
  case ARM::t2LDRSH_PRE:
  case ARM::LDRSH_POST:
  case ARM::t2LDRSH_POST:
  case ARM::LDRB_PRE_IMM:
  case ARM::LDRB_PRE_REG:
  case ARM::t2LDRB_PRE:
  case ARM::LDRB_POST_IMM:
  case ARM::LDRB_POST_REG:
  case ARM::t2LDRB_POST:
  case ARM::LDRSB_PRE:
  case ARM::t2LDRSB_PRE:
  case ARM::LDRSB_POST:
  case ARM::t2LDRSB_POST: {
    // Rt must be different from Rn.
    const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
    const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());

    if (Rt == Rn)
      return Error(Operands[3]->getStartLoc(),
                   "destination register and base register can't be identical");
    return false;
  }

  case ARM::MVE_VLDRBU8_rq:
  case ARM::MVE_VLDRBU16_rq:
  case ARM::MVE_VLDRBS16_rq:
  case ARM::MVE_VLDRBU32_rq:
  case ARM::MVE_VLDRBS32_rq:
  case ARM::MVE_VLDRHU16_rq:
  case ARM::MVE_VLDRHU16_rq_u:
  case ARM::MVE_VLDRHU32_rq:
  case ARM::MVE_VLDRHU32_rq_u:
  case ARM::MVE_VLDRHS32_rq:
  case ARM::MVE_VLDRHS32_rq_u:
  case ARM::MVE_VLDRWU32_rq:
  case ARM::MVE_VLDRWU32_rq_u:
  case ARM::MVE_VLDRDU64_rq:
  case ARM::MVE_VLDRDU64_rq_u:
  case ARM::MVE_VLDRWU32_qi:
  case ARM::MVE_VLDRWU32_qi_pre:
  case ARM::MVE_VLDRDU64_qi:
  case ARM::MVE_VLDRDU64_qi_pre: {
    // Qd must be different from Qm.
    unsigned QdIdx = 0, QmIdx = 2;
    bool QmIsPointer = false;
    switch (Opcode) {
    case ARM::MVE_VLDRWU32_qi:
    case ARM::MVE_VLDRDU64_qi:
      QmIdx = 1;
      QmIsPointer = true;
      break;
    case ARM::MVE_VLDRWU32_qi_pre:
    case ARM::MVE_VLDRDU64_qi_pre:
      QdIdx = 1;
      QmIsPointer = true;
      break;
    }

    const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg());
    const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg());

    if (Qd == Qm) {
      return Error(Operands[3]->getStartLoc(),
                   Twine("destination vector register and vector ") +
                   (QmIsPointer ? "pointer" : "offset") +
                   " register can't be identical");
    }
    return false;
  }

  case ARM::SBFX:
  case ARM::t2SBFX:
  case ARM::UBFX:
  case ARM::t2UBFX: {
    // Width must be in range [1, 32-lsb].
    unsigned LSB = Inst.getOperand(2).getImm();
    unsigned Widthm1 = Inst.getOperand(3).getImm();
    if (Widthm1 >= 32 - LSB)
      return Error(Operands[5]->getStartLoc(),
                   "bitfield width must be in range [1,32-lsb]");
    return false;
  }
  // Notionally handles ARM::tLDMIA_UPD too.
  case ARM::tLDMIA: {
    // If we're parsing Thumb2, the .w variant is available and handles
    // most cases that are normally illegal for a Thumb1 LDM instruction.
    // We'll make the transformation in processInstruction() if necessary.
    //
    // Thumb LDM instructions are writeback iff the base register is not
    // in the register list.
    unsigned Rn = Inst.getOperand(0).getReg();
    bool HasWritebackToken =
        (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
         static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
    bool ListContainsBase;
    if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
      return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
                   "registers must be in range r0-r7");
    // If we should have writeback, then there should be a '!' token.
    if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
      return Error(Operands[2]->getStartLoc(),
                   "writeback operator '!' expected");
    // If we should not have writeback, there must not be a '!'. This is
    // true even for the 32-bit wide encodings.
    if (ListContainsBase && HasWritebackToken)
      return Error(Operands[3]->getStartLoc(),
                   "writeback operator '!' not allowed when base register "
                   "in register list");

    if (validatetLDMRegList(Inst, Operands, 3))
      return true;
    break;
  }
  case ARM::LDMIA_UPD:
  case ARM::LDMDB_UPD:
  case ARM::LDMIB_UPD:
  case ARM::LDMDA_UPD:
    // ARM variants loading and updating the same register are only officially
    // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
    if (!hasV7Ops())
      break;
    if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
      return Error(Operands.back()->getStartLoc(),
                   "writeback register not allowed in register list");
    break;
  case ARM::t2LDMIA:
  case ARM::t2LDMDB:
    if (validatetLDMRegList(Inst, Operands, 3))
      return true;
    break;
  case ARM::t2STMIA:
  case ARM::t2STMDB:
    if (validatetSTMRegList(Inst, Operands, 3))
      return true;
    break;
  case ARM::t2LDMIA_UPD:
  case ARM::t2LDMDB_UPD:
  case ARM::t2STMIA_UPD:
  case ARM::t2STMDB_UPD:
    if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
      return Error(Operands.back()->getStartLoc(),
                   "writeback register not allowed in register list");

    if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
      if (validatetLDMRegList(Inst, Operands, 3))
        return true;
    } else {
      if (validatetSTMRegList(Inst, Operands, 3))
        return true;
    }
    break;

  case ARM::sysLDMIA_UPD:
  case ARM::sysLDMDA_UPD:
  case ARM::sysLDMDB_UPD:
  case ARM::sysLDMIB_UPD:
    if (!listContainsReg(Inst, 3, ARM::PC))
      return Error(Operands[4]->getStartLoc(),
                   "writeback register only allowed on system LDM "
                   "if PC in register-list");
    break;
  case ARM::sysSTMIA_UPD:
  case ARM::sysSTMDA_UPD:
  case ARM::sysSTMDB_UPD:
  case ARM::sysSTMIB_UPD:
    return Error(Operands[2]->getStartLoc(),
                 "system STM cannot have writeback register");
  case ARM::tMUL:
    // The second source operand must be the same register as the destination
    // operand.
    //
    // In this case, we must directly check the parsed operands because the
    // cvtThumbMultiply() function is written in such a way that it guarantees
    // this first statement is always true for the new Inst.  Essentially, the
    // destination is unconditionally copied into the second source operand
    // without checking to see if it matches what we actually parsed.
    if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
                                 ((ARMOperand &)*Operands[5]).getReg()) &&
        (((ARMOperand &)*Operands[3]).getReg() !=
         ((ARMOperand &)*Operands[4]).getReg())) {
      return Error(Operands[3]->getStartLoc(),
                   "destination register must match source register");
    }
    break;

  // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
  // so only issue a diagnostic for thumb1. The instructions will be
  // switched to the t2 encodings in processInstruction() if necessary.
  case ARM::tPOP: {
    bool ListContainsBase;
    if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
        !isThumbTwo())
      return Error(Operands[2]->getStartLoc(),
                   "registers must be in range r0-r7 or pc");
    if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
      return true;
    break;
  }
  case ARM::tPUSH: {
    bool ListContainsBase;
    if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
        !isThumbTwo())
      return Error(Operands[2]->getStartLoc(),
                   "registers must be in range r0-r7 or lr");
    if (validatetSTMRegList(Inst, Operands, 2))
      return true;
    break;
  }
  case ARM::tSTMIA_UPD: {
    bool ListContainsBase, InvalidLowList;
    InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
                                          0, ListContainsBase);
    if (InvalidLowList && !isThumbTwo())
      return Error(Operands[4]->getStartLoc(),
                   "registers must be in range r0-r7");

    // This would be converted to a 32-bit stm, but that's not valid if the
    // writeback register is in the list.
    if (InvalidLowList && ListContainsBase)
      return Error(Operands[4]->getStartLoc(),
                   "writeback operator '!' not allowed when base register "
                   "in register list");

    if (validatetSTMRegList(Inst, Operands, 4))
      return true;
    break;
  }
  case ARM::tADDrSP:
    // If the non-SP source operand and the destination operand are not the
    // same, we need thumb2 (for the wide encoding), or we have an error.
    if (!isThumbTwo() &&
        Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
      return Error(Operands[4]->getStartLoc(),
                   "source register must be the same as destination");
    }
    break;

  case ARM::t2ADDrr:
  case ARM::t2ADDrs:
  case ARM::t2SUBrr:
  case ARM::t2SUBrs:
    if (Inst.getOperand(0).getReg() == ARM::SP &&
        Inst.getOperand(1).getReg() != ARM::SP)
      return Error(Operands[4]->getStartLoc(),
                   "source register must be sp if destination is sp");
    break;

  // Final range checking for Thumb unconditional branch instructions.
  case ARM::tB:
    if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
      return Error(Operands[2]->getStartLoc(), "branch target out of range");
    break;
  case ARM::t2B: {
    int op = (Operands[2]->isImm()) ? 2 : 3;
    if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
      return Error(Operands[op]->getStartLoc(), "branch target out of range");
    break;
  }
  // Final range checking for Thumb conditional branch instructions.
  case ARM::tBcc:
    if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
      return Error(Operands[2]->getStartLoc(), "branch target out of range");
    break;
  case ARM::t2Bcc: {
    int Op = (Operands[2]->isImm()) ? 2 : 3;
    if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
      return Error(Operands[Op]->getStartLoc(), "branch target out of range");
    break;
  }
  case ARM::tCBZ:
  case ARM::tCBNZ: {
    if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
      return Error(Operands[2]->getStartLoc(), "branch target out of range");
    break;
  }
  case ARM::MOVi16:
  case ARM::MOVTi16:
  case ARM::t2MOVi16:
  case ARM::t2MOVTi16:
    {
    // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
    // especially when we turn it into a movw and the expression <symbol> does
    // not have a :lower16: or :upper16 as part of the expression.  We don't
    // want the behavior of silently truncating, which can be unexpected and
    // lead to bugs that are difficult to find since this is an easy mistake
    // to make.
    int i = (Operands[3]->isImm()) ? 3 : 4;
    ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
    if (CE) break;
    const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
    if (!E) break;
    const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
    if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
                       ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
      return Error(
          Op.getStartLoc(),
          "immediate expression for mov requires :lower16: or :upper16");
    break;
  }
  case ARM::HINT:
  case ARM::t2HINT: {
    unsigned Imm8 = Inst.getOperand(0).getImm();
    unsigned Pred = Inst.getOperand(1).getImm();
    // ESB is not predicable (pred must be AL). Without the RAS extension, this
    // behaves as any other unallocated hint.
    if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
      return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
                                               "predicable, but condition "
                                               "code specified");
    if (Imm8 == 0x14 && Pred != ARMCC::AL)
      return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
                                               "predicable, but condition "
                                               "code specified");
    break;
  }
  case ARM::t2BFi:
  case ARM::t2BFr:
  case ARM::t2BFLi:
  case ARM::t2BFLr: {
    if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() ||
        (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
      return Error(Operands[2]->getStartLoc(),
                   "branch location out of range or not a multiple of 2");

    if (Opcode == ARM::t2BFi) {
      if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>())
        return Error(Operands[3]->getStartLoc(),
                     "branch target out of range or not a multiple of 2");
    } else if (Opcode == ARM::t2BFLi) {
      if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>())
        return Error(Operands[3]->getStartLoc(),
                     "branch target out of range or not a multiple of 2");
    }
    break;
  }
  case ARM::t2BFic: {
    if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() ||
        (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
      return Error(Operands[1]->getStartLoc(),
                   "branch location out of range or not a multiple of 2");

    if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>())
      return Error(Operands[2]->getStartLoc(),
                   "branch target out of range or not a multiple of 2");

    assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() &&
           "branch location and else branch target should either both be "
           "immediates or both labels");

    if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) {
      int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm();
      if (Diff != 4 && Diff != 2)
        return Error(
            Operands[3]->getStartLoc(),
            "else branch target must be 2 or 4 greater than the branch location");
    }
    break;
  }
  case ARM::t2CLRM: {
    for (unsigned i = 2; i < Inst.getNumOperands(); i++) {
      if (Inst.getOperand(i).isReg() &&
          !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(
              Inst.getOperand(i).getReg())) {
        return Error(Operands[2]->getStartLoc(),
                     "invalid register in register list. Valid registers are "
                     "r0-r12, lr/r14 and APSR.");
      }
    }
    break;
  }
  case ARM::DSB:
  case ARM::t2DSB: {

    if (Inst.getNumOperands() < 2)
      break;

    unsigned Option = Inst.getOperand(0).getImm();
    unsigned Pred = Inst.getOperand(1).getImm();

    // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
    if (Option == 0 && Pred != ARMCC::AL)
      return Error(Operands[1]->getStartLoc(),
                   "instruction 'ssbb' is not predicable, but condition code "
                   "specified");
    if (Option == 4 && Pred != ARMCC::AL)
      return Error(Operands[1]->getStartLoc(),
                   "instruction 'pssbb' is not predicable, but condition code "
                   "specified");
    break;
  }
  case ARM::VMOVRRS: {
    // Source registers must be sequential.
    const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
    const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
    if (Sm1 != Sm + 1)
      return Error(Operands[5]->getStartLoc(),
                   "source operands must be sequential");
    break;
  }
  case ARM::VMOVSRR: {
    // Destination registers must be sequential.
    const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
    const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
    if (Sm1 != Sm + 1)
      return Error(Operands[3]->getStartLoc(),
                   "destination operands must be sequential");
    break;
  }
  case ARM::VLDMDIA:
  case ARM::VSTMDIA: {
    ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
    auto &RegList = Op.getRegList();
    if (RegList.size() < 1 || RegList.size() > 16)
      return Error(Operands[3]->getStartLoc(),
                   "list of registers must be at least 1 and at most 16");
    break;
  }
  case ARM::MVE_VQDMULLs32bh:
  case ARM::MVE_VQDMULLs32th:
  case ARM::MVE_VCMULf32:
  case ARM::MVE_VMULLBs32:
  case ARM::MVE_VMULLTs32:
  case ARM::MVE_VMULLBu32:
  case ARM::MVE_VMULLTu32: {
    if (Operands[3]->getReg() == Operands[4]->getReg()) {
      return Error (Operands[3]->getStartLoc(),
                    "Qd register and Qn register can't be identical");
    }
    if (Operands[3]->getReg() == Operands[5]->getReg()) {
      return Error (Operands[3]->getStartLoc(),
                    "Qd register and Qm register can't be identical");
    }
    break;
  }
  case ARM::MVE_VMOV_rr_q: {
    if (Operands[4]->getReg() != Operands[6]->getReg())
      return Error (Operands[4]->getStartLoc(), "Q-registers must be the same");
    if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() !=
        static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2)
      return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
    break;
  }
  case ARM::MVE_VMOV_q_rr: {
    if (Operands[2]->getReg() != Operands[4]->getReg())
      return Error (Operands[2]->getStartLoc(), "Q-registers must be the same");
    if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() !=
        static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2)
      return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
    break;
  }
  }

  return false;
}

static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
  switch(Opc) {
  default: llvm_unreachable("unexpected opcode!");
  // VST1LN
  case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
  case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
  case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
  case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
  case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
  case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
  case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
  case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
  case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;

  // VST2LN
  case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
  case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
  case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
  case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
  case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;

  case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
  case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
  case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
  case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
  case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;

  case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
  case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
  case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
  case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
  case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;

  // VST3LN
  case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
  case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
  case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
  case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
  case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
  case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
  case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
  case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
  case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
  case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
  case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
  case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
  case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
  case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
  case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;

  // VST3
  case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
  case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
  case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
  case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
  case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
  case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
  case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
  case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
  case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
  case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
  case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
  case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
  case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
  case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
  case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
  case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
  case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
  case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;

  // VST4LN
  case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
  case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
  case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
  case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
  case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
  case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
  case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
  case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
  case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
  case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
  case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
  case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
  case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
  case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
  case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;

  // VST4
  case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
  case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
  case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
  case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
  case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
  case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
  case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
  case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
  case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
  case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
  case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
  case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
  case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
  case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
  case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
  case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
  case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
  case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
  }
}

static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
  switch(Opc) {
  default: llvm_unreachable("unexpected opcode!");
  // VLD1LN
  case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
  case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
  case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
  case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
  case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
  case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
  case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
  case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
  case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;

  // VLD2LN
  case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
  case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
  case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
  case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
  case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
  case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
  case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
  case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
  case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
  case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
  case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
  case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
  case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
  case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
  case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;

  // VLD3DUP
  case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
  case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
  case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
  case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
  case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
  case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
  case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
  case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
  case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
  case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
  case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
  case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
  case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
  case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
  case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
  case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
  case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
  case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;

  // VLD3LN
  case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
  case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
  case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
  case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
  case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
  case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
  case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
  case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
  case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
  case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
  case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
  case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
  case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
  case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
  case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;

  // VLD3
  case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
  case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
  case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
  case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
  case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
  case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
  case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
  case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
  case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
  case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
  case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
  case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
  case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
  case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
  case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
  case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
  case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
  case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;

  // VLD4LN
  case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
  case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
  case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
  case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
  case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
  case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
  case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
  case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
  case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
  case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
  case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
  case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
  case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
  case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
  case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;

  // VLD4DUP
  case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
  case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
  case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
  case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
  case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
  case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
  case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
  case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
  case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
  case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
  case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
  case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
  case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
  case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
  case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
  case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
  case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
  case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;

  // VLD4
  case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
  case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
  case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
  case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
  case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
  case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
  case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
  case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
  case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
  case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
  case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
  case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
  case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
  case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
  case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
  case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
  case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
  case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
  }
}

bool ARMAsmParser::processInstruction(MCInst &Inst,
                                      const OperandVector &Operands,
                                      MCStreamer &Out) {
  // Check if we have the wide qualifier, because if it's present we
  // must avoid selecting a 16-bit thumb instruction.
  bool HasWideQualifier = false;
  for (auto &Op : Operands) {
    ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
    if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
      HasWideQualifier = true;
      break;
    }
  }

  switch (Inst.getOpcode()) {
  case ARM::MVE_VORNIZ0v4i32:
  case ARM::MVE_VORNIZ0v8i16:
  case ARM::MVE_VORNIZ8v4i32:
  case ARM::MVE_VORNIZ8v8i16:
  case ARM::MVE_VORNIZ16v4i32:
  case ARM::MVE_VORNIZ24v4i32:
  case ARM::MVE_VANDIZ0v4i32:
  case ARM::MVE_VANDIZ0v8i16:
  case ARM::MVE_VANDIZ8v4i32:
  case ARM::MVE_VANDIZ8v8i16:
  case ARM::MVE_VANDIZ16v4i32:
  case ARM::MVE_VANDIZ24v4i32: {
    unsigned Opcode;
    bool imm16 = false;
    switch(Inst.getOpcode()) {
    case ARM::MVE_VORNIZ0v4i32: Opcode = ARM::MVE_VORRIZ0v4i32; break;
    case ARM::MVE_VORNIZ0v8i16: Opcode = ARM::MVE_VORRIZ0v8i16; imm16 = true; break;
    case ARM::MVE_VORNIZ8v4i32: Opcode = ARM::MVE_VORRIZ8v4i32; break;
    case ARM::MVE_VORNIZ8v8i16: Opcode = ARM::MVE_VORRIZ8v8i16; imm16 = true; break;
    case ARM::MVE_VORNIZ16v4i32: Opcode = ARM::MVE_VORRIZ16v4i32; break;
    case ARM::MVE_VORNIZ24v4i32: Opcode = ARM::MVE_VORRIZ24v4i32; break;
    case ARM::MVE_VANDIZ0v4i32: Opcode = ARM::MVE_VBICIZ0v4i32; break;
    case ARM::MVE_VANDIZ0v8i16: Opcode = ARM::MVE_VBICIZ0v8i16; imm16 = true; break;
    case ARM::MVE_VANDIZ8v4i32: Opcode = ARM::MVE_VBICIZ8v4i32; break;
    case ARM::MVE_VANDIZ8v8i16: Opcode = ARM::MVE_VBICIZ8v8i16; imm16 = true; break;
    case ARM::MVE_VANDIZ16v4i32: Opcode = ARM::MVE_VBICIZ16v4i32; break;
    case ARM::MVE_VANDIZ24v4i32: Opcode = ARM::MVE_VBICIZ24v4i32; break;
    default: llvm_unreachable("unexpected opcode");
    }

    MCInst TmpInst;
    TmpInst.setOpcode(Opcode);
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(1));

    // invert immediate
    unsigned imm = ~Inst.getOperand(2).getImm() & (imm16 ? 0xffff : 0xffffffff);
    TmpInst.addOperand(MCOperand::createImm(imm));

    TmpInst.addOperand(Inst.getOperand(3));
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }
  // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
  case ARM::LDRT_POST:
  case ARM::LDRBT_POST: {
    const unsigned Opcode =
      (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
                                           : ARM::LDRBT_POST_IMM;
    MCInst TmpInst;
    TmpInst.setOpcode(Opcode);
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(1));
    TmpInst.addOperand(Inst.getOperand(1));
    TmpInst.addOperand(MCOperand::createReg(0));
    TmpInst.addOperand(MCOperand::createImm(0));
    TmpInst.addOperand(Inst.getOperand(2));
    TmpInst.addOperand(Inst.getOperand(3));
    Inst = TmpInst;
    return true;
  }
  // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
  case ARM::STRT_POST:
  case ARM::STRBT_POST: {
    const unsigned Opcode =
      (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
                                           : ARM::STRBT_POST_IMM;
    MCInst TmpInst;
    TmpInst.setOpcode(Opcode);
    TmpInst.addOperand(Inst.getOperand(1));
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(1));
    TmpInst.addOperand(MCOperand::createReg(0));
    TmpInst.addOperand(MCOperand::createImm(0));
    TmpInst.addOperand(Inst.getOperand(2));
    TmpInst.addOperand(Inst.getOperand(3));
    Inst = TmpInst;
    return true;
  }
  // Alias for alternate form of 'ADR Rd, #imm' instruction.
  case ARM::ADDri: {
    if (Inst.getOperand(1).getReg() != ARM::PC ||
        Inst.getOperand(5).getReg() != 0 ||
        !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
      return false;
    MCInst TmpInst;
    TmpInst.setOpcode(ARM::ADR);
    TmpInst.addOperand(Inst.getOperand(0));
    if (Inst.getOperand(2).isImm()) {
      // Immediate (mod_imm) will be in its encoded form, we must unencode it
      // before passing it to the ADR instruction.
      unsigned Enc = Inst.getOperand(2).getImm();
      TmpInst.addOperand(MCOperand::createImm(
        ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
    } else {
      // Turn PC-relative expression into absolute expression.
      // Reading PC provides the start of the current instruction + 8 and
      // the transform to adr is biased by that.
      MCSymbol *Dot = getContext().createTempSymbol();
      Out.EmitLabel(Dot);
      const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
      const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
                                                     MCSymbolRefExpr::VK_None,
                                                     getContext());
      const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
      const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
                                                     getContext());
      const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
                                                        getContext());
      TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
    }
    TmpInst.addOperand(Inst.getOperand(3));
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }
  // Aliases for alternate PC+imm syntax of LDR instructions.
  case ARM::t2LDRpcrel:
    // Select the narrow version if the immediate will fit.
    if (Inst.getOperand(1).getImm() > 0 &&
        Inst.getOperand(1).getImm() <= 0xff &&
        !HasWideQualifier)
      Inst.setOpcode(ARM::tLDRpci);
    else
      Inst.setOpcode(ARM::t2LDRpci);
    return true;
  case ARM::t2LDRBpcrel:
    Inst.setOpcode(ARM::t2LDRBpci);
    return true;
  case ARM::t2LDRHpcrel:
    Inst.setOpcode(ARM::t2LDRHpci);
    return true;
  case ARM::t2LDRSBpcrel:
    Inst.setOpcode(ARM::t2LDRSBpci);
    return true;
  case ARM::t2LDRSHpcrel:
    Inst.setOpcode(ARM::t2LDRSHpci);
    return true;
  case ARM::LDRConstPool:
  case ARM::tLDRConstPool:
  case ARM::t2LDRConstPool: {
    // Pseudo instruction ldr rt, =immediate is converted to a
    // MOV rt, immediate if immediate is known and representable
    // otherwise we create a constant pool entry that we load from.
    MCInst TmpInst;
    if (Inst.getOpcode() == ARM::LDRConstPool)
      TmpInst.setOpcode(ARM::LDRi12);
    else if (Inst.getOpcode() == ARM::tLDRConstPool)
      TmpInst.setOpcode(ARM::tLDRpci);
    else if (Inst.getOpcode() == ARM::t2LDRConstPool)
      TmpInst.setOpcode(ARM::t2LDRpci);
    const ARMOperand &PoolOperand =
      (HasWideQualifier ?
       static_cast<ARMOperand &>(*Operands[4]) :
       static_cast<ARMOperand &>(*Operands[3]));
    const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
    // If SubExprVal is a constant we may be able to use a MOV
    if (isa<MCConstantExpr>(SubExprVal) &&
        Inst.getOperand(0).getReg() != ARM::PC &&
        Inst.getOperand(0).getReg() != ARM::SP) {
      int64_t Value =
        (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
      bool UseMov  = true;
      bool MovHasS = true;
      if (Inst.getOpcode() == ARM::LDRConstPool) {
        // ARM Constant
        if (ARM_AM::getSOImmVal(Value) != -1) {
          Value = ARM_AM::getSOImmVal(Value);
          TmpInst.setOpcode(ARM::MOVi);
        }
        else if (ARM_AM::getSOImmVal(~Value) != -1) {
          Value = ARM_AM::getSOImmVal(~Value);
          TmpInst.setOpcode(ARM::MVNi);
        }
        else if (hasV6T2Ops() &&
                 Value >=0 && Value < 65536) {
          TmpInst.setOpcode(ARM::MOVi16);
          MovHasS = false;
        }
        else
          UseMov = false;
      }
      else {
        // Thumb/Thumb2 Constant
        if (hasThumb2() &&
            ARM_AM::getT2SOImmVal(Value) != -1)
          TmpInst.setOpcode(ARM::t2MOVi);
        else if (hasThumb2() &&
                 ARM_AM::getT2SOImmVal(~Value) != -1) {
          TmpInst.setOpcode(ARM::t2MVNi);
          Value = ~Value;
        }
        else if (hasV8MBaseline() &&
                 Value >=0 && Value < 65536) {
          TmpInst.setOpcode(ARM::t2MOVi16);
          MovHasS = false;
        }
        else
          UseMov = false;
      }
      if (UseMov) {
        TmpInst.addOperand(Inst.getOperand(0));           // Rt
        TmpInst.addOperand(MCOperand::createImm(Value));  // Immediate
        TmpInst.addOperand(Inst.getOperand(2));           // CondCode
        TmpInst.addOperand(Inst.getOperand(3));           // CondCode
        if (MovHasS)
          TmpInst.addOperand(MCOperand::createReg(0));    // S
        Inst = TmpInst;
        return true;
      }
    }
    // No opportunity to use MOV/MVN create constant pool
    const MCExpr *CPLoc =
      getTargetStreamer().addConstantPoolEntry(SubExprVal,
                                               PoolOperand.getStartLoc());
    TmpInst.addOperand(Inst.getOperand(0));           // Rt
    TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
    if (TmpInst.getOpcode() == ARM::LDRi12)
      TmpInst.addOperand(MCOperand::createImm(0));    // unused offset
    TmpInst.addOperand(Inst.getOperand(2));           // CondCode
    TmpInst.addOperand(Inst.getOperand(3));           // CondCode
    Inst = TmpInst;
    return true;
  }
  // Handle NEON VST complex aliases.
  case ARM::VST1LNdWB_register_Asm_8:
  case ARM::VST1LNdWB_register_Asm_16:
  case ARM::VST1LNdWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST2LNdWB_register_Asm_8:
  case ARM::VST2LNdWB_register_Asm_16:
  case ARM::VST2LNdWB_register_Asm_32:
  case ARM::VST2LNqWB_register_Asm_16:
  case ARM::VST2LNqWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST3LNdWB_register_Asm_8:
  case ARM::VST3LNdWB_register_Asm_16:
  case ARM::VST3LNdWB_register_Asm_32:
  case ARM::VST3LNqWB_register_Asm_16:
  case ARM::VST3LNqWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST4LNdWB_register_Asm_8:
  case ARM::VST4LNdWB_register_Asm_16:
  case ARM::VST4LNdWB_register_Asm_32:
  case ARM::VST4LNqWB_register_Asm_16:
  case ARM::VST4LNqWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST1LNdWB_fixed_Asm_8:
  case ARM::VST1LNdWB_fixed_Asm_16:
  case ARM::VST1LNdWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST2LNdWB_fixed_Asm_8:
  case ARM::VST2LNdWB_fixed_Asm_16:
  case ARM::VST2LNdWB_fixed_Asm_32:
  case ARM::VST2LNqWB_fixed_Asm_16:
  case ARM::VST2LNqWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST3LNdWB_fixed_Asm_8:
  case ARM::VST3LNdWB_fixed_Asm_16:
  case ARM::VST3LNdWB_fixed_Asm_32:
  case ARM::VST3LNqWB_fixed_Asm_16:
  case ARM::VST3LNqWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST4LNdWB_fixed_Asm_8:
  case ARM::VST4LNdWB_fixed_Asm_16:
  case ARM::VST4LNdWB_fixed_Asm_32:
  case ARM::VST4LNqWB_fixed_Asm_16:
  case ARM::VST4LNqWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST1LNdAsm_8:
  case ARM::VST1LNdAsm_16:
  case ARM::VST1LNdAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST2LNdAsm_8:
  case ARM::VST2LNdAsm_16:
  case ARM::VST2LNdAsm_32:
  case ARM::VST2LNqAsm_16:
  case ARM::VST2LNqAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST3LNdAsm_8:
  case ARM::VST3LNdAsm_16:
  case ARM::VST3LNdAsm_32:
  case ARM::VST3LNqAsm_16:
  case ARM::VST3LNqAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST4LNdAsm_8:
  case ARM::VST4LNdAsm_16:
  case ARM::VST4LNdAsm_32:
  case ARM::VST4LNqAsm_16:
  case ARM::VST4LNqAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // Handle NEON VLD complex aliases.
  case ARM::VLD1LNdWB_register_Asm_8:
  case ARM::VLD1LNdWB_register_Asm_16:
  case ARM::VLD1LNdWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD2LNdWB_register_Asm_8:
  case ARM::VLD2LNdWB_register_Asm_16:
  case ARM::VLD2LNdWB_register_Asm_32:
  case ARM::VLD2LNqWB_register_Asm_16:
  case ARM::VLD2LNqWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3LNdWB_register_Asm_8:
  case ARM::VLD3LNdWB_register_Asm_16:
  case ARM::VLD3LNdWB_register_Asm_32:
  case ARM::VLD3LNqWB_register_Asm_16:
  case ARM::VLD3LNqWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4LNdWB_register_Asm_8:
  case ARM::VLD4LNdWB_register_Asm_16:
  case ARM::VLD4LNdWB_register_Asm_32:
  case ARM::VLD4LNqWB_register_Asm_16:
  case ARM::VLD4LNqWB_register_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(4)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
    TmpInst.addOperand(Inst.getOperand(6));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD1LNdWB_fixed_Asm_8:
  case ARM::VLD1LNdWB_fixed_Asm_16:
  case ARM::VLD1LNdWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD2LNdWB_fixed_Asm_8:
  case ARM::VLD2LNdWB_fixed_Asm_16:
  case ARM::VLD2LNdWB_fixed_Asm_32:
  case ARM::VLD2LNqWB_fixed_Asm_16:
  case ARM::VLD2LNqWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3LNdWB_fixed_Asm_8:
  case ARM::VLD3LNdWB_fixed_Asm_16:
  case ARM::VLD3LNdWB_fixed_Asm_32:
  case ARM::VLD3LNqWB_fixed_Asm_16:
  case ARM::VLD3LNqWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4LNdWB_fixed_Asm_8:
  case ARM::VLD4LNdWB_fixed_Asm_16:
  case ARM::VLD4LNdWB_fixed_Asm_32:
  case ARM::VLD4LNqWB_fixed_Asm_16:
  case ARM::VLD4LNqWB_fixed_Asm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD1LNdAsm_8:
  case ARM::VLD1LNdAsm_16:
  case ARM::VLD1LNdAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD2LNdAsm_8:
  case ARM::VLD2LNdAsm_16:
  case ARM::VLD2LNdAsm_32:
  case ARM::VLD2LNqAsm_16:
  case ARM::VLD2LNqAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3LNdAsm_8:
  case ARM::VLD3LNdAsm_16:
  case ARM::VLD3LNdAsm_32:
  case ARM::VLD3LNqAsm_16:
  case ARM::VLD3LNqAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4LNdAsm_8:
  case ARM::VLD4LNdAsm_16:
  case ARM::VLD4LNdAsm_32:
  case ARM::VLD4LNqAsm_16:
  case ARM::VLD4LNqAsm_32: {
    MCInst TmpInst;
    // Shuffle the operands around so the lane index operand is in the
    // right place.
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(2)); // Rn
    TmpInst.addOperand(Inst.getOperand(3)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // lane
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // VLD3DUP single 3-element structure to all lanes instructions.
  case ARM::VLD3DUPdAsm_8:
  case ARM::VLD3DUPdAsm_16:
  case ARM::VLD3DUPdAsm_32:
  case ARM::VLD3DUPqAsm_8:
  case ARM::VLD3DUPqAsm_16:
  case ARM::VLD3DUPqAsm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3DUPdWB_fixed_Asm_8:
  case ARM::VLD3DUPdWB_fixed_Asm_16:
  case ARM::VLD3DUPdWB_fixed_Asm_32:
  case ARM::VLD3DUPqWB_fixed_Asm_8:
  case ARM::VLD3DUPqWB_fixed_Asm_16:
  case ARM::VLD3DUPqWB_fixed_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3DUPdWB_register_Asm_8:
  case ARM::VLD3DUPdWB_register_Asm_16:
  case ARM::VLD3DUPdWB_register_Asm_32:
  case ARM::VLD3DUPqWB_register_Asm_8:
  case ARM::VLD3DUPqWB_register_Asm_16:
  case ARM::VLD3DUPqWB_register_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // Rm
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // VLD3 multiple 3-element structure instructions.
  case ARM::VLD3dAsm_8:
  case ARM::VLD3dAsm_16:
  case ARM::VLD3dAsm_32:
  case ARM::VLD3qAsm_8:
  case ARM::VLD3qAsm_16:
  case ARM::VLD3qAsm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3dWB_fixed_Asm_8:
  case ARM::VLD3dWB_fixed_Asm_16:
  case ARM::VLD3dWB_fixed_Asm_32:
  case ARM::VLD3qWB_fixed_Asm_8:
  case ARM::VLD3qWB_fixed_Asm_16:
  case ARM::VLD3qWB_fixed_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD3dWB_register_Asm_8:
  case ARM::VLD3dWB_register_Asm_16:
  case ARM::VLD3dWB_register_Asm_32:
  case ARM::VLD3qWB_register_Asm_8:
  case ARM::VLD3qWB_register_Asm_16:
  case ARM::VLD3qWB_register_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // Rm
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // VLD4DUP single 3-element structure to all lanes instructions.
  case ARM::VLD4DUPdAsm_8:
  case ARM::VLD4DUPdAsm_16:
  case ARM::VLD4DUPdAsm_32:
  case ARM::VLD4DUPqAsm_8:
  case ARM::VLD4DUPqAsm_16:
  case ARM::VLD4DUPqAsm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4DUPdWB_fixed_Asm_8:
  case ARM::VLD4DUPdWB_fixed_Asm_16:
  case ARM::VLD4DUPdWB_fixed_Asm_32:
  case ARM::VLD4DUPqWB_fixed_Asm_8:
  case ARM::VLD4DUPqWB_fixed_Asm_16:
  case ARM::VLD4DUPqWB_fixed_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4DUPdWB_register_Asm_8:
  case ARM::VLD4DUPdWB_register_Asm_16:
  case ARM::VLD4DUPdWB_register_Asm_32:
  case ARM::VLD4DUPqWB_register_Asm_8:
  case ARM::VLD4DUPqWB_register_Asm_16:
  case ARM::VLD4DUPqWB_register_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // Rm
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // VLD4 multiple 4-element structure instructions.
  case ARM::VLD4dAsm_8:
  case ARM::VLD4dAsm_16:
  case ARM::VLD4dAsm_32:
  case ARM::VLD4qAsm_8:
  case ARM::VLD4qAsm_16:
  case ARM::VLD4qAsm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4dWB_fixed_Asm_8:
  case ARM::VLD4dWB_fixed_Asm_16:
  case ARM::VLD4dWB_fixed_Asm_32:
  case ARM::VLD4qWB_fixed_Asm_8:
  case ARM::VLD4qWB_fixed_Asm_16:
  case ARM::VLD4qWB_fixed_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VLD4dWB_register_Asm_8:
  case ARM::VLD4dWB_register_Asm_16:
  case ARM::VLD4dWB_register_Asm_32:
  case ARM::VLD4qWB_register_Asm_8:
  case ARM::VLD4qWB_register_Asm_16:
  case ARM::VLD4qWB_register_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // Rm
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // VST3 multiple 3-element structure instructions.
  case ARM::VST3dAsm_8:
  case ARM::VST3dAsm_16:
  case ARM::VST3dAsm_32:
  case ARM::VST3qAsm_8:
  case ARM::VST3qAsm_16:
  case ARM::VST3qAsm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST3dWB_fixed_Asm_8:
  case ARM::VST3dWB_fixed_Asm_16:
  case ARM::VST3dWB_fixed_Asm_32:
  case ARM::VST3qWB_fixed_Asm_8:
  case ARM::VST3qWB_fixed_Asm_16:
  case ARM::VST3qWB_fixed_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST3dWB_register_Asm_8:
  case ARM::VST3dWB_register_Asm_16:
  case ARM::VST3dWB_register_Asm_32:
  case ARM::VST3qWB_register_Asm_8:
  case ARM::VST3qWB_register_Asm_16:
  case ARM::VST3qWB_register_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // VST4 multiple 3-element structure instructions.
  case ARM::VST4dAsm_8:
  case ARM::VST4dAsm_16:
  case ARM::VST4dAsm_32:
  case ARM::VST4qAsm_8:
  case ARM::VST4qAsm_16:
  case ARM::VST4qAsm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST4dWB_fixed_Asm_8:
  case ARM::VST4dWB_fixed_Asm_16:
  case ARM::VST4dWB_fixed_Asm_32:
  case ARM::VST4qWB_fixed_Asm_8:
  case ARM::VST4qWB_fixed_Asm_16:
  case ARM::VST4qWB_fixed_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(MCOperand::createReg(0)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }

  case ARM::VST4dWB_register_Asm_8:
  case ARM::VST4dWB_register_Asm_16:
  case ARM::VST4dWB_register_Asm_32:
  case ARM::VST4qWB_register_Asm_8:
  case ARM::VST4qWB_register_Asm_16:
  case ARM::VST4qWB_register_Asm_32: {
    MCInst TmpInst;
    unsigned Spacing;
    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
    TmpInst.addOperand(Inst.getOperand(2)); // alignment
    TmpInst.addOperand(Inst.getOperand(3)); // Rm
    TmpInst.addOperand(Inst.getOperand(0)); // Vd
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 2));
    TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
                                            Spacing * 3));
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    Inst = TmpInst;
    return true;
  }

  // Handle encoding choice for the shift-immediate instructions.
  case ARM::t2LSLri:
  case ARM::t2LSRri:
  case ARM::t2ASRri:
    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
        isARMLowRegister(Inst.getOperand(1).getReg()) &&
        Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
        !HasWideQualifier) {
      unsigned NewOpc;
      switch (Inst.getOpcode()) {
      default: llvm_unreachable("unexpected opcode");
      case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
      case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
      case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
      }
      // The Thumb1 operands aren't in the same order. Awesome, eh?
      MCInst TmpInst;
      TmpInst.setOpcode(NewOpc);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(5));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(2));
      TmpInst.addOperand(Inst.getOperand(3));
      TmpInst.addOperand(Inst.getOperand(4));
      Inst = TmpInst;
      return true;
    }
    return false;

  // Handle the Thumb2 mode MOV complex aliases.
  case ARM::t2MOVsr:
  case ARM::t2MOVSsr: {
    // Which instruction to expand to depends on the CCOut operand and
    // whether we're in an IT block if the register operands are low
    // registers.
    bool isNarrow = false;
    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
        isARMLowRegister(Inst.getOperand(1).getReg()) &&
        isARMLowRegister(Inst.getOperand(2).getReg()) &&
        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
        !HasWideQualifier)
      isNarrow = true;
    MCInst TmpInst;
    unsigned newOpc;
    switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
    default: llvm_unreachable("unexpected opcode!");
    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
    case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
    }
    TmpInst.setOpcode(newOpc);
    TmpInst.addOperand(Inst.getOperand(0)); // Rd
    if (isNarrow)
      TmpInst.addOperand(MCOperand::createReg(
          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // Rm
    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
    TmpInst.addOperand(Inst.getOperand(5));
    if (!isNarrow)
      TmpInst.addOperand(MCOperand::createReg(
          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
    Inst = TmpInst;
    return true;
  }
  case ARM::t2MOVsi:
  case ARM::t2MOVSsi: {
    // Which instruction to expand to depends on the CCOut operand and
    // whether we're in an IT block if the register operands are low
    // registers.
    bool isNarrow = false;
    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
        isARMLowRegister(Inst.getOperand(1).getReg()) &&
        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
        !HasWideQualifier)
      isNarrow = true;
    MCInst TmpInst;
    unsigned newOpc;
    unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
    unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
    bool isMov = false;
    // MOV rd, rm, LSL #0 is actually a MOV instruction
    if (Shift == ARM_AM::lsl && Amount == 0) {
      isMov = true;
      // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
      // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
      // unpredictable in an IT block so the 32-bit encoding T3 has to be used
      // instead.
      if (inITBlock()) {
        isNarrow = false;
      }
      newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
    } else {
      switch(Shift) {
      default: llvm_unreachable("unexpected opcode!");
      case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
      case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
      case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
      case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
      case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
      }
    }
    if (Amount == 32) Amount = 0;
    TmpInst.setOpcode(newOpc);
    TmpInst.addOperand(Inst.getOperand(0)); // Rd
    if (isNarrow && !isMov)
      TmpInst.addOperand(MCOperand::createReg(
          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    if (newOpc != ARM::t2RRX && !isMov)
      TmpInst.addOperand(MCOperand::createImm(Amount));
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    if (!isNarrow)
      TmpInst.addOperand(MCOperand::createReg(
          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
    Inst = TmpInst;
    return true;
  }
  // Handle the ARM mode MOV complex aliases.
  case ARM::ASRr:
  case ARM::LSRr:
  case ARM::LSLr:
  case ARM::RORr: {
    ARM_AM::ShiftOpc ShiftTy;
    switch(Inst.getOpcode()) {
    default: llvm_unreachable("unexpected opcode!");
    case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
    case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
    case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
    case ARM::RORr: ShiftTy = ARM_AM::ror; break;
    }
    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
    MCInst TmpInst;
    TmpInst.setOpcode(ARM::MOVsr);
    TmpInst.addOperand(Inst.getOperand(0)); // Rd
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(Inst.getOperand(2)); // Rm
    TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
    Inst = TmpInst;
    return true;
  }
  case ARM::ASRi:
  case ARM::LSRi:
  case ARM::LSLi:
  case ARM::RORi: {
    ARM_AM::ShiftOpc ShiftTy;
    switch(Inst.getOpcode()) {
    default: llvm_unreachable("unexpected opcode!");
    case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
    case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
    case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
    case ARM::RORi: ShiftTy = ARM_AM::ror; break;
    }
    // A shift by zero is a plain MOVr, not a MOVsi.
    unsigned Amt = Inst.getOperand(2).getImm();
    unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
    // A shift by 32 should be encoded as 0 when permitted
    if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
      Amt = 0;
    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
    MCInst TmpInst;
    TmpInst.setOpcode(Opc);
    TmpInst.addOperand(Inst.getOperand(0)); // Rd
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    if (Opc == ARM::MOVsi)
      TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
    TmpInst.addOperand(Inst.getOperand(4));
    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
    Inst = TmpInst;
    return true;
  }
  case ARM::RRXi: {
    unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
    MCInst TmpInst;
    TmpInst.setOpcode(ARM::MOVsi);
    TmpInst.addOperand(Inst.getOperand(0)); // Rd
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
    TmpInst.addOperand(Inst.getOperand(3));
    TmpInst.addOperand(Inst.getOperand(4)); // cc_out
    Inst = TmpInst;
    return true;
  }
  case ARM::t2LDMIA_UPD: {
    // If this is a load of a single register, then we should use
    // a post-indexed LDR instruction instead, per the ARM ARM.
    if (Inst.getNumOperands() != 5)
      return false;
    MCInst TmpInst;
    TmpInst.setOpcode(ARM::t2LDR_POST);
    TmpInst.addOperand(Inst.getOperand(4)); // Rt
    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(MCOperand::createImm(4));
    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
    TmpInst.addOperand(Inst.getOperand(3));
    Inst = TmpInst;
    return true;
  }
  case ARM::t2STMDB_UPD: {
    // If this is a store of a single register, then we should use
    // a pre-indexed STR instruction instead, per the ARM ARM.
    if (Inst.getNumOperands() != 5)
      return false;
    MCInst TmpInst;
    TmpInst.setOpcode(ARM::t2STR_PRE);
    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
    TmpInst.addOperand(Inst.getOperand(4)); // Rt
    TmpInst.addOperand(Inst.getOperand(1)); // Rn
    TmpInst.addOperand(MCOperand::createImm(-4));
    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
    TmpInst.addOperand(Inst.getOperand(3));
    Inst = TmpInst;
    return true;
  }
  case ARM::LDMIA_UPD:
    // If this is a load of a single register via a 'pop', then we should use
    // a post-indexed LDR instruction instead, per the ARM ARM.
    if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
        Inst.getNumOperands() == 5) {
      MCInst TmpInst;
      TmpInst.setOpcode(ARM::LDR_POST_IMM);
      TmpInst.addOperand(Inst.getOperand(4)); // Rt
      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
      TmpInst.addOperand(Inst.getOperand(1)); // Rn
      TmpInst.addOperand(MCOperand::createReg(0));  // am2offset
      TmpInst.addOperand(MCOperand::createImm(4));
      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
      TmpInst.addOperand(Inst.getOperand(3));
      Inst = TmpInst;
      return true;
    }
    break;
  case ARM::STMDB_UPD:
    // If this is a store of a single register via a 'push', then we should use
    // a pre-indexed STR instruction instead, per the ARM ARM.
    if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
        Inst.getNumOperands() == 5) {
      MCInst TmpInst;
      TmpInst.setOpcode(ARM::STR_PRE_IMM);
      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
      TmpInst.addOperand(Inst.getOperand(4)); // Rt
      TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
      TmpInst.addOperand(MCOperand::createImm(-4));
      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
      TmpInst.addOperand(Inst.getOperand(3));
      Inst = TmpInst;
    }
    break;
  case ARM::t2ADDri12:
  case ARM::t2SUBri12:
  case ARM::t2ADDspImm12:
  case ARM::t2SUBspImm12: {
    // If the immediate fits for encoding T3 and the generic
    // mnemonic was used, encoding T3 is preferred.
    const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken();
    if ((Token != "add" && Token != "sub") ||
        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
      break;
    switch (Inst.getOpcode()) {
    case ARM::t2ADDri12:
      Inst.setOpcode(ARM::t2ADDri);
      break;
    case ARM::t2SUBri12:
      Inst.setOpcode(ARM::t2SUBri);
      break;
    case ARM::t2ADDspImm12:
      Inst.setOpcode(ARM::t2ADDspImm);
      break;
    case ARM::t2SUBspImm12:
      Inst.setOpcode(ARM::t2SUBspImm);
      break;
    }

    Inst.addOperand(MCOperand::createReg(0)); // cc_out
    return true;
  }
  case ARM::tADDi8:
    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
    // to encoding T1 if <Rd> is omitted."
    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
      Inst.setOpcode(ARM::tADDi3);
      return true;
    }
    break;
  case ARM::tSUBi8:
    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
    // to encoding T1 if <Rd> is omitted."
    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
      Inst.setOpcode(ARM::tSUBi3);
      return true;
    }
    break;
  case ARM::t2ADDri:
  case ARM::t2SUBri: {
    // If the destination and first source operand are the same, and
    // the flags are compatible with the current IT status, use encoding T2
    // instead of T3. For compatibility with the system 'as'. Make sure the
    // wide encoding wasn't explicit.
    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
        !isARMLowRegister(Inst.getOperand(0).getReg()) ||
        (Inst.getOperand(2).isImm() &&
         (unsigned)Inst.getOperand(2).getImm() > 255) ||
        Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
        HasWideQualifier)
      break;
    MCInst TmpInst;
    TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
                      ARM::tADDi8 : ARM::tSUBi8);
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(5));
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(2));
    TmpInst.addOperand(Inst.getOperand(3));
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }
  case ARM::t2ADDspImm:
  case ARM::t2SUBspImm: {
    // Prefer T1 encoding if possible
    if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier)
      break;
    unsigned V = Inst.getOperand(2).getImm();
    if (V & 3 || V > ((1 << 7) - 1) << 2)
      break;
    MCInst TmpInst;
    TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi
                                                          : ARM::tSUBspi);
    TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg
    TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg
    TmpInst.addOperand(MCOperand::createImm(V / 4));   // immediate
    TmpInst.addOperand(Inst.getOperand(3));            // pred
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }
  case ARM::t2ADDrr: {
    // If the destination and first source operand are the same, and
    // there's no setting of the flags, use encoding T2 instead of T3.
    // Note that this is only for ADD, not SUB. This mirrors the system
    // 'as' behaviour.  Also take advantage of ADD being commutative.
    // Make sure the wide encoding wasn't explicit.
    bool Swap = false;
    auto DestReg = Inst.getOperand(0).getReg();
    bool Transform = DestReg == Inst.getOperand(1).getReg();
    if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
      Transform = true;
      Swap = true;
    }
    if (!Transform ||
        Inst.getOperand(5).getReg() != 0 ||
        HasWideQualifier)
      break;
    MCInst TmpInst;
    TmpInst.setOpcode(ARM::tADDhirr);
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
    TmpInst.addOperand(Inst.getOperand(3));
    TmpInst.addOperand(Inst.getOperand(4));
    Inst = TmpInst;
    return true;
  }
  case ARM::tADDrSP:
    // If the non-SP source operand and the destination operand are not the
    // same, we need to use the 32-bit encoding if it's available.
    if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
      Inst.setOpcode(ARM::t2ADDrr);
      Inst.addOperand(MCOperand::createReg(0)); // cc_out
      return true;
    }
    break;
  case ARM::tB:
    // A Thumb conditional branch outside of an IT block is a tBcc.
    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
      Inst.setOpcode(ARM::tBcc);
      return true;
    }
    break;
  case ARM::t2B:
    // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
      Inst.setOpcode(ARM::t2Bcc);
      return true;
    }
    break;
  case ARM::t2Bcc:
    // If the conditional is AL or we're in an IT block, we really want t2B.
    if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
      Inst.setOpcode(ARM::t2B);
      return true;
    }
    break;
  case ARM::tBcc:
    // If the conditional is AL, we really want tB.
    if (Inst.getOperand(1).getImm() == ARMCC::AL) {
      Inst.setOpcode(ARM::tB);
      return true;
    }
    break;
  case ARM::tLDMIA: {
    // If the register list contains any high registers, or if the writeback
    // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
    // instead if we're in Thumb2. Otherwise, this should have generated
    // an error in validateInstruction().
    unsigned Rn = Inst.getOperand(0).getReg();
    bool hasWritebackToken =
        (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
         static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
    bool listContainsBase;
    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
        (!listContainsBase && !hasWritebackToken) ||
        (listContainsBase && hasWritebackToken)) {
      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
      assert(isThumbTwo());
      Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
      // If we're switching to the updating version, we need to insert
      // the writeback tied operand.
      if (hasWritebackToken)
        Inst.insert(Inst.begin(),
                    MCOperand::createReg(Inst.getOperand(0).getReg()));
      return true;
    }
    break;
  }
  case ARM::tSTMIA_UPD: {
    // If the register list contains any high registers, we need to use
    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
    // should have generated an error in validateInstruction().
    unsigned Rn = Inst.getOperand(0).getReg();
    bool listContainsBase;
    if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
      assert(isThumbTwo());
      Inst.setOpcode(ARM::t2STMIA_UPD);
      return true;
    }
    break;
  }
  case ARM::tPOP: {
    bool listContainsBase;
    // If the register list contains any high registers, we need to use
    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
    // should have generated an error in validateInstruction().
    if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
      return false;
    assert(isThumbTwo());
    Inst.setOpcode(ARM::t2LDMIA_UPD);
    // Add the base register and writeback operands.
    Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
    Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
    return true;
  }
  case ARM::tPUSH: {
    bool listContainsBase;
    if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
      return false;
    assert(isThumbTwo());
    Inst.setOpcode(ARM::t2STMDB_UPD);
    // Add the base register and writeback operands.
    Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
    Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
    return true;
  }
  case ARM::t2MOVi:
    // If we can use the 16-bit encoding and the user didn't explicitly
    // request the 32-bit variant, transform it here.
    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
        (Inst.getOperand(1).isImm() &&
         (unsigned)Inst.getOperand(1).getImm() <= 255) &&
        Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
        !HasWideQualifier) {
      // The operands aren't in the same order for tMOVi8...
      MCInst TmpInst;
      TmpInst.setOpcode(ARM::tMOVi8);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(4));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(2));
      TmpInst.addOperand(Inst.getOperand(3));
      Inst = TmpInst;
      return true;
    }
    break;

  case ARM::t2MOVr:
    // If we can use the 16-bit encoding and the user didn't explicitly
    // request the 32-bit variant, transform it here.
    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
        isARMLowRegister(Inst.getOperand(1).getReg()) &&
        Inst.getOperand(2).getImm() == ARMCC::AL &&
        Inst.getOperand(4).getReg() == ARM::CPSR &&
        !HasWideQualifier) {
      // The operands aren't the same for tMOV[S]r... (no cc_out)
      MCInst TmpInst;
      TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(2));
      TmpInst.addOperand(Inst.getOperand(3));
      Inst = TmpInst;
      return true;
    }
    break;

  case ARM::t2SXTH:
  case ARM::t2SXTB:
  case ARM::t2UXTH:
  case ARM::t2UXTB:
    // If we can use the 16-bit encoding and the user didn't explicitly
    // request the 32-bit variant, transform it here.
    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
        isARMLowRegister(Inst.getOperand(1).getReg()) &&
        Inst.getOperand(2).getImm() == 0 &&
        !HasWideQualifier) {
      unsigned NewOpc;
      switch (Inst.getOpcode()) {
      default: llvm_unreachable("Illegal opcode!");
      case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
      case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
      case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
      case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
      }
      // The operands aren't the same for thumb1 (no rotate operand).
      MCInst TmpInst;
      TmpInst.setOpcode(NewOpc);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(3));
      TmpInst.addOperand(Inst.getOperand(4));
      Inst = TmpInst;
      return true;
    }
    break;

  case ARM::MOVsi: {
    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
    // rrx shifts and asr/lsr of #32 is encoded as 0
    if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
      return false;
    if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
      // Shifting by zero is accepted as a vanilla 'MOVr'
      MCInst TmpInst;
      TmpInst.setOpcode(ARM::MOVr);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(3));
      TmpInst.addOperand(Inst.getOperand(4));
      TmpInst.addOperand(Inst.getOperand(5));
      Inst = TmpInst;
      return true;
    }
    return false;
  }
  case ARM::ANDrsi:
  case ARM::ORRrsi:
  case ARM::EORrsi:
  case ARM::BICrsi:
  case ARM::SUBrsi:
  case ARM::ADDrsi: {
    unsigned newOpc;
    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
    if (SOpc == ARM_AM::rrx) return false;
    switch (Inst.getOpcode()) {
    default: llvm_unreachable("unexpected opcode!");
    case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
    case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
    case ARM::EORrsi: newOpc = ARM::EORrr; break;
    case ARM::BICrsi: newOpc = ARM::BICrr; break;
    case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
    case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
    }
    // If the shift is by zero, use the non-shifted instruction definition.
    // The exception is for right shifts, where 0 == 32
    if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
        !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
      MCInst TmpInst;
      TmpInst.setOpcode(newOpc);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(2));
      TmpInst.addOperand(Inst.getOperand(4));
      TmpInst.addOperand(Inst.getOperand(5));
      TmpInst.addOperand(Inst.getOperand(6));
      Inst = TmpInst;
      return true;
    }
    return false;
  }
  case ARM::ITasm:
  case ARM::t2IT: {
    // Set up the IT block state according to the IT instruction we just
    // matched.
    assert(!inITBlock() && "nested IT blocks?!");
    startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()),
                         Inst.getOperand(1).getImm());
    break;
  }
  case ARM::t2LSLrr:
  case ARM::t2LSRrr:
  case ARM::t2ASRrr:
  case ARM::t2SBCrr:
  case ARM::t2RORrr:
  case ARM::t2BICrr:
    // Assemblers should use the narrow encodings of these instructions when permissible.
    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
         isARMLowRegister(Inst.getOperand(2).getReg())) &&
        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
        Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
        !HasWideQualifier) {
      unsigned NewOpc;
      switch (Inst.getOpcode()) {
        default: llvm_unreachable("unexpected opcode");
        case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
        case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
        case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
        case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
        case ARM::t2RORrr: NewOpc = ARM::tROR; break;
        case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
      }
      MCInst TmpInst;
      TmpInst.setOpcode(NewOpc);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(5));
      TmpInst.addOperand(Inst.getOperand(1));
      TmpInst.addOperand(Inst.getOperand(2));
      TmpInst.addOperand(Inst.getOperand(3));
      TmpInst.addOperand(Inst.getOperand(4));
      Inst = TmpInst;
      return true;
    }
    return false;

  case ARM::t2ANDrr:
  case ARM::t2EORrr:
  case ARM::t2ADCrr:
  case ARM::t2ORRrr:
    // Assemblers should use the narrow encodings of these instructions when permissible.
    // These instructions are special in that they are commutable, so shorter encodings
    // are available more often.
    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
         isARMLowRegister(Inst.getOperand(2).getReg())) &&
        (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
         Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
        Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
        !HasWideQualifier) {
      unsigned NewOpc;
      switch (Inst.getOpcode()) {
        default: llvm_unreachable("unexpected opcode");
        case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
        case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
        case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
        case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
      }
      MCInst TmpInst;
      TmpInst.setOpcode(NewOpc);
      TmpInst.addOperand(Inst.getOperand(0));
      TmpInst.addOperand(Inst.getOperand(5));
      if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
        TmpInst.addOperand(Inst.getOperand(1));
        TmpInst.addOperand(Inst.getOperand(2));
      } else {
        TmpInst.addOperand(Inst.getOperand(2));
        TmpInst.addOperand(Inst.getOperand(1));
      }
      TmpInst.addOperand(Inst.getOperand(3));
      TmpInst.addOperand(Inst.getOperand(4));
      Inst = TmpInst;
      return true;
    }
    return false;
  case ARM::MVE_VPST:
  case ARM::MVE_VPTv16i8:
  case ARM::MVE_VPTv8i16:
  case ARM::MVE_VPTv4i32:
  case ARM::MVE_VPTv16u8:
  case ARM::MVE_VPTv8u16:
  case ARM::MVE_VPTv4u32:
  case ARM::MVE_VPTv16s8:
  case ARM::MVE_VPTv8s16:
  case ARM::MVE_VPTv4s32:
  case ARM::MVE_VPTv4f32:
  case ARM::MVE_VPTv8f16:
  case ARM::MVE_VPTv16i8r:
  case ARM::MVE_VPTv8i16r:
  case ARM::MVE_VPTv4i32r:
  case ARM::MVE_VPTv16u8r:
  case ARM::MVE_VPTv8u16r:
  case ARM::MVE_VPTv4u32r:
  case ARM::MVE_VPTv16s8r:
  case ARM::MVE_VPTv8s16r:
  case ARM::MVE_VPTv4s32r:
  case ARM::MVE_VPTv4f32r:
  case ARM::MVE_VPTv8f16r: {
    assert(!inVPTBlock() && "Nested VPT blocks are not allowed");
    MCOperand &MO = Inst.getOperand(0);
    VPTState.Mask = MO.getImm();
    VPTState.CurPosition = 0;
    break;
  }
  }
  return false;
}

unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
  // 16-bit thumb arithmetic instructions either require or preclude the 'S'
  // suffix depending on whether they're in an IT block or not.
  unsigned Opc = Inst.getOpcode();
  const MCInstrDesc &MCID = MII.get(Opc);
  if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
    assert(MCID.hasOptionalDef() &&
           "optionally flag setting instruction missing optional def operand");
    assert(MCID.NumOperands == Inst.getNumOperands() &&
           "operand count mismatch!");
    // Find the optional-def operand (cc_out).
    unsigned OpNo;
    for (OpNo = 0;
         !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
         ++OpNo)
      ;
    // If we're parsing Thumb1, reject it completely.
    if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
      return Match_RequiresFlagSetting;
    // If we're parsing Thumb2, which form is legal depends on whether we're
    // in an IT block.
    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
        !inITBlock())
      return Match_RequiresITBlock;
    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
        inITBlock())
      return Match_RequiresNotITBlock;
    // LSL with zero immediate is not allowed in an IT block
    if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
      return Match_RequiresNotITBlock;
  } else if (isThumbOne()) {
    // Some high-register supporting Thumb1 encodings only allow both registers
    // to be from r0-r7 when in Thumb2.
    if (Opc == ARM::tADDhirr && !hasV6MOps() &&
        isARMLowRegister(Inst.getOperand(1).getReg()) &&
        isARMLowRegister(Inst.getOperand(2).getReg()))
      return Match_RequiresThumb2;
    // Others only require ARMv6 or later.
    else if (Opc == ARM::tMOVr && !hasV6Ops() &&
             isARMLowRegister(Inst.getOperand(0).getReg()) &&
             isARMLowRegister(Inst.getOperand(1).getReg()))
      return Match_RequiresV6;
  }

  // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
  // than the loop below can handle, so it uses the GPRnopc register class and
  // we do SP handling here.
  if (Opc == ARM::t2MOVr && !hasV8Ops())
  {
    // SP as both source and destination is not allowed
    if (Inst.getOperand(0).getReg() == ARM::SP &&
        Inst.getOperand(1).getReg() == ARM::SP)
      return Match_RequiresV8;
    // When flags-setting SP as either source or destination is not allowed
    if (Inst.getOperand(4).getReg() == ARM::CPSR &&
        (Inst.getOperand(0).getReg() == ARM::SP ||
         Inst.getOperand(1).getReg() == ARM::SP))
      return Match_RequiresV8;
  }

  switch (Inst.getOpcode()) {
  case ARM::VMRS:
  case ARM::VMSR:
  case ARM::VMRS_FPCXTS:
  case ARM::VMRS_FPCXTNS:
  case ARM::VMSR_FPCXTS:
  case ARM::VMSR_FPCXTNS:
  case ARM::VMRS_FPSCR_NZCVQC:
  case ARM::VMSR_FPSCR_NZCVQC:
  case ARM::FMSTAT:
  case ARM::VMRS_VPR:
  case ARM::VMRS_P0:
  case ARM::VMSR_VPR:
  case ARM::VMSR_P0:
    // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
    // ARMv8-A.
    if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP &&
        (isThumb() && !hasV8Ops()))
      return Match_InvalidOperand;
    break;
  default:
    break;
  }

  for (unsigned I = 0; I < MCID.NumOperands; ++I)
    if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
      // rGPRRegClass excludes PC, and also excluded SP before ARMv8
      const auto &Op = Inst.getOperand(I);
      if (!Op.isReg()) {
        // This can happen in awkward cases with tied operands, e.g. a
        // writeback load/store with a complex addressing mode in
        // which there's an output operand corresponding to the
        // updated written-back base register: the Tablegen-generated
        // AsmMatcher will have written a placeholder operand to that
        // slot in the form of an immediate 0, because it can't
        // generate the register part of the complex addressing-mode
        // operand ahead of time.
        continue;
      }

      unsigned Reg = Op.getReg();
      if ((Reg == ARM::SP) && !hasV8Ops())
        return Match_RequiresV8;
      else if (Reg == ARM::PC)
        return Match_InvalidOperand;
    }

  return Match_Success;
}

namespace llvm {

template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
  return true; // In an assembly source, no need to second-guess
}

} // end namespace llvm

// Returns true if Inst is unpredictable if it is in and IT block, but is not
// the last instruction in the block.
bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
  const MCInstrDesc &MCID = MII.get(Inst.getOpcode());

  // All branch & call instructions terminate IT blocks with the exception of
  // SVC.
  if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
      MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
    return true;

  // Any arithmetic instruction which writes to the PC also terminates the IT
  // block.
  if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
    return true;

  return false;
}

unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
                                          SmallVectorImpl<NearMissInfo> &NearMisses,
                                          bool MatchingInlineAsm,
                                          bool &EmitInITBlock,
                                          MCStreamer &Out) {
  // If we can't use an implicit IT block here, just match as normal.
  if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
    return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);

  // Try to match the instruction in an extension of the current IT block (if
  // there is one).
  if (inImplicitITBlock()) {
    extendImplicitITBlock(ITState.Cond);
    if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
            Match_Success) {
      // The match succeded, but we still have to check that the instruction is
      // valid in this implicit IT block.
      const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
      if (MCID.isPredicable()) {
        ARMCC::CondCodes InstCond =
            (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
                .getImm();
        ARMCC::CondCodes ITCond = currentITCond();
        if (InstCond == ITCond) {
          EmitInITBlock = true;
          return Match_Success;
        } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
          invertCurrentITCondition();
          EmitInITBlock = true;
          return Match_Success;
        }
      }
    }
    rewindImplicitITPosition();
  }

  // Finish the current IT block, and try to match outside any IT block.
  flushPendingInstructions(Out);
  unsigned PlainMatchResult =
      MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
  if (PlainMatchResult == Match_Success) {
    const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
    if (MCID.isPredicable()) {
      ARMCC::CondCodes InstCond =
          (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
              .getImm();
      // Some forms of the branch instruction have their own condition code
      // fields, so can be conditionally executed without an IT block.
      if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
        EmitInITBlock = false;
        return Match_Success;
      }
      if (InstCond == ARMCC::AL) {
        EmitInITBlock = false;
        return Match_Success;
      }
    } else {
      EmitInITBlock = false;
      return Match_Success;
    }
  }

  // Try to match in a new IT block. The matcher doesn't check the actual
  // condition, so we create an IT block with a dummy condition, and fix it up
  // once we know the actual condition.
  startImplicitITBlock();
  if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
      Match_Success) {
    const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
    if (MCID.isPredicable()) {
      ITState.Cond =
          (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
              .getImm();
      EmitInITBlock = true;
      return Match_Success;
    }
  }
  discardImplicitITBlock();

  // If none of these succeed, return the error we got when trying to match
  // outside any IT blocks.
  EmitInITBlock = false;
  return PlainMatchResult;
}

static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
                                         unsigned VariantID = 0);

static const char *getSubtargetFeatureName(uint64_t Val);
bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
                                           OperandVector &Operands,
                                           MCStreamer &Out, uint64_t &ErrorInfo,
                                           bool MatchingInlineAsm) {
  MCInst Inst;
  unsigned MatchResult;
  bool PendConditionalInstruction = false;

  SmallVector<NearMissInfo, 4> NearMisses;
  MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
                                 PendConditionalInstruction, Out);

  switch (MatchResult) {
  case Match_Success:
    LLVM_DEBUG(dbgs() << "Parsed as: ";
               Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
               dbgs() << "\n");

    // Context sensitive operand constraints aren't handled by the matcher,
    // so check them here.
    if (validateInstruction(Inst, Operands)) {
      // Still progress the IT block, otherwise one wrong condition causes
      // nasty cascading errors.
      forwardITPosition();
      forwardVPTPosition();
      return true;
    }

    { // processInstruction() updates inITBlock state, we need to save it away
      bool wasInITBlock = inITBlock();

      // Some instructions need post-processing to, for example, tweak which
      // encoding is selected. Loop on it while changes happen so the
      // individual transformations can chain off each other. E.g.,
      // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
      while (processInstruction(Inst, Operands, Out))
        LLVM_DEBUG(dbgs() << "Changed to: ";
                   Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
                   dbgs() << "\n");

      // Only after the instruction is fully processed, we can validate it
      if (wasInITBlock && hasV8Ops() && isThumb() &&
          !isV8EligibleForIT(&Inst)) {
        Warning(IDLoc, "deprecated instruction in IT block");
      }
    }

    // Only move forward at the very end so that everything in validate
    // and process gets a consistent answer about whether we're in an IT
    // block.
    forwardITPosition();
    forwardVPTPosition();

    // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
    // doesn't actually encode.
    if (Inst.getOpcode() == ARM::ITasm)
      return false;

    Inst.setLoc(IDLoc);
    if (PendConditionalInstruction) {
      PendingConditionalInsts.push_back(Inst);
      if (isITBlockFull() || isITBlockTerminator(Inst))
        flushPendingInstructions(Out);
    } else {
      Out.EmitInstruction(Inst, getSTI());
    }
    return false;
  case Match_NearMisses:
    ReportNearMisses(NearMisses, IDLoc, Operands);
    return true;
  case Match_MnemonicFail: {
    FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
    std::string Suggestion = ARMMnemonicSpellCheck(
      ((ARMOperand &)*Operands[0]).getToken(), FBS);
    return Error(IDLoc, "invalid instruction" + Suggestion,
                 ((ARMOperand &)*Operands[0]).getLocRange());
  }
  }

  llvm_unreachable("Implement any new match types added!");
}

/// parseDirective parses the arm specific directives
bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
  const MCObjectFileInfo::Environment Format =
    getContext().getObjectFileInfo()->getObjectFileType();
  bool IsMachO = Format == MCObjectFileInfo::IsMachO;
  bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;

  StringRef IDVal = DirectiveID.getIdentifier();
  if (IDVal == ".word")
    parseLiteralValues(4, DirectiveID.getLoc());
  else if (IDVal == ".short" || IDVal == ".hword")
    parseLiteralValues(2, DirectiveID.getLoc());
  else if (IDVal == ".thumb")
    parseDirectiveThumb(DirectiveID.getLoc());
  else if (IDVal == ".arm")
    parseDirectiveARM(DirectiveID.getLoc());
  else if (IDVal == ".thumb_func")
    parseDirectiveThumbFunc(DirectiveID.getLoc());
  else if (IDVal == ".code")
    parseDirectiveCode(DirectiveID.getLoc());
  else if (IDVal == ".syntax")
    parseDirectiveSyntax(DirectiveID.getLoc());
  else if (IDVal == ".unreq")
    parseDirectiveUnreq(DirectiveID.getLoc());
  else if (IDVal == ".fnend")
    parseDirectiveFnEnd(DirectiveID.getLoc());
  else if (IDVal == ".cantunwind")
    parseDirectiveCantUnwind(DirectiveID.getLoc());
  else if (IDVal == ".personality")
    parseDirectivePersonality(DirectiveID.getLoc());
  else if (IDVal == ".handlerdata")
    parseDirectiveHandlerData(DirectiveID.getLoc());
  else if (IDVal == ".setfp")
    parseDirectiveSetFP(DirectiveID.getLoc());
  else if (IDVal == ".pad")
    parseDirectivePad(DirectiveID.getLoc());
  else if (IDVal == ".save")
    parseDirectiveRegSave(DirectiveID.getLoc(), false);
  else if (IDVal == ".vsave")
    parseDirectiveRegSave(DirectiveID.getLoc(), true);
  else if (IDVal == ".ltorg" || IDVal == ".pool")
    parseDirectiveLtorg(DirectiveID.getLoc());
  else if (IDVal == ".even")
    parseDirectiveEven(DirectiveID.getLoc());
  else if (IDVal == ".personalityindex")
    parseDirectivePersonalityIndex(DirectiveID.getLoc());
  else if (IDVal == ".unwind_raw")
    parseDirectiveUnwindRaw(DirectiveID.getLoc());
  else if (IDVal == ".movsp")
    parseDirectiveMovSP(DirectiveID.getLoc());
  else if (IDVal == ".arch_extension")
    parseDirectiveArchExtension(DirectiveID.getLoc());
  else if (IDVal == ".align")
    return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
  else if (IDVal == ".thumb_set")
    parseDirectiveThumbSet(DirectiveID.getLoc());
  else if (IDVal == ".inst")
    parseDirectiveInst(DirectiveID.getLoc());
  else if (IDVal == ".inst.n")
    parseDirectiveInst(DirectiveID.getLoc(), 'n');
  else if (IDVal == ".inst.w")
    parseDirectiveInst(DirectiveID.getLoc(), 'w');
  else if (!IsMachO && !IsCOFF) {
    if (IDVal == ".arch")
      parseDirectiveArch(DirectiveID.getLoc());
    else if (IDVal == ".cpu")
      parseDirectiveCPU(DirectiveID.getLoc());
    else if (IDVal == ".eabi_attribute")
      parseDirectiveEabiAttr(DirectiveID.getLoc());
    else if (IDVal == ".fpu")
      parseDirectiveFPU(DirectiveID.getLoc());
    else if (IDVal == ".fnstart")
      parseDirectiveFnStart(DirectiveID.getLoc());
    else if (IDVal == ".object_arch")
      parseDirectiveObjectArch(DirectiveID.getLoc());
    else if (IDVal == ".tlsdescseq")
      parseDirectiveTLSDescSeq(DirectiveID.getLoc());
    else
      return true;
  } else
    return true;
  return false;
}

/// parseLiteralValues
///  ::= .hword expression [, expression]*
///  ::= .short expression [, expression]*
///  ::= .word expression [, expression]*
bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
  auto parseOne = [&]() -> bool {
    const MCExpr *Value;
    if (getParser().parseExpression(Value))
      return true;
    getParser().getStreamer().EmitValue(Value, Size, L);
    return false;
  };
  return (parseMany(parseOne));
}

/// parseDirectiveThumb
///  ::= .thumb
bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
      check(!hasThumb(), L, "target does not support Thumb mode"))
    return true;

  if (!isThumb())
    SwitchMode();

  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
  return false;
}

/// parseDirectiveARM
///  ::= .arm
bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
      check(!hasARM(), L, "target does not support ARM mode"))
    return true;

  if (isThumb())
    SwitchMode();
  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
  return false;
}

void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
  // We need to flush the current implicit IT block on a label, because it is
  // not legal to branch into an IT block.
  flushPendingInstructions(getStreamer());
}

void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
  if (NextSymbolIsThumb) {
    getParser().getStreamer().EmitThumbFunc(Symbol);
    NextSymbolIsThumb = false;
  }
}

/// parseDirectiveThumbFunc
///  ::= .thumbfunc symbol_name
bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
  MCAsmParser &Parser = getParser();
  const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
  bool IsMachO = Format == MCObjectFileInfo::IsMachO;

  // Darwin asm has (optionally) function name after .thumb_func direction
  // ELF doesn't

  if (IsMachO) {
    if (Parser.getTok().is(AsmToken::Identifier) ||
        Parser.getTok().is(AsmToken::String)) {
      MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
          Parser.getTok().getIdentifier());
      getParser().getStreamer().EmitThumbFunc(Func);
      Parser.Lex();
      if (parseToken(AsmToken::EndOfStatement,
                     "unexpected token in '.thumb_func' directive"))
        return true;
      return false;
    }
  }

  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '.thumb_func' directive"))
    return true;

  NextSymbolIsThumb = true;
  return false;
}

/// parseDirectiveSyntax
///  ::= .syntax unified | divided
bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Identifier)) {
    Error(L, "unexpected token in .syntax directive");
    return false;
  }

  StringRef Mode = Tok.getString();
  Parser.Lex();
  if (check(Mode == "divided" || Mode == "DIVIDED", L,
            "'.syntax divided' arm assembly not supported") ||
      check(Mode != "unified" && Mode != "UNIFIED", L,
            "unrecognized syntax mode in .syntax directive") ||
      parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
    return true;

  // TODO tell the MC streamer the mode
  // getParser().getStreamer().Emit???();
  return false;
}

/// parseDirectiveCode
///  ::= .code 16 | 32
bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
  MCAsmParser &Parser = getParser();
  const AsmToken &Tok = Parser.getTok();
  if (Tok.isNot(AsmToken::Integer))
    return Error(L, "unexpected token in .code directive");
  int64_t Val = Parser.getTok().getIntVal();
  if (Val != 16 && Val != 32) {
    Error(L, "invalid operand to .code directive");
    return false;
  }
  Parser.Lex();

  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
    return true;

  if (Val == 16) {
    if (!hasThumb())
      return Error(L, "target does not support Thumb mode");

    if (!isThumb())
      SwitchMode();
    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
  } else {
    if (!hasARM())
      return Error(L, "target does not support ARM mode");

    if (isThumb())
      SwitchMode();
    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
  }

  return false;
}

/// parseDirectiveReq
///  ::= name .req registername
bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
  MCAsmParser &Parser = getParser();
  Parser.Lex(); // Eat the '.req' token.
  unsigned Reg;
  SMLoc SRegLoc, ERegLoc;
  if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
            "register name expected") ||
      parseToken(AsmToken::EndOfStatement,
                 "unexpected input in .req directive."))
    return true;

  if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
    return Error(SRegLoc,
                 "redefinition of '" + Name + "' does not match original.");

  return false;
}

/// parseDirectiveUneq
///  ::= .unreq registername
bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
  MCAsmParser &Parser = getParser();
  if (Parser.getTok().isNot(AsmToken::Identifier))
    return Error(L, "unexpected input in .unreq directive.");
  RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
  Parser.Lex(); // Eat the identifier.
  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected input in '.unreq' directive"))
    return true;
  return false;
}

// After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
// before, if supported by the new target, or emit mapping symbols for the mode
// switch.
void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
  if (WasThumb != isThumb()) {
    if (WasThumb && hasThumb()) {
      // Stay in Thumb mode
      SwitchMode();
    } else if (!WasThumb && hasARM()) {
      // Stay in ARM mode
      SwitchMode();
    } else {
      // Mode switch forced, because the new arch doesn't support the old mode.
      getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16
                                                            : MCAF_Code32);
      // Warn about the implcit mode switch. GAS does not switch modes here,
      // but instead stays in the old mode, reporting an error on any following
      // instructions as the mode does not exist on the target.
      Warning(Loc, Twine("new target does not support ") +
                       (WasThumb ? "thumb" : "arm") + " mode, switching to " +
                       (!WasThumb ? "thumb" : "arm") + " mode");
    }
  }
}

/// parseDirectiveArch
///  ::= .arch token
bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
  StringRef Arch = getParser().parseStringToEndOfStatement().trim();
  ARM::ArchKind ID = ARM::parseArch(Arch);

  if (ID == ARM::ArchKind::INVALID)
    return Error(L, "Unknown arch name");

  bool WasThumb = isThumb();
  Triple T;
  MCSubtargetInfo &STI = copySTI();
  STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str());
  setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
  FixModeAfterArchChange(WasThumb, L);

  getTargetStreamer().emitArch(ID);
  return false;
}

/// parseDirectiveEabiAttr
///  ::= .eabi_attribute int, int [, "str"]
///  ::= .eabi_attribute Tag_name, int [, "str"]
bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
  MCAsmParser &Parser = getParser();
  int64_t Tag;
  SMLoc TagLoc;
  TagLoc = Parser.getTok().getLoc();
  if (Parser.getTok().is(AsmToken::Identifier)) {
    StringRef Name = Parser.getTok().getIdentifier();
    Tag = ARMBuildAttrs::AttrTypeFromString(Name);
    if (Tag == -1) {
      Error(TagLoc, "attribute name not recognised: " + Name);
      return false;
    }
    Parser.Lex();
  } else {
    const MCExpr *AttrExpr;

    TagLoc = Parser.getTok().getLoc();
    if (Parser.parseExpression(AttrExpr))
      return true;

    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
    if (check(!CE, TagLoc, "expected numeric constant"))
      return true;

    Tag = CE->getValue();
  }

  if (Parser.parseToken(AsmToken::Comma, "comma expected"))
    return true;

  StringRef StringValue = "";
  bool IsStringValue = false;

  int64_t IntegerValue = 0;
  bool IsIntegerValue = false;

  if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
    IsStringValue = true;
  else if (Tag == ARMBuildAttrs::compatibility) {
    IsStringValue = true;
    IsIntegerValue = true;
  } else if (Tag < 32 || Tag % 2 == 0)
    IsIntegerValue = true;
  else if (Tag % 2 == 1)
    IsStringValue = true;
  else
    llvm_unreachable("invalid tag type");

  if (IsIntegerValue) {
    const MCExpr *ValueExpr;
    SMLoc ValueExprLoc = Parser.getTok().getLoc();
    if (Parser.parseExpression(ValueExpr))
      return true;

    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
    if (!CE)
      return Error(ValueExprLoc, "expected numeric constant");
    IntegerValue = CE->getValue();
  }

  if (Tag == ARMBuildAttrs::compatibility) {
    if (Parser.parseToken(AsmToken::Comma, "comma expected"))
      return true;
  }

  if (IsStringValue) {
    if (Parser.getTok().isNot(AsmToken::String))
      return Error(Parser.getTok().getLoc(), "bad string constant");

    StringValue = Parser.getTok().getStringContents();
    Parser.Lex();
  }

  if (Parser.parseToken(AsmToken::EndOfStatement,
                        "unexpected token in '.eabi_attribute' directive"))
    return true;

  if (IsIntegerValue && IsStringValue) {
    assert(Tag == ARMBuildAttrs::compatibility);
    getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
  } else if (IsIntegerValue)
    getTargetStreamer().emitAttribute(Tag, IntegerValue);
  else if (IsStringValue)
    getTargetStreamer().emitTextAttribute(Tag, StringValue);
  return false;
}

/// parseDirectiveCPU
///  ::= .cpu str
bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
  StringRef CPU = getParser().parseStringToEndOfStatement().trim();
  getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);

  // FIXME: This is using table-gen data, but should be moved to
  // ARMTargetParser once that is table-gen'd.
  if (!getSTI().isCPUStringValid(CPU))
    return Error(L, "Unknown CPU name");

  bool WasThumb = isThumb();
  MCSubtargetInfo &STI = copySTI();
  STI.setDefaultFeatures(CPU, "");
  setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
  FixModeAfterArchChange(WasThumb, L);

  return false;
}

/// parseDirectiveFPU
///  ::= .fpu str
bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
  SMLoc FPUNameLoc = getTok().getLoc();
  StringRef FPU = getParser().parseStringToEndOfStatement().trim();

  unsigned ID = ARM::parseFPU(FPU);
  std::vector<StringRef> Features;
  if (!ARM::getFPUFeatures(ID, Features))
    return Error(FPUNameLoc, "Unknown FPU name");

  MCSubtargetInfo &STI = copySTI();
  for (auto Feature : Features)
    STI.ApplyFeatureFlag(Feature);
  setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));

  getTargetStreamer().emitFPU(ID);
  return false;
}

/// parseDirectiveFnStart
///  ::= .fnstart
bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '.fnstart' directive"))
    return true;

  if (UC.hasFnStart()) {
    Error(L, ".fnstart starts before the end of previous one");
    UC.emitFnStartLocNotes();
    return true;
  }

  // Reset the unwind directives parser state
  UC.reset();

  getTargetStreamer().emitFnStart();

  UC.recordFnStart(L);
  return false;
}

/// parseDirectiveFnEnd
///  ::= .fnend
bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '.fnend' directive"))
    return true;
  // Check the ordering of unwind directives
  if (!UC.hasFnStart())
    return Error(L, ".fnstart must precede .fnend directive");

  // Reset the unwind directives parser state
  getTargetStreamer().emitFnEnd();

  UC.reset();
  return false;
}

/// parseDirectiveCantUnwind
///  ::= .cantunwind
bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '.cantunwind' directive"))
    return true;

  UC.recordCantUnwind(L);
  // Check the ordering of unwind directives
  if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
    return true;

  if (UC.hasHandlerData()) {
    Error(L, ".cantunwind can't be used with .handlerdata directive");
    UC.emitHandlerDataLocNotes();
    return true;
  }
  if (UC.hasPersonality()) {
    Error(L, ".cantunwind can't be used with .personality directive");
    UC.emitPersonalityLocNotes();
    return true;
  }

  getTargetStreamer().emitCantUnwind();
  return false;
}

/// parseDirectivePersonality
///  ::= .personality name
bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
  MCAsmParser &Parser = getParser();
  bool HasExistingPersonality = UC.hasPersonality();

  // Parse the name of the personality routine
  if (Parser.getTok().isNot(AsmToken::Identifier))
    return Error(L, "unexpected input in .personality directive.");
  StringRef Name(Parser.getTok().getIdentifier());
  Parser.Lex();

  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '.personality' directive"))
    return true;

  UC.recordPersonality(L);

  // Check the ordering of unwind directives
  if (!UC.hasFnStart())
    return Error(L, ".fnstart must precede .personality directive");
  if (UC.cantUnwind()) {
    Error(L, ".personality can't be used with .cantunwind directive");
    UC.emitCantUnwindLocNotes();
    return true;
  }
  if (UC.hasHandlerData()) {
    Error(L, ".personality must precede .handlerdata directive");
    UC.emitHandlerDataLocNotes();
    return true;
  }
  if (HasExistingPersonality) {
    Error(L, "multiple personality directives");
    UC.emitPersonalityLocNotes();
    return true;
  }

  MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
  getTargetStreamer().emitPersonality(PR);
  return false;
}

/// parseDirectiveHandlerData
///  ::= .handlerdata
bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '.handlerdata' directive"))
    return true;

  UC.recordHandlerData(L);
  // Check the ordering of unwind directives
  if (!UC.hasFnStart())
    return Error(L, ".fnstart must precede .personality directive");
  if (UC.cantUnwind()) {
    Error(L, ".handlerdata can't be used with .cantunwind directive");
    UC.emitCantUnwindLocNotes();
    return true;
  }

  getTargetStreamer().emitHandlerData();
  return false;
}

/// parseDirectiveSetFP
///  ::= .setfp fpreg, spreg [, offset]
bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
  MCAsmParser &Parser = getParser();
  // Check the ordering of unwind directives
  if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
      check(UC.hasHandlerData(), L,
            ".setfp must precede .handlerdata directive"))
    return true;

  // Parse fpreg
  SMLoc FPRegLoc = Parser.getTok().getLoc();
  int FPReg = tryParseRegister();

  if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
      Parser.parseToken(AsmToken::Comma, "comma expected"))
    return true;

  // Parse spreg
  SMLoc SPRegLoc = Parser.getTok().getLoc();
  int SPReg = tryParseRegister();
  if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
      check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
            "register should be either $sp or the latest fp register"))
    return true;

  // Update the frame pointer register
  UC.saveFPReg(FPReg);

  // Parse offset
  int64_t Offset = 0;
  if (Parser.parseOptionalToken(AsmToken::Comma)) {
    if (Parser.getTok().isNot(AsmToken::Hash) &&
        Parser.getTok().isNot(AsmToken::Dollar))
      return Error(Parser.getTok().getLoc(), "'#' expected");
    Parser.Lex(); // skip hash token.

    const MCExpr *OffsetExpr;
    SMLoc ExLoc = Parser.getTok().getLoc();
    SMLoc EndLoc;
    if (getParser().parseExpression(OffsetExpr, EndLoc))
      return Error(ExLoc, "malformed setfp offset");
    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
    if (check(!CE, ExLoc, "setfp offset must be an immediate"))
      return true;
    Offset = CE->getValue();
  }

  if (Parser.parseToken(AsmToken::EndOfStatement))
    return true;

  getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
                                static_cast<unsigned>(SPReg), Offset);
  return false;
}

/// parseDirective
///  ::= .pad offset
bool ARMAsmParser::parseDirectivePad(SMLoc L) {
  MCAsmParser &Parser = getParser();
  // Check the ordering of unwind directives
  if (!UC.hasFnStart())
    return Error(L, ".fnstart must precede .pad directive");
  if (UC.hasHandlerData())
    return Error(L, ".pad must precede .handlerdata directive");

  // Parse the offset
  if (Parser.getTok().isNot(AsmToken::Hash) &&
      Parser.getTok().isNot(AsmToken::Dollar))
    return Error(Parser.getTok().getLoc(), "'#' expected");
  Parser.Lex(); // skip hash token.

  const MCExpr *OffsetExpr;
  SMLoc ExLoc = Parser.getTok().getLoc();
  SMLoc EndLoc;
  if (getParser().parseExpression(OffsetExpr, EndLoc))
    return Error(ExLoc, "malformed pad offset");
  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
  if (!CE)
    return Error(ExLoc, "pad offset must be an immediate");

  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '.pad' directive"))
    return true;

  getTargetStreamer().emitPad(CE->getValue());
  return false;
}

/// parseDirectiveRegSave
///  ::= .save  { registers }
///  ::= .vsave { registers }
bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
  // Check the ordering of unwind directives
  if (!UC.hasFnStart())
    return Error(L, ".fnstart must precede .save or .vsave directives");
  if (UC.hasHandlerData())
    return Error(L, ".save or .vsave must precede .handlerdata directive");

  // RAII object to make sure parsed operands are deleted.
  SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;

  // Parse the register list
  if (parseRegisterList(Operands) ||
      parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
    return true;
  ARMOperand &Op = (ARMOperand &)*Operands[0];
  if (!IsVector && !Op.isRegList())
    return Error(L, ".save expects GPR registers");
  if (IsVector && !Op.isDPRRegList())
    return Error(L, ".vsave expects DPR registers");

  getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
  return false;
}

/// parseDirectiveInst
///  ::= .inst opcode [, ...]
///  ::= .inst.n opcode [, ...]
///  ::= .inst.w opcode [, ...]
bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
  int Width = 4;

  if (isThumb()) {
    switch (Suffix) {
    case 'n':
      Width = 2;
      break;
    case 'w':
      break;
    default:
      Width = 0;
      break;
    }
  } else {
    if (Suffix)
      return Error(Loc, "width suffixes are invalid in ARM mode");
  }

  auto parseOne = [&]() -> bool {
    const MCExpr *Expr;
    if (getParser().parseExpression(Expr))
      return true;
    const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
    if (!Value) {
      return Error(Loc, "expected constant expression");
    }

    char CurSuffix = Suffix;
    switch (Width) {
    case 2:
      if (Value->getValue() > 0xffff)
        return Error(Loc, "inst.n operand is too big, use inst.w instead");
      break;
    case 4:
      if (Value->getValue() > 0xffffffff)
        return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
                              " operand is too big");
      break;
    case 0:
      // Thumb mode, no width indicated. Guess from the opcode, if possible.
      if (Value->getValue() < 0xe800)
        CurSuffix = 'n';
      else if (Value->getValue() >= 0xe8000000)
        CurSuffix = 'w';
      else
        return Error(Loc, "cannot determine Thumb instruction size, "
                          "use inst.n/inst.w instead");
      break;
    default:
      llvm_unreachable("only supported widths are 2 and 4");
    }

    getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
    return false;
  };

  if (parseOptionalToken(AsmToken::EndOfStatement))
    return Error(Loc, "expected expression following directive");
  if (parseMany(parseOne))
    return true;
  return false;
}

/// parseDirectiveLtorg
///  ::= .ltorg | .pool
bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
    return true;
  getTargetStreamer().emitCurrentConstantPool();
  return false;
}

bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
  const MCSection *Section = getStreamer().getCurrentSectionOnly();

  if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
    return true;

  if (!Section) {
    getStreamer().InitSections(false);
    Section = getStreamer().getCurrentSectionOnly();
  }

  assert(Section && "must have section to emit alignment");
  if (Section->UseCodeAlign())
    getStreamer().EmitCodeAlignment(2);
  else
    getStreamer().EmitValueToAlignment(2);

  return false;
}

/// parseDirectivePersonalityIndex
///   ::= .personalityindex index
bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
  MCAsmParser &Parser = getParser();
  bool HasExistingPersonality = UC.hasPersonality();

  const MCExpr *IndexExpression;
  SMLoc IndexLoc = Parser.getTok().getLoc();
  if (Parser.parseExpression(IndexExpression) ||
      parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '.personalityindex' directive")) {
    return true;
  }

  UC.recordPersonalityIndex(L);

  if (!UC.hasFnStart()) {
    return Error(L, ".fnstart must precede .personalityindex directive");
  }
  if (UC.cantUnwind()) {
    Error(L, ".personalityindex cannot be used with .cantunwind");
    UC.emitCantUnwindLocNotes();
    return true;
  }
  if (UC.hasHandlerData()) {
    Error(L, ".personalityindex must precede .handlerdata directive");
    UC.emitHandlerDataLocNotes();
    return true;
  }
  if (HasExistingPersonality) {
    Error(L, "multiple personality directives");
    UC.emitPersonalityLocNotes();
    return true;
  }

  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
  if (!CE)
    return Error(IndexLoc, "index must be a constant number");
  if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
    return Error(IndexLoc,
                 "personality routine index should be in range [0-3]");

  getTargetStreamer().emitPersonalityIndex(CE->getValue());
  return false;
}

/// parseDirectiveUnwindRaw
///   ::= .unwind_raw offset, opcode [, opcode...]
bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
  MCAsmParser &Parser = getParser();
  int64_t StackOffset;
  const MCExpr *OffsetExpr;
  SMLoc OffsetLoc = getLexer().getLoc();

  if (!UC.hasFnStart())
    return Error(L, ".fnstart must precede .unwind_raw directives");
  if (getParser().parseExpression(OffsetExpr))
    return Error(OffsetLoc, "expected expression");

  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
  if (!CE)
    return Error(OffsetLoc, "offset must be a constant");

  StackOffset = CE->getValue();

  if (Parser.parseToken(AsmToken::Comma, "expected comma"))
    return true;

  SmallVector<uint8_t, 16> Opcodes;

  auto parseOne = [&]() -> bool {
    const MCExpr *OE = nullptr;
    SMLoc OpcodeLoc = getLexer().getLoc();
    if (check(getLexer().is(AsmToken::EndOfStatement) ||
                  Parser.parseExpression(OE),
              OpcodeLoc, "expected opcode expression"))
      return true;
    const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
    if (!OC)
      return Error(OpcodeLoc, "opcode value must be a constant");
    const int64_t Opcode = OC->getValue();
    if (Opcode & ~0xff)
      return Error(OpcodeLoc, "invalid opcode");
    Opcodes.push_back(uint8_t(Opcode));
    return false;
  };

  // Must have at least 1 element
  SMLoc OpcodeLoc = getLexer().getLoc();
  if (parseOptionalToken(AsmToken::EndOfStatement))
    return Error(OpcodeLoc, "expected opcode expression");
  if (parseMany(parseOne))
    return true;

  getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
  return false;
}

/// parseDirectiveTLSDescSeq
///   ::= .tlsdescseq tls-variable
bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
  MCAsmParser &Parser = getParser();

  if (getLexer().isNot(AsmToken::Identifier))
    return TokError("expected variable after '.tlsdescseq' directive");

  const MCSymbolRefExpr *SRE =
    MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
                            MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
  Lex();

  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '.tlsdescseq' directive"))
    return true;

  getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
  return false;
}

/// parseDirectiveMovSP
///  ::= .movsp reg [, #offset]
bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
  MCAsmParser &Parser = getParser();
  if (!UC.hasFnStart())
    return Error(L, ".fnstart must precede .movsp directives");
  if (UC.getFPReg() != ARM::SP)
    return Error(L, "unexpected .movsp directive");

  SMLoc SPRegLoc = Parser.getTok().getLoc();
  int SPReg = tryParseRegister();
  if (SPReg == -1)
    return Error(SPRegLoc, "register expected");
  if (SPReg == ARM::SP || SPReg == ARM::PC)
    return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");

  int64_t Offset = 0;
  if (Parser.parseOptionalToken(AsmToken::Comma)) {
    if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
      return true;

    const MCExpr *OffsetExpr;
    SMLoc OffsetLoc = Parser.getTok().getLoc();

    if (Parser.parseExpression(OffsetExpr))
      return Error(OffsetLoc, "malformed offset expression");

    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
    if (!CE)
      return Error(OffsetLoc, "offset must be an immediate constant");

    Offset = CE->getValue();
  }

  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '.movsp' directive"))
    return true;

  getTargetStreamer().emitMovSP(SPReg, Offset);
  UC.saveFPReg(SPReg);

  return false;
}

/// parseDirectiveObjectArch
///   ::= .object_arch name
bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
  MCAsmParser &Parser = getParser();
  if (getLexer().isNot(AsmToken::Identifier))
    return Error(getLexer().getLoc(), "unexpected token");

  StringRef Arch = Parser.getTok().getString();
  SMLoc ArchLoc = Parser.getTok().getLoc();
  Lex();

  ARM::ArchKind ID = ARM::parseArch(Arch);

  if (ID == ARM::ArchKind::INVALID)
    return Error(ArchLoc, "unknown architecture '" + Arch + "'");
  if (parseToken(AsmToken::EndOfStatement))
    return true;

  getTargetStreamer().emitObjectArch(ID);
  return false;
}

/// parseDirectiveAlign
///   ::= .align
bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
  // NOTE: if this is not the end of the statement, fall back to the target
  // agnostic handling for this directive which will correctly handle this.
  if (parseOptionalToken(AsmToken::EndOfStatement)) {
    // '.align' is target specifically handled to mean 2**2 byte alignment.
    const MCSection *Section = getStreamer().getCurrentSectionOnly();
    assert(Section && "must have section to emit alignment");
    if (Section->UseCodeAlign())
      getStreamer().EmitCodeAlignment(4, 0);
    else
      getStreamer().EmitValueToAlignment(4, 0, 1, 0);
    return false;
  }
  return true;
}

/// parseDirectiveThumbSet
///  ::= .thumb_set name, value
bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
  MCAsmParser &Parser = getParser();

  StringRef Name;
  if (check(Parser.parseIdentifier(Name),
            "expected identifier after '.thumb_set'") ||
      parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
    return true;

  MCSymbol *Sym;
  const MCExpr *Value;
  if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
                                               Parser, Sym, Value))
    return true;

  getTargetStreamer().emitThumbSet(Sym, Value);
  return false;
}

/// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() {
  RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
  RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
  RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
  RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
}

#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "ARMGenAsmMatcher.inc"

// Some diagnostics need to vary with subtarget features, so they are handled
// here. For example, the DPR class has either 16 or 32 registers, depending
// on the FPU available.
const char *
ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
  switch (MatchError) {
  // rGPR contains sp starting with ARMv8.
  case Match_rGPR:
    return hasV8Ops() ? "operand must be a register in range [r0, r14]"
                      : "operand must be a register in range [r0, r12] or r14";
  // DPR contains 16 registers for some FPUs, and 32 for others.
  case Match_DPR:
    return hasD32() ? "operand must be a register in range [d0, d31]"
                    : "operand must be a register in range [d0, d15]";
  case Match_DPR_RegList:
    return hasD32() ? "operand must be a list of registers in range [d0, d31]"
                    : "operand must be a list of registers in range [d0, d15]";

  // For all other diags, use the static string from tablegen.
  default:
    return getMatchKindDiag(MatchError);
  }
}

// Process the list of near-misses, throwing away ones we don't want to report
// to the user, and converting the rest to a source location and string that
// should be reported.
void
ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
                               SmallVectorImpl<NearMissMessage> &NearMissesOut,
                               SMLoc IDLoc, OperandVector &Operands) {
  // TODO: If operand didn't match, sub in a dummy one and run target
  // predicate, so that we can avoid reporting near-misses that are invalid?
  // TODO: Many operand types dont have SuperClasses set, so we report
  // redundant ones.
  // TODO: Some operands are superclasses of registers (e.g.
  // MCK_RegShiftedImm), we don't have any way to represent that currently.
  // TODO: This is not all ARM-specific, can some of it be factored out?

  // Record some information about near-misses that we have already seen, so
  // that we can avoid reporting redundant ones. For example, if there are
  // variants of an instruction that take 8- and 16-bit immediates, we want
  // to only report the widest one.
  std::multimap<unsigned, unsigned> OperandMissesSeen;
  SmallSet<FeatureBitset, 4> FeatureMissesSeen;
  bool ReportedTooFewOperands = false;

  // Process the near-misses in reverse order, so that we see more general ones
  // first, and so can avoid emitting more specific ones.
  for (NearMissInfo &I : reverse(NearMissesIn)) {
    switch (I.getKind()) {
    case NearMissInfo::NearMissOperand: {
      SMLoc OperandLoc =
          ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
      const char *OperandDiag =
          getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());

      // If we have already emitted a message for a superclass, don't also report
      // the sub-class. We consider all operand classes that we don't have a
      // specialised diagnostic for to be equal for the propose of this check,
      // so that we don't report the generic error multiple times on the same
      // operand.
      unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
      auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
      if (std::any_of(PrevReports.first, PrevReports.second,
                      [DupCheckMatchClass](
                          const std::pair<unsigned, unsigned> Pair) {
            if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
              return Pair.second == DupCheckMatchClass;
            else
              return isSubclass((MatchClassKind)DupCheckMatchClass,
                                (MatchClassKind)Pair.second);
          }))
        break;
      OperandMissesSeen.insert(
          std::make_pair(I.getOperandIndex(), DupCheckMatchClass));

      NearMissMessage Message;
      Message.Loc = OperandLoc;
      if (OperandDiag) {
        Message.Message = OperandDiag;
      } else if (I.getOperandClass() == InvalidMatchClass) {
        Message.Message = "too many operands for instruction";
      } else {
        Message.Message = "invalid operand for instruction";
        LLVM_DEBUG(
            dbgs() << "Missing diagnostic string for operand class "
                   << getMatchClassName((MatchClassKind)I.getOperandClass())
                   << I.getOperandClass() << ", error " << I.getOperandError()
                   << ", opcode " << MII.getName(I.getOpcode()) << "\n");
      }
      NearMissesOut.emplace_back(Message);
      break;
    }
    case NearMissInfo::NearMissFeature: {
      const FeatureBitset &MissingFeatures = I.getFeatures();
      // Don't report the same set of features twice.
      if (FeatureMissesSeen.count(MissingFeatures))
        break;
      FeatureMissesSeen.insert(MissingFeatures);

      // Special case: don't report a feature set which includes arm-mode for
      // targets that don't have ARM mode.
      if (MissingFeatures.test(Feature_IsARMBit) && !hasARM())
        break;
      // Don't report any near-misses that both require switching instruction
      // set, and adding other subtarget features.
      if (isThumb() && MissingFeatures.test(Feature_IsARMBit) &&
          MissingFeatures.count() > 1)
        break;
      if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) &&
          MissingFeatures.count() > 1)
        break;
      if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) &&
          (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit,
                                             Feature_IsThumbBit})).any())
        break;
      if (isMClass() && MissingFeatures.test(Feature_HasNEONBit))
        break;

      NearMissMessage Message;
      Message.Loc = IDLoc;
      raw_svector_ostream OS(Message.Message);

      OS << "instruction requires:";
      for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)
        if (MissingFeatures.test(i))
          OS << ' ' << getSubtargetFeatureName(i);

      NearMissesOut.emplace_back(Message);

      break;
    }
    case NearMissInfo::NearMissPredicate: {
      NearMissMessage Message;
      Message.Loc = IDLoc;
      switch (I.getPredicateError()) {
      case Match_RequiresNotITBlock:
        Message.Message = "flag setting instruction only valid outside IT block";
        break;
      case Match_RequiresITBlock:
        Message.Message = "instruction only valid inside IT block";
        break;
      case Match_RequiresV6:
        Message.Message = "instruction variant requires ARMv6 or later";
        break;
      case Match_RequiresThumb2:
        Message.Message = "instruction variant requires Thumb2";
        break;
      case Match_RequiresV8:
        Message.Message = "instruction variant requires ARMv8 or later";
        break;
      case Match_RequiresFlagSetting:
        Message.Message = "no flag-preserving variant of this instruction available";
        break;
      case Match_InvalidOperand:
        Message.Message = "invalid operand for instruction";
        break;
      default:
        llvm_unreachable("Unhandled target predicate error");
        break;
      }
      NearMissesOut.emplace_back(Message);
      break;
    }
    case NearMissInfo::NearMissTooFewOperands: {
      if (!ReportedTooFewOperands) {
        SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
        NearMissesOut.emplace_back(NearMissMessage{
            EndLoc, StringRef("too few operands for instruction")});
        ReportedTooFewOperands = true;
      }
      break;
    }
    case NearMissInfo::NoNearMiss:
      // This should never leave the matcher.
      llvm_unreachable("not a near-miss");
      break;
    }
  }
}

void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
                                    SMLoc IDLoc, OperandVector &Operands) {
  SmallVector<NearMissMessage, 4> Messages;
  FilterNearMisses(NearMisses, Messages, IDLoc, Operands);

  if (Messages.size() == 0) {
    // No near-misses were found, so the best we can do is "invalid
    // instruction".
    Error(IDLoc, "invalid instruction");
  } else if (Messages.size() == 1) {
    // One near miss was found, report it as the sole error.
    Error(Messages[0].Loc, Messages[0].Message);
  } else {
    // More than one near miss, so report a generic "invalid instruction"
    // error, followed by notes for each of the near-misses.
    Error(IDLoc, "invalid instruction, any one of the following would fix this:");
    for (auto &M : Messages) {
      Note(M.Loc, M.Message);
    }
  }
}

/// parseDirectiveArchExtension
///   ::= .arch_extension [no]feature
bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
  // FIXME: This structure should be moved inside ARMTargetParser
  // when we start to table-generate them, and we can use the ARM
  // flags below, that were generated by table-gen.
  static const struct {
    const unsigned Kind;
    const FeatureBitset ArchCheck;
    const FeatureBitset Features;
  } Extensions[] = {
    { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} },
    { ARM::AEK_CRYPTO,  {Feature_HasV8Bit},
      {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} },
    { ARM::AEK_FP, {Feature_HasV8Bit},
      {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} },
    { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM),
      {Feature_HasV7Bit, Feature_IsNotMClassBit},
      {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} },
    { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit},
      {ARM::FeatureMP} },
    { ARM::AEK_SIMD, {Feature_HasV8Bit},
      {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} },
    { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} },
    // FIXME: Only available in A-class, isel not predicated
    { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} },
    { ARM::AEK_FP16, {Feature_HasV8_2aBit},
      {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} },
    { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} },
    { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} },
    // FIXME: Unsupported extensions.
    { ARM::AEK_OS, {}, {} },
    { ARM::AEK_IWMMXT, {}, {} },
    { ARM::AEK_IWMMXT2, {}, {} },
    { ARM::AEK_MAVERICK, {}, {} },
    { ARM::AEK_XSCALE, {}, {} },
  };

  MCAsmParser &Parser = getParser();

  if (getLexer().isNot(AsmToken::Identifier))
    return Error(getLexer().getLoc(), "expected architecture extension name");

  StringRef Name = Parser.getTok().getString();
  SMLoc ExtLoc = Parser.getTok().getLoc();
  Lex();

  if (parseToken(AsmToken::EndOfStatement,
                 "unexpected token in '.arch_extension' directive"))
    return true;

  bool EnableFeature = true;
  if (Name.startswith_lower("no")) {
    EnableFeature = false;
    Name = Name.substr(2);
  }
  unsigned FeatureKind = ARM::parseArchExt(Name);
  if (FeatureKind == ARM::AEK_INVALID)
    return Error(ExtLoc, "unknown architectural extension: " + Name);

  for (const auto &Extension : Extensions) {
    if (Extension.Kind != FeatureKind)
      continue;

    if (Extension.Features.none())
      return Error(ExtLoc, "unsupported architectural extension: " + Name);

    if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
      return Error(ExtLoc, "architectural extension '" + Name +
                               "' is not "
                               "allowed for the current base architecture");

    MCSubtargetInfo &STI = copySTI();
    if (EnableFeature) {
      STI.SetFeatureBitsTransitively(Extension.Features);
    } else {
      STI.ClearFeatureBitsTransitively(Extension.Features);
    }
    FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits());
    setAvailableFeatures(Features);
    return false;
  }

  return Error(ExtLoc, "unknown architectural extension: " + Name);
}

// Define this matcher function after the auto-generated include so we
// have the match class enum definitions.
unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
                                                  unsigned Kind) {
  ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
  // If the kind is a token for a literal immediate, check if our asm
  // operand matches. This is for InstAliases which have a fixed-value
  // immediate in the syntax.
  switch (Kind) {
  default: break;
  case MCK__HASH_0:
    if (Op.isImm())
      if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
        if (CE->getValue() == 0)
          return Match_Success;
    break;
  case MCK__HASH_8:
    if (Op.isImm())
      if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
        if (CE->getValue() == 8)
          return Match_Success;
    break;
  case MCK__HASH_16:
    if (Op.isImm())
      if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
        if (CE->getValue() == 16)
          return Match_Success;
    break;
  case MCK_ModImm:
    if (Op.isImm()) {
      const MCExpr *SOExpr = Op.getImm();
      int64_t Value;
      if (!SOExpr->evaluateAsAbsolute(Value))
        return Match_Success;
      assert((Value >= std::numeric_limits<int32_t>::min() &&
              Value <= std::numeric_limits<uint32_t>::max()) &&
             "expression value must be representable in 32 bits");
    }
    break;
  case MCK_rGPR:
    if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
      return Match_Success;
    return Match_rGPR;
  case MCK_GPRPair:
    if (Op.isReg() &&
        MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
      return Match_Success;
    break;
  }
  return Match_InvalidOperand;
}

bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic,
                                           StringRef ExtraToken) {
  if (!hasMVE())
    return false;

  return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") ||
         Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") ||
         Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") ||
         Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") ||
         Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") ||
         Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") ||
         Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") ||
         Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") ||
         Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") ||
         Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") ||
         Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") ||
         Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") ||
         Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") ||
         Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") ||
         Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") ||
         Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") ||
         Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") ||
         Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") ||
         Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") ||
         Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") ||
         Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") ||
         Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") ||
         Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") ||
         Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") ||
         Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") ||
         Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") ||
         Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") ||
         Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") ||
         Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") ||
         Mnemonic.startswith("vqabs") ||
         (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") ||
         Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") ||
         Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") ||
         Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") ||
         Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") ||
         Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") ||
         Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") ||
         Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") ||
         Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") ||
         Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") ||
         Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") ||
         Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") ||
         Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") ||
         Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") ||
         Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") ||
         Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") ||
         Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") ||
         Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") ||
         Mnemonic.startswith("vldrb") ||
         (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") ||
         (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") ||
         Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") ||
         Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") ||
         Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") ||
         Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") ||
         Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") ||
         Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") ||
         Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") ||
         Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") ||
         Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") ||
         Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") ||
         Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") ||
         Mnemonic.startswith("vcvt") ||
         (Mnemonic.startswith("vmov") &&
          !(ExtraToken == ".f16" || ExtraToken == ".32" ||
            ExtraToken == ".16" || ExtraToken == ".8"));
}