HexagonBitTracker.cpp
39.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
//===- HexagonBitTracker.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "HexagonBitTracker.h"
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <utility>
#include <vector>
using namespace llvm;
using BT = BitTracker;
HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
MachineRegisterInfo &mri,
const HexagonInstrInfo &tii,
MachineFunction &mf)
: MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
// Populate the VRX map (VR to extension-type).
// Go over all the formal parameters of the function. If a given parameter
// P is sign- or zero-extended, locate the virtual register holding that
// parameter and create an entry in the VRX map indicating the type of ex-
// tension (and the source type).
// This is a bit complicated to do accurately, since the memory layout in-
// formation is necessary to precisely determine whether an aggregate para-
// meter will be passed in a register or in memory. What is given in MRI
// is the association between the physical register that is live-in (i.e.
// holds an argument), and the virtual register that this value will be
// copied into. This, by itself, is not sufficient to map back the virtual
// register to a formal parameter from Function (since consecutive live-ins
// from MRI may not correspond to consecutive formal parameters from Func-
// tion). To avoid the complications with in-memory arguments, only consi-
// der the initial sequence of formal parameters that are known to be
// passed via registers.
unsigned InVirtReg, InPhysReg = 0;
for (const Argument &Arg : MF.getFunction().args()) {
Type *ATy = Arg.getType();
unsigned Width = 0;
if (ATy->isIntegerTy())
Width = ATy->getIntegerBitWidth();
else if (ATy->isPointerTy())
Width = 32;
// If pointer size is not set through target data, it will default to
// Module::AnyPointerSize.
if (Width == 0 || Width > 64)
break;
if (Arg.hasAttribute(Attribute::ByVal))
continue;
InPhysReg = getNextPhysReg(InPhysReg, Width);
if (!InPhysReg)
break;
InVirtReg = getVirtRegFor(InPhysReg);
if (!InVirtReg)
continue;
if (Arg.hasAttribute(Attribute::SExt))
VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
else if (Arg.hasAttribute(Attribute::ZExt))
VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
}
}
BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
if (Sub == 0)
return MachineEvaluator::mask(Reg, 0);
const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
unsigned ID = RC.getID();
uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
switch (ID) {
case Hexagon::DoubleRegsRegClassID:
case Hexagon::HvxWRRegClassID:
case Hexagon::HvxVQRRegClassID:
return IsSubLo ? BT::BitMask(0, RW-1)
: BT::BitMask(RW, 2*RW-1);
default:
break;
}
#ifndef NDEBUG
dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "
<< TRI.getRegClassName(&RC) << '\n';
#endif
llvm_unreachable("Unexpected register/subregister");
}
uint16_t HexagonEvaluator::getPhysRegBitWidth(unsigned Reg) const {
assert(Register::isPhysicalRegister(Reg));
using namespace Hexagon;
const auto &HST = MF.getSubtarget<HexagonSubtarget>();
if (HST.useHVXOps()) {
for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass,
HvxVQRRegClass})
if (RC.contains(Reg))
return TRI.getRegSizeInBits(RC);
}
// Default treatment for other physical registers.
if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
return TRI.getRegSizeInBits(*RC);
llvm_unreachable(
(Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());
}
const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
const TargetRegisterClass &RC, unsigned Idx) const {
if (Idx == 0)
return RC;
#ifndef NDEBUG
const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
#endif
switch (RC.getID()) {
case Hexagon::DoubleRegsRegClassID:
return Hexagon::IntRegsRegClass;
case Hexagon::HvxWRRegClassID:
return Hexagon::HvxVRRegClass;
case Hexagon::HvxVQRRegClassID:
return Hexagon::HvxWRRegClass;
default:
break;
}
#ifndef NDEBUG
dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
#endif
llvm_unreachable("Unimplemented combination of reg class/subreg idx");
}
namespace {
class RegisterRefs {
std::vector<BT::RegisterRef> Vector;
public:
RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isReg())
Vector[i] = BT::RegisterRef(MO);
// For indices that don't correspond to registers, the entry will
// remain constructed via the default constructor.
}
}
size_t size() const { return Vector.size(); }
const BT::RegisterRef &operator[](unsigned n) const {
// The main purpose of this operator is to assert with bad argument.
assert(n < Vector.size());
return Vector[n];
}
};
} // end anonymous namespace
bool HexagonEvaluator::evaluate(const MachineInstr &MI,
const CellMapType &Inputs,
CellMapType &Outputs) const {
using namespace Hexagon;
unsigned NumDefs = 0;
// Sanity verification: there should not be any defs with subregisters.
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
NumDefs++;
assert(MO.getSubReg() == 0);
}
if (NumDefs == 0)
return false;
unsigned Opc = MI.getOpcode();
if (MI.mayLoad()) {
switch (Opc) {
// These instructions may be marked as mayLoad, but they are generating
// immediate values, so skip them.
case CONST32:
case CONST64:
break;
default:
return evaluateLoad(MI, Inputs, Outputs);
}
}
// Check COPY instructions that copy formal parameters into virtual
// registers. Such parameters can be sign- or zero-extended at the
// call site, and we should take advantage of this knowledge. The MRI
// keeps a list of pairs of live-in physical and virtual registers,
// which provides information about which virtual registers will hold
// the argument values. The function will still contain instructions
// defining those virtual registers, and in practice those are COPY
// instructions from a physical to a virtual register. In such cases,
// applying the argument extension to the virtual register can be seen
// as simply mirroring the extension that had already been applied to
// the physical register at the call site. If the defining instruction
// was not a COPY, it would not be clear how to mirror that extension
// on the callee's side. For that reason, only check COPY instructions
// for potential extensions.
if (MI.isCopy()) {
if (evaluateFormalCopy(MI, Inputs, Outputs))
return true;
}
// Beyond this point, if any operand is a global, skip that instruction.
// The reason is that certain instructions that can take an immediate
// operand can also have a global symbol in that operand. To avoid
// checking what kind of operand a given instruction has individually
// for each instruction, do it here. Global symbols as operands gene-
// rally do not provide any useful information.
for (const MachineOperand &MO : MI.operands()) {
if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
MO.isCPI())
return false;
}
RegisterRefs Reg(MI);
#define op(i) MI.getOperand(i)
#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
#define im(i) MI.getOperand(i).getImm()
// If the instruction has no register operands, skip it.
if (Reg.size() == 0)
return false;
// Record result for register in operand 0.
auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
-> bool {
putCell(Reg[0], Val, Outputs);
return true;
};
// Get the cell corresponding to the N-th operand.
auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
uint16_t W) -> BT::RegisterCell {
const MachineOperand &Op = MI.getOperand(N);
if (Op.isImm())
return eIMM(Op.getImm(), W);
if (!Op.isReg())
return RegisterCell::self(0, W);
assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
return rc(N);
};
// Extract RW low bits of the cell.
auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
-> BT::RegisterCell {
assert(RW <= RC.width());
return eXTR(RC, 0, RW);
};
// Extract RW high bits of the cell.
auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
-> BT::RegisterCell {
uint16_t W = RC.width();
assert(RW <= W);
return eXTR(RC, W-RW, W);
};
// Extract N-th halfword (counting from the least significant position).
auto half = [this] (const BT::RegisterCell &RC, unsigned N)
-> BT::RegisterCell {
assert(N*16+16 <= RC.width());
return eXTR(RC, N*16, N*16+16);
};
// Shuffle bits (pick even/odd from cells and merge into result).
auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
uint16_t BW, bool Odd) -> BT::RegisterCell {
uint16_t I = Odd, Ws = Rs.width();
assert(Ws == Rt.width());
RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
I += 2;
while (I*BW < Ws) {
RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
I += 2;
}
return RC;
};
// The bitwidth of the 0th operand. In most (if not all) of the
// instructions below, the 0th operand is the defined register.
// Pre-compute the bitwidth here, because it is needed in many cases
// cases below.
uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
// Register id of the 0th operand. It can be 0.
unsigned Reg0 = Reg[0].Reg;
switch (Opc) {
// Transfer immediate:
case A2_tfrsi:
case A2_tfrpi:
case CONST32:
case CONST64:
return rr0(eIMM(im(1), W0), Outputs);
case PS_false:
return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
case PS_true:
return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
case PS_fi: {
int FI = op(1).getIndex();
int Off = op(2).getImm();
unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
unsigned L = countTrailingZeros(A);
RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
RC.fill(0, L, BT::BitValue::Zero);
return rr0(RC, Outputs);
}
// Transfer register:
case A2_tfr:
case A2_tfrp:
case C2_pxfer_map:
return rr0(rc(1), Outputs);
case C2_tfrpr: {
uint16_t RW = W0;
uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
assert(PW <= RW);
RegisterCell PC = eXTR(rc(1), 0, PW);
RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
RC.fill(PW, RW, BT::BitValue::Zero);
return rr0(RC, Outputs);
}
case C2_tfrrp: {
uint16_t RW = W0;
uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW);
RC.fill(PW, RW, BT::BitValue::Zero);
return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs);
}
// Arithmetic:
case A2_abs:
case A2_absp:
// TODO
break;
case A2_addsp: {
uint16_t W1 = getRegBitWidth(Reg[1]);
assert(W0 == 64 && W1 == 32);
RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
return rr0(RC, Outputs);
}
case A2_add:
case A2_addp:
return rr0(eADD(rc(1), rc(2)), Outputs);
case A2_addi:
return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
case S4_addi_asl_ri: {
RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
return rr0(RC, Outputs);
}
case S4_addi_lsr_ri: {
RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
return rr0(RC, Outputs);
}
case S4_addaddi: {
RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
return rr0(RC, Outputs);
}
case M4_mpyri_addi: {
RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
return rr0(RC, Outputs);
}
case M4_mpyrr_addi: {
RegisterCell M = eMLS(rc(2), rc(3));
RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
return rr0(RC, Outputs);
}
case M4_mpyri_addr_u2: {
RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
RegisterCell RC = eADD(rc(1), lo(M, W0));
return rr0(RC, Outputs);
}
case M4_mpyri_addr: {
RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
RegisterCell RC = eADD(rc(1), lo(M, W0));
return rr0(RC, Outputs);
}
case M4_mpyrr_addr: {
RegisterCell M = eMLS(rc(2), rc(3));
RegisterCell RC = eADD(rc(1), lo(M, W0));
return rr0(RC, Outputs);
}
case S4_subaddi: {
RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
return rr0(RC, Outputs);
}
case M2_accii: {
RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
return rr0(RC, Outputs);
}
case M2_acci: {
RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
return rr0(RC, Outputs);
}
case M2_subacc: {
RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
return rr0(RC, Outputs);
}
case S2_addasl_rrri: {
RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
return rr0(RC, Outputs);
}
case C4_addipc: {
RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
RPC.fill(0, 2, BT::BitValue::Zero);
return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
}
case A2_sub:
case A2_subp:
return rr0(eSUB(rc(1), rc(2)), Outputs);
case A2_subri:
return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
case S4_subi_asl_ri: {
RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
return rr0(RC, Outputs);
}
case S4_subi_lsr_ri: {
RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
return rr0(RC, Outputs);
}
case M2_naccii: {
RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
return rr0(RC, Outputs);
}
case M2_nacci: {
RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
return rr0(RC, Outputs);
}
// 32-bit negation is done by "Rd = A2_subri 0, Rs"
case A2_negp:
return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
case M2_mpy_up: {
RegisterCell M = eMLS(rc(1), rc(2));
return rr0(hi(M, W0), Outputs);
}
case M2_dpmpyss_s0:
return rr0(eMLS(rc(1), rc(2)), Outputs);
case M2_dpmpyss_acc_s0:
return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
case M2_dpmpyss_nac_s0:
return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
case M2_mpyi: {
RegisterCell M = eMLS(rc(1), rc(2));
return rr0(lo(M, W0), Outputs);
}
case M2_macsip: {
RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
RegisterCell RC = eADD(rc(1), lo(M, W0));
return rr0(RC, Outputs);
}
case M2_macsin: {
RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
RegisterCell RC = eSUB(rc(1), lo(M, W0));
return rr0(RC, Outputs);
}
case M2_maci: {
RegisterCell M = eMLS(rc(2), rc(3));
RegisterCell RC = eADD(rc(1), lo(M, W0));
return rr0(RC, Outputs);
}
case M2_mpysmi: {
RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
return rr0(lo(M, 32), Outputs);
}
case M2_mpysin: {
RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
return rr0(lo(M, 32), Outputs);
}
case M2_mpysip: {
RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
return rr0(lo(M, 32), Outputs);
}
case M2_mpyu_up: {
RegisterCell M = eMLU(rc(1), rc(2));
return rr0(hi(M, W0), Outputs);
}
case M2_dpmpyuu_s0:
return rr0(eMLU(rc(1), rc(2)), Outputs);
case M2_dpmpyuu_acc_s0:
return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
case M2_dpmpyuu_nac_s0:
return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
//case M2_mpysu_up:
// Logical/bitwise:
case A2_andir:
return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
case A2_and:
case A2_andp:
return rr0(eAND(rc(1), rc(2)), Outputs);
case A4_andn:
case A4_andnp:
return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
case S4_andi_asl_ri: {
RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
return rr0(RC, Outputs);
}
case S4_andi_lsr_ri: {
RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
return rr0(RC, Outputs);
}
case M4_and_and:
return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
case M4_and_andn:
return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
case M4_and_or:
return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
case M4_and_xor:
return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
case A2_orir:
return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
case A2_or:
case A2_orp:
return rr0(eORL(rc(1), rc(2)), Outputs);
case A4_orn:
case A4_ornp:
return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
case S4_ori_asl_ri: {
RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
return rr0(RC, Outputs);
}
case S4_ori_lsr_ri: {
RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
return rr0(RC, Outputs);
}
case M4_or_and:
return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
case M4_or_andn:
return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
case S4_or_andi:
case S4_or_andix: {
RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
return rr0(RC, Outputs);
}
case S4_or_ori: {
RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
return rr0(RC, Outputs);
}
case M4_or_or:
return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
case M4_or_xor:
return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
case A2_xor:
case A2_xorp:
return rr0(eXOR(rc(1), rc(2)), Outputs);
case M4_xor_and:
return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
case M4_xor_andn:
return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
case M4_xor_or:
return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
case M4_xor_xacc:
return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
case A2_not:
case A2_notp:
return rr0(eNOT(rc(1)), Outputs);
case S2_asl_i_r:
case S2_asl_i_p:
return rr0(eASL(rc(1), im(2)), Outputs);
case A2_aslh:
return rr0(eASL(rc(1), 16), Outputs);
case S2_asl_i_r_acc:
case S2_asl_i_p_acc:
return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
case S2_asl_i_r_nac:
case S2_asl_i_p_nac:
return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
case S2_asl_i_r_and:
case S2_asl_i_p_and:
return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
case S2_asl_i_r_or:
case S2_asl_i_p_or:
return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
case S2_asl_i_r_xacc:
case S2_asl_i_p_xacc:
return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
case S2_asl_i_vh:
case S2_asl_i_vw:
// TODO
break;
case S2_asr_i_r:
case S2_asr_i_p:
return rr0(eASR(rc(1), im(2)), Outputs);
case A2_asrh:
return rr0(eASR(rc(1), 16), Outputs);
case S2_asr_i_r_acc:
case S2_asr_i_p_acc:
return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
case S2_asr_i_r_nac:
case S2_asr_i_p_nac:
return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
case S2_asr_i_r_and:
case S2_asr_i_p_and:
return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
case S2_asr_i_r_or:
case S2_asr_i_p_or:
return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
case S2_asr_i_r_rnd: {
// The input is first sign-extended to 64 bits, then the output
// is truncated back to 32 bits.
assert(W0 == 32);
RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
return rr0(eXTR(RC, 0, W0), Outputs);
}
case S2_asr_i_r_rnd_goodsyntax: {
int64_t S = im(2);
if (S == 0)
return rr0(rc(1), Outputs);
// Result: S2_asr_i_r_rnd Rs, u5-1
RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
return rr0(eXTR(RC, 0, W0), Outputs);
}
case S2_asr_r_vh:
case S2_asr_i_vw:
case S2_asr_i_svw_trun:
// TODO
break;
case S2_lsr_i_r:
case S2_lsr_i_p:
return rr0(eLSR(rc(1), im(2)), Outputs);
case S2_lsr_i_r_acc:
case S2_lsr_i_p_acc:
return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
case S2_lsr_i_r_nac:
case S2_lsr_i_p_nac:
return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
case S2_lsr_i_r_and:
case S2_lsr_i_p_and:
return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
case S2_lsr_i_r_or:
case S2_lsr_i_p_or:
return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
case S2_lsr_i_r_xacc:
case S2_lsr_i_p_xacc:
return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
case S2_clrbit_i: {
RegisterCell RC = rc(1);
RC[im(2)] = BT::BitValue::Zero;
return rr0(RC, Outputs);
}
case S2_setbit_i: {
RegisterCell RC = rc(1);
RC[im(2)] = BT::BitValue::One;
return rr0(RC, Outputs);
}
case S2_togglebit_i: {
RegisterCell RC = rc(1);
uint16_t BX = im(2);
RC[BX] = RC[BX].is(0) ? BT::BitValue::One
: RC[BX].is(1) ? BT::BitValue::Zero
: BT::BitValue::self();
return rr0(RC, Outputs);
}
case A4_bitspliti: {
uint16_t W1 = getRegBitWidth(Reg[1]);
uint16_t BX = im(2);
// Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
const BT::BitValue Zero = BT::BitValue::Zero;
RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
.fill(W1+(W1-BX), W0, Zero);
RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
return rr0(RC, Outputs);
}
case S4_extract:
case S4_extractp:
case S2_extractu:
case S2_extractup: {
uint16_t Wd = im(2), Of = im(3);
assert(Wd <= W0);
if (Wd == 0)
return rr0(eIMM(0, W0), Outputs);
// If the width extends beyond the register size, pad the register
// with 0 bits.
RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
// Ext is short, need to extend it with 0s or sign bit.
RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
if (Opc == S2_extractu || Opc == S2_extractup)
return rr0(eZXT(RC, Wd), Outputs);
return rr0(eSXT(RC, Wd), Outputs);
}
case S2_insert:
case S2_insertp: {
uint16_t Wd = im(3), Of = im(4);
assert(Wd < W0 && Of < W0);
// If Wd+Of exceeds W0, the inserted bits are truncated.
if (Wd+Of > W0)
Wd = W0-Of;
if (Wd == 0)
return rr0(rc(1), Outputs);
return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
}
// Bit permutations:
case A2_combineii:
case A4_combineii:
case A4_combineir:
case A4_combineri:
case A2_combinew:
case V6_vcombine:
assert(W0 % 2 == 0);
return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
case A2_combine_ll:
case A2_combine_lh:
case A2_combine_hl:
case A2_combine_hh: {
assert(W0 == 32);
assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
// Low half in the output is 0 for _ll and _hl, 1 otherwise:
unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
// High half in the output is 0 for _ll and _lh, 1 otherwise:
unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
RegisterCell R1 = rc(1);
RegisterCell R2 = rc(2);
RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
return rr0(RC, Outputs);
}
case S2_packhl: {
assert(W0 == 64);
assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
RegisterCell R1 = rc(1);
RegisterCell R2 = rc(2);
RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
.cat(half(R1, 1));
return rr0(RC, Outputs);
}
case S2_shuffeb: {
RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
return rr0(RC, Outputs);
}
case S2_shuffeh: {
RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
return rr0(RC, Outputs);
}
case S2_shuffob: {
RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
return rr0(RC, Outputs);
}
case S2_shuffoh: {
RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
return rr0(RC, Outputs);
}
case C2_mask: {
uint16_t WR = W0;
uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
assert(WR == 64 && WP == 8);
RegisterCell R1 = rc(1);
RegisterCell RC(WR);
for (uint16_t i = 0; i < WP; ++i) {
const BT::BitValue &V = R1[i];
BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
RC.fill(i*8, i*8+8, F);
}
return rr0(RC, Outputs);
}
// Mux:
case C2_muxii:
case C2_muxir:
case C2_muxri:
case C2_mux: {
BT::BitValue PC0 = rc(1)[0];
RegisterCell R2 = cop(2, W0);
RegisterCell R3 = cop(3, W0);
if (PC0.is(0) || PC0.is(1))
return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
R2.meet(R3, Reg[0].Reg);
return rr0(R2, Outputs);
}
case C2_vmux:
// TODO
break;
// Sign- and zero-extension:
case A2_sxtb:
return rr0(eSXT(rc(1), 8), Outputs);
case A2_sxth:
return rr0(eSXT(rc(1), 16), Outputs);
case A2_sxtw: {
uint16_t W1 = getRegBitWidth(Reg[1]);
assert(W0 == 64 && W1 == 32);
RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
return rr0(RC, Outputs);
}
case A2_zxtb:
return rr0(eZXT(rc(1), 8), Outputs);
case A2_zxth:
return rr0(eZXT(rc(1), 16), Outputs);
// Saturations
case A2_satb:
return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
case A2_sath:
return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
case A2_satub:
return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
case A2_satuh:
return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
// Bit count:
case S2_cl0:
case S2_cl0p:
// Always produce a 32-bit result.
return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
case S2_cl1:
case S2_cl1p:
return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
case S2_clb:
case S2_clbp: {
uint16_t W1 = getRegBitWidth(Reg[1]);
RegisterCell R1 = rc(1);
BT::BitValue TV = R1[W1-1];
if (TV.is(0) || TV.is(1))
return rr0(eCLB(R1, TV, 32), Outputs);
break;
}
case S2_ct0:
case S2_ct0p:
return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
case S2_ct1:
case S2_ct1p:
return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
case S5_popcountp:
// TODO
break;
case C2_all8: {
RegisterCell P1 = rc(1);
bool Has0 = false, All1 = true;
for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
if (!P1[i].is(1))
All1 = false;
if (!P1[i].is(0))
continue;
Has0 = true;
break;
}
if (!Has0 && !All1)
break;
RegisterCell RC(W0);
RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
return rr0(RC, Outputs);
}
case C2_any8: {
RegisterCell P1 = rc(1);
bool Has1 = false, All0 = true;
for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
if (!P1[i].is(0))
All0 = false;
if (!P1[i].is(1))
continue;
Has1 = true;
break;
}
if (!Has1 && !All0)
break;
RegisterCell RC(W0);
RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
return rr0(RC, Outputs);
}
case C2_and:
return rr0(eAND(rc(1), rc(2)), Outputs);
case C2_andn:
return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
case C2_not:
return rr0(eNOT(rc(1)), Outputs);
case C2_or:
return rr0(eORL(rc(1), rc(2)), Outputs);
case C2_orn:
return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
case C2_xor:
return rr0(eXOR(rc(1), rc(2)), Outputs);
case C4_and_and:
return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
case C4_and_andn:
return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
case C4_and_or:
return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
case C4_and_orn:
return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
case C4_or_and:
return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
case C4_or_andn:
return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
case C4_or_or:
return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
case C4_or_orn:
return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
case C2_bitsclr:
case C2_bitsclri:
case C2_bitsset:
case C4_nbitsclr:
case C4_nbitsclri:
case C4_nbitsset:
// TODO
break;
case S2_tstbit_i:
case S4_ntstbit_i: {
BT::BitValue V = rc(1)[im(2)];
if (V.is(0) || V.is(1)) {
// If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
bool TV = (Opc == S2_tstbit_i);
BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
}
break;
}
default:
// For instructions that define a single predicate registers, store
// the low 8 bits of the register only.
if (unsigned DefR = getUniqueDefVReg(MI)) {
if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) {
BT::RegisterRef PD(DefR, 0);
uint16_t RW = getRegBitWidth(PD);
uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
RegisterCell RC = RegisterCell::self(DefR, RW);
RC.fill(PW, RW, BT::BitValue::Zero);
putCell(PD, RC, Outputs);
return true;
}
}
return MachineEvaluator::evaluate(MI, Inputs, Outputs);
}
#undef im
#undef rc
#undef op
return false;
}
bool HexagonEvaluator::evaluate(const MachineInstr &BI,
const CellMapType &Inputs,
BranchTargetList &Targets,
bool &FallsThru) const {
// We need to evaluate one branch at a time. TII::analyzeBranch checks
// all the branches in a basic block at once, so we cannot use it.
unsigned Opc = BI.getOpcode();
bool SimpleBranch = false;
bool Negated = false;
switch (Opc) {
case Hexagon::J2_jumpf:
case Hexagon::J2_jumpfpt:
case Hexagon::J2_jumpfnew:
case Hexagon::J2_jumpfnewpt:
Negated = true;
LLVM_FALLTHROUGH;
case Hexagon::J2_jumpt:
case Hexagon::J2_jumptpt:
case Hexagon::J2_jumptnew:
case Hexagon::J2_jumptnewpt:
// Simple branch: if([!]Pn) jump ...
// i.e. Op0 = predicate, Op1 = branch target.
SimpleBranch = true;
break;
case Hexagon::J2_jump:
Targets.insert(BI.getOperand(0).getMBB());
FallsThru = false;
return true;
default:
// If the branch is of unknown type, assume that all successors are
// executable.
return false;
}
if (!SimpleBranch)
return false;
// BI is a conditional branch if we got here.
RegisterRef PR = BI.getOperand(0);
RegisterCell PC = getCell(PR, Inputs);
const BT::BitValue &Test = PC[0];
// If the condition is neither true nor false, then it's unknown.
if (!Test.is(0) && !Test.is(1))
return false;
// "Test.is(!Negated)" means "branch condition is true".
if (!Test.is(!Negated)) {
// Condition known to be false.
FallsThru = true;
return true;
}
Targets.insert(BI.getOperand(1).getMBB());
FallsThru = false;
return true;
}
unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const {
unsigned DefReg = 0;
for (const MachineOperand &Op : MI.operands()) {
if (!Op.isReg() || !Op.isDef())
continue;
Register R = Op.getReg();
if (!Register::isVirtualRegister(R))
continue;
if (DefReg != 0)
return 0;
DefReg = R;
}
return DefReg;
}
bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
const CellMapType &Inputs,
CellMapType &Outputs) const {
using namespace Hexagon;
if (TII.isPredicated(MI))
return false;
assert(MI.mayLoad() && "A load that mayn't?");
unsigned Opc = MI.getOpcode();
uint16_t BitNum;
bool SignEx;
switch (Opc) {
default:
return false;
#if 0
// memb_fifo
case L2_loadalignb_pbr:
case L2_loadalignb_pcr:
case L2_loadalignb_pi:
// memh_fifo
case L2_loadalignh_pbr:
case L2_loadalignh_pcr:
case L2_loadalignh_pi:
// membh
case L2_loadbsw2_pbr:
case L2_loadbsw2_pci:
case L2_loadbsw2_pcr:
case L2_loadbsw2_pi:
case L2_loadbsw4_pbr:
case L2_loadbsw4_pci:
case L2_loadbsw4_pcr:
case L2_loadbsw4_pi:
// memubh
case L2_loadbzw2_pbr:
case L2_loadbzw2_pci:
case L2_loadbzw2_pcr:
case L2_loadbzw2_pi:
case L2_loadbzw4_pbr:
case L2_loadbzw4_pci:
case L2_loadbzw4_pcr:
case L2_loadbzw4_pi:
#endif
case L2_loadrbgp:
case L2_loadrb_io:
case L2_loadrb_pbr:
case L2_loadrb_pci:
case L2_loadrb_pcr:
case L2_loadrb_pi:
case PS_loadrbabs:
case L4_loadrb_ap:
case L4_loadrb_rr:
case L4_loadrb_ur:
BitNum = 8;
SignEx = true;
break;
case L2_loadrubgp:
case L2_loadrub_io:
case L2_loadrub_pbr:
case L2_loadrub_pci:
case L2_loadrub_pcr:
case L2_loadrub_pi:
case PS_loadrubabs:
case L4_loadrub_ap:
case L4_loadrub_rr:
case L4_loadrub_ur:
BitNum = 8;
SignEx = false;
break;
case L2_loadrhgp:
case L2_loadrh_io:
case L2_loadrh_pbr:
case L2_loadrh_pci:
case L2_loadrh_pcr:
case L2_loadrh_pi:
case PS_loadrhabs:
case L4_loadrh_ap:
case L4_loadrh_rr:
case L4_loadrh_ur:
BitNum = 16;
SignEx = true;
break;
case L2_loadruhgp:
case L2_loadruh_io:
case L2_loadruh_pbr:
case L2_loadruh_pci:
case L2_loadruh_pcr:
case L2_loadruh_pi:
case L4_loadruh_rr:
case PS_loadruhabs:
case L4_loadruh_ap:
case L4_loadruh_ur:
BitNum = 16;
SignEx = false;
break;
case L2_loadrigp:
case L2_loadri_io:
case L2_loadri_pbr:
case L2_loadri_pci:
case L2_loadri_pcr:
case L2_loadri_pi:
case L2_loadw_locked:
case PS_loadriabs:
case L4_loadri_ap:
case L4_loadri_rr:
case L4_loadri_ur:
case LDriw_pred:
BitNum = 32;
SignEx = true;
break;
case L2_loadrdgp:
case L2_loadrd_io:
case L2_loadrd_pbr:
case L2_loadrd_pci:
case L2_loadrd_pcr:
case L2_loadrd_pi:
case L4_loadd_locked:
case PS_loadrdabs:
case L4_loadrd_ap:
case L4_loadrd_rr:
case L4_loadrd_ur:
BitNum = 64;
SignEx = true;
break;
}
const MachineOperand &MD = MI.getOperand(0);
assert(MD.isReg() && MD.isDef());
RegisterRef RD = MD;
uint16_t W = getRegBitWidth(RD);
assert(W >= BitNum && BitNum > 0);
RegisterCell Res(W);
for (uint16_t i = 0; i < BitNum; ++i)
Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
if (SignEx) {
const BT::BitValue &Sign = Res[BitNum-1];
for (uint16_t i = BitNum; i < W; ++i)
Res[i] = BT::BitValue::ref(Sign);
} else {
for (uint16_t i = BitNum; i < W; ++i)
Res[i] = BT::BitValue::Zero;
}
putCell(RD, Res, Outputs);
return true;
}
bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
const CellMapType &Inputs,
CellMapType &Outputs) const {
// If MI defines a formal parameter, but is not a copy (loads are handled
// in evaluateLoad), then it's not clear what to do.
assert(MI.isCopy());
RegisterRef RD = MI.getOperand(0);
RegisterRef RS = MI.getOperand(1);
assert(RD.Sub == 0);
if (!Register::isPhysicalRegister(RS.Reg))
return false;
RegExtMap::const_iterator F = VRX.find(RD.Reg);
if (F == VRX.end())
return false;
uint16_t EW = F->second.Width;
// Store RD's cell into the map. This will associate the cell with a virtual
// register, and make zero-/sign-extends possible (otherwise we would be ex-
// tending "self" bit values, which will have no effect, since "self" values
// cannot be references to anything).
putCell(RD, getCell(RS, Inputs), Outputs);
RegisterCell Res;
// Read RD's cell from the outputs instead of RS's cell from the inputs:
if (F->second.Type == ExtType::SExt)
Res = eSXT(getCell(RD, Outputs), EW);
else if (F->second.Type == ExtType::ZExt)
Res = eZXT(getCell(RD, Outputs), EW);
putCell(RD, Res, Outputs);
return true;
}
unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
using namespace Hexagon;
bool Is64 = DoubleRegsRegClass.contains(PReg);
assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
static const unsigned Phys64[] = { D0, D1, D2 };
const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
// Return the first parameter register of the required width.
if (PReg == 0)
return (Width <= 32) ? Phys32[0] : Phys64[0];
// Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
// next register.
unsigned Idx32 = 0, Idx64 = 0;
if (!Is64) {
while (Idx32 < Num32) {
if (Phys32[Idx32] == PReg)
break;
Idx32++;
}
Idx64 = Idx32/2;
} else {
while (Idx64 < Num64) {
if (Phys64[Idx64] == PReg)
break;
Idx64++;
}
Idx32 = Idx64*2+1;
}
if (Width <= 32)
return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
}
unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
for (std::pair<unsigned,unsigned> P : MRI.liveins())
if (P.first == PReg)
return P.second;
return 0;
}