SystemZInstrFP.td 26.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
//==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// TODO: Most floating-point instructions (except for simple moves and the
// like) can raise exceptions -- should they have hasSideEffects=1 ?

//===----------------------------------------------------------------------===//
// Select instructions
//===----------------------------------------------------------------------===//

// C's ?: operator for floating-point operands.
let Predicates = [FeatureVector] in {
  def SelectVR32 : SelectWrapper<f32, VR32>;
  def SelectVR64 : SelectWrapper<f64, VR64>;
}
def SelectF32  : SelectWrapper<f32, FP32>;
def SelectF64  : SelectWrapper<f64, FP64>;
let Predicates = [FeatureNoVectorEnhancements1] in
  def SelectF128 : SelectWrapper<f128, FP128>;
let Predicates = [FeatureVectorEnhancements1] in
  def SelectVR128 : SelectWrapper<f128, VR128>;

defm CondStoreF32 : CondStores<FP32, simple_store,
                               simple_load, bdxaddr20only>;
defm CondStoreF64 : CondStores<FP64, simple_store,
                               simple_load, bdxaddr20only>;

//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//

// Load zero.
let isAsCheapAsAMove = 1, isMoveImm = 1 in {
  def LZER : InherentRRE<"lzer", 0xB374, FP32,  fpimm0>;
  def LZDR : InherentRRE<"lzdr", 0xB375, FP64,  fpimm0>;
  def LZXR : InherentRRE<"lzxr", 0xB376, FP128, fpimm0>;
}

// Moves between two floating-point registers.
def LER : UnaryRR <"ler", 0x38,   null_frag, FP32,  FP32>;
def LDR : UnaryRR <"ldr", 0x28,   null_frag, FP64,  FP64>;
def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>;

// For z13 we prefer LDR over LER to avoid partial register dependencies.
let isCodeGenOnly = 1 in
  def LDR32 : UnaryRR<"ldr", 0x28, null_frag, FP32, FP32>;

// Moves between two floating-point registers that also set the condition
// codes.
let Uses = [FPC], mayRaiseFPException = 1,
    Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
  defm LTEBR : LoadAndTestRRE<"ltebr", 0xB302, FP32>;
  defm LTDBR : LoadAndTestRRE<"ltdbr", 0xB312, FP64>;
  defm LTXBR : LoadAndTestRRE<"ltxbr", 0xB342, FP128>;
}
// Note that LTxBRCompare is not available if we have vector support,
// since load-and-test instructions will partially clobber the target
// (vector) register.
let Predicates = [FeatureNoVector] in {
  defm : CompareZeroFP<LTEBRCompare, FP32>;
  defm : CompareZeroFP<LTDBRCompare, FP64>;
  defm : CompareZeroFP<LTXBRCompare, FP128>;
}

// Use a normal load-and-test for compare against zero in case of
// vector support (via a pseudo to simplify instruction selection).
let Uses = [FPC], mayRaiseFPException = 1,
    Defs = [CC], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in {
  def LTEBRCompare_VecPseudo : Pseudo<(outs), (ins FP32:$R1, FP32:$R2), []>;
  def LTDBRCompare_VecPseudo : Pseudo<(outs), (ins FP64:$R1, FP64:$R2), []>;
  def LTXBRCompare_VecPseudo : Pseudo<(outs), (ins FP128:$R1, FP128:$R2), []>;
}
let Predicates = [FeatureVector] in {
  defm : CompareZeroFP<LTEBRCompare_VecPseudo, FP32>;
  defm : CompareZeroFP<LTDBRCompare_VecPseudo, FP64>;
}
let Predicates = [FeatureVector, FeatureNoVectorEnhancements1] in
  defm : CompareZeroFP<LTXBRCompare_VecPseudo, FP128>;

// Moves between 64-bit integer and floating-point registers.
def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>;
def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>;

// fcopysign with an FP32 result.
let isCodeGenOnly = 1 in {
  def CPSDRss : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP32>;
  def CPSDRsd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP64>;
}

// The sign of an FP128 is in the high register.
let Predicates = [FeatureNoVectorEnhancements1] in
  def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 FP128:$src2)))),
            (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
let Predicates = [FeatureVectorEnhancements1] in
  def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 VR128:$src2)))),
            (CPSDRsd FP32:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>;

// fcopysign with an FP64 result.
let isCodeGenOnly = 1 in
  def CPSDRds : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP32>;
def CPSDRdd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP64>;

// The sign of an FP128 is in the high register.
let Predicates = [FeatureNoVectorEnhancements1] in
  def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 FP128:$src2)))),
            (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
let Predicates = [FeatureVectorEnhancements1] in
  def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 VR128:$src2)))),
            (CPSDRdd FP64:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>;

// fcopysign with an FP128 result.  Use "upper" as the high half and leave
// the low half as-is.
class CopySign128<RegisterOperand cls, dag upper>
  : Pat<(fcopysign FP128:$src1, cls:$src2),
        (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>;

let Predicates = [FeatureNoVectorEnhancements1] in {
  def : CopySign128<FP32,  (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64),
                                    FP32:$src2)>;
  def : CopySign128<FP64,  (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
                                    FP64:$src2)>;
  def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
                                    (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
}

defm LoadStoreF32  : MVCLoadStore<load, f32,  MVCSequence, 4>;
defm LoadStoreF64  : MVCLoadStore<load, f64,  MVCSequence, 8>;
defm LoadStoreF128 : MVCLoadStore<load, f128, MVCSequence, 16>;

//===----------------------------------------------------------------------===//
// Load instructions
//===----------------------------------------------------------------------===//

let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
  defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>;
  defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>;

  // For z13 we prefer LDE over LE to avoid partial register dependencies.
  let isCodeGenOnly = 1 in
    def LDE32 : UnaryRXE<"lde", 0xED24, null_frag, FP32, 4>;

  // These instructions are split after register allocation, so we don't
  // want a custom inserter.
  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
                     [(set FP128:$dst, (load bdxaddr20only128:$src))]>;
  }
}

//===----------------------------------------------------------------------===//
// Store instructions
//===----------------------------------------------------------------------===//

let SimpleBDXStore = 1, mayStore = 1 in {
  defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>;
  defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>;

  // These instructions are split after register allocation, so we don't
  // want a custom inserter.
  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
                     [(store FP128:$src, bdxaddr20only128:$dst)]>;
  }
}

//===----------------------------------------------------------------------===//
// Conversion instructions
//===----------------------------------------------------------------------===//

// Convert floating-point values to narrower representations, rounding
// according to the current mode.  The destination of LEXBR and LDXBR
// is a 128-bit value, but only the first register of the pair is used.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def LEDBR : UnaryRRE<"ledbr", 0xB344, any_fpround, FP32, FP64>;
  def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>;
  def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>;

  def LEDBRA : TernaryRRFe<"ledbra", 0xB344, FP32,  FP64>,
               Requires<[FeatureFPExtension]>;
  def LEXBRA : TernaryRRFe<"lexbra", 0xB346, FP128, FP128>,
               Requires<[FeatureFPExtension]>;
  def LDXBRA : TernaryRRFe<"ldxbra", 0xB345, FP128, FP128>,
               Requires<[FeatureFPExtension]>;
}

let Predicates = [FeatureNoVectorEnhancements1] in {
  def : Pat<(f32 (any_fpround FP128:$src)),
            (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_hh32)>;
  def : Pat<(f64 (any_fpround FP128:$src)),
            (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>;
}

// Extend register floating-point values to wider representations.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def LDEBR : UnaryRRE<"ldebr", 0xB304, any_fpextend, FP64, FP32>;
  def LXEBR : UnaryRRE<"lxebr", 0xB306, null_frag, FP128, FP32>;
  def LXDBR : UnaryRRE<"lxdbr", 0xB305, null_frag, FP128, FP64>;
}
let Predicates = [FeatureNoVectorEnhancements1] in {
  def : Pat<(f128 (any_fpextend (f32 FP32:$src))), (LXEBR FP32:$src)>;
  def : Pat<(f128 (any_fpextend (f64 FP64:$src))), (LXDBR FP64:$src)>;
}

// Extend memory floating-point values to wider representations.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def LDEB : UnaryRXE<"ldeb", 0xED04, any_extloadf32, FP64, 4>;
  def LXEB : UnaryRXE<"lxeb", 0xED06, null_frag, FP128, 4>;
  def LXDB : UnaryRXE<"lxdb", 0xED05, null_frag, FP128, 8>;
}
let Predicates = [FeatureNoVectorEnhancements1] in {
  def : Pat<(f128 (any_extloadf32 bdxaddr12only:$src)),
            (LXEB bdxaddr12only:$src)>;
  def : Pat<(f128 (any_extloadf64 bdxaddr12only:$src)),
            (LXDB bdxaddr12only:$src)>;
}

// Convert a signed integer register value to a floating-point one.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def CEFBR : UnaryRRE<"cefbr", 0xB394, any_sint_to_fp, FP32,  GR32>;
  def CDFBR : UnaryRRE<"cdfbr", 0xB395, any_sint_to_fp, FP64,  GR32>;
  def CXFBR : UnaryRRE<"cxfbr", 0xB396, any_sint_to_fp, FP128, GR32>;

  def CEGBR : UnaryRRE<"cegbr", 0xB3A4, any_sint_to_fp, FP32,  GR64>;
  def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, any_sint_to_fp, FP64,  GR64>;
  def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, any_sint_to_fp, FP128, GR64>;
}

// The FP extension feature provides versions of the above that allow
// specifying rounding mode and inexact-exception suppression flags.
let Uses = [FPC], mayRaiseFPException = 1, Predicates = [FeatureFPExtension] in {
  def CEFBRA : TernaryRRFe<"cefbra", 0xB394, FP32,  GR32>;
  def CDFBRA : TernaryRRFe<"cdfbra", 0xB395, FP64,  GR32>;
  def CXFBRA : TernaryRRFe<"cxfbra", 0xB396, FP128, GR32>;

  def CEGBRA : TernaryRRFe<"cegbra", 0xB3A4, FP32,  GR64>;
  def CDGBRA : TernaryRRFe<"cdgbra", 0xB3A5, FP64,  GR64>;
  def CXGBRA : TernaryRRFe<"cxgbra", 0xB3A6, FP128, GR64>;
}

// Convert am unsigned integer register value to a floating-point one.
let Predicates = [FeatureFPExtension] in {
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def CELFBR : TernaryRRFe<"celfbr", 0xB390, FP32,  GR32>;
    def CDLFBR : TernaryRRFe<"cdlfbr", 0xB391, FP64,  GR32>;
    def CXLFBR : TernaryRRFe<"cxlfbr", 0xB392, FP128, GR32>;

    def CELGBR : TernaryRRFe<"celgbr", 0xB3A0, FP32,  GR64>;
    def CDLGBR : TernaryRRFe<"cdlgbr", 0xB3A1, FP64,  GR64>;
    def CXLGBR : TernaryRRFe<"cxlgbr", 0xB3A2, FP128, GR64>;
  }

  def : Pat<(f32  (any_uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>;
  def : Pat<(f64  (any_uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>;
  def : Pat<(f128 (any_uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>;

  def : Pat<(f32  (any_uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>;
  def : Pat<(f64  (any_uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>;
  def : Pat<(f128 (any_uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>;
}

// Convert a floating-point register value to a signed integer value,
// with the second operand (modifier M3) specifying the rounding mode.
let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
  def CFEBR : BinaryRRFe<"cfebr", 0xB398, GR32, FP32>;
  def CFDBR : BinaryRRFe<"cfdbr", 0xB399, GR32, FP64>;
  def CFXBR : BinaryRRFe<"cfxbr", 0xB39A, GR32, FP128>;

  def CGEBR : BinaryRRFe<"cgebr", 0xB3A8, GR64, FP32>;
  def CGDBR : BinaryRRFe<"cgdbr", 0xB3A9, GR64, FP64>;
  def CGXBR : BinaryRRFe<"cgxbr", 0xB3AA, GR64, FP128>;
}

// fp_to_sint always rounds towards zero, which is modifier value 5.
def : Pat<(i32 (any_fp_to_sint FP32:$src)),  (CFEBR 5, FP32:$src)>;
def : Pat<(i32 (any_fp_to_sint FP64:$src)),  (CFDBR 5, FP64:$src)>;
def : Pat<(i32 (any_fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>;

def : Pat<(i64 (any_fp_to_sint FP32:$src)),  (CGEBR 5, FP32:$src)>;
def : Pat<(i64 (any_fp_to_sint FP64:$src)),  (CGDBR 5, FP64:$src)>;
def : Pat<(i64 (any_fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>;

// The FP extension feature provides versions of the above that allow
// also specifying the inexact-exception suppression flag.
let Uses = [FPC], mayRaiseFPException = 1,
    Predicates = [FeatureFPExtension], Defs = [CC] in {
  def CFEBRA : TernaryRRFe<"cfebra", 0xB398, GR32, FP32>;
  def CFDBRA : TernaryRRFe<"cfdbra", 0xB399, GR32, FP64>;
  def CFXBRA : TernaryRRFe<"cfxbra", 0xB39A, GR32, FP128>;

  def CGEBRA : TernaryRRFe<"cgebra", 0xB3A8, GR64, FP32>;
  def CGDBRA : TernaryRRFe<"cgdbra", 0xB3A9, GR64, FP64>;
  def CGXBRA : TernaryRRFe<"cgxbra", 0xB3AA, GR64, FP128>;
}

// Convert a floating-point register value to an unsigned integer value.
let Predicates = [FeatureFPExtension] in {
  let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
    def CLFEBR : TernaryRRFe<"clfebr", 0xB39C, GR32, FP32>;
    def CLFDBR : TernaryRRFe<"clfdbr", 0xB39D, GR32, FP64>;
    def CLFXBR : TernaryRRFe<"clfxbr", 0xB39E, GR32, FP128>;

    def CLGEBR : TernaryRRFe<"clgebr", 0xB3AC, GR64, FP32>;
    def CLGDBR : TernaryRRFe<"clgdbr", 0xB3AD, GR64, FP64>;
    def CLGXBR : TernaryRRFe<"clgxbr", 0xB3AE, GR64, FP128>;
  }

  def : Pat<(i32 (any_fp_to_uint FP32:$src)),  (CLFEBR 5, FP32:$src,  0)>;
  def : Pat<(i32 (any_fp_to_uint FP64:$src)),  (CLFDBR 5, FP64:$src,  0)>;
  def : Pat<(i32 (any_fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>;

  def : Pat<(i64 (any_fp_to_uint FP32:$src)),  (CLGEBR 5, FP32:$src,  0)>;
  def : Pat<(i64 (any_fp_to_uint FP64:$src)),  (CLGDBR 5, FP64:$src,  0)>;
  def : Pat<(i64 (any_fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>;
}


//===----------------------------------------------------------------------===//
// Unary arithmetic
//===----------------------------------------------------------------------===//

// We prefer generic instructions during isel, because they do not
// clobber CC and therefore give the scheduler more freedom. In cases
// the CC is actually useful, the SystemZElimCompare pass will try to
// convert generic instructions into opcodes that also set CC. Note
// that lcdf / lpdf / lndf only affect the sign bit, and can therefore
// be used with fp32 as well. This could be done for fp128, in which
// case the operands would have to be tied.

// Negation (Load Complement).
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
  def LCEBR : UnaryRRE<"lcebr", 0xB303, null_frag, FP32,  FP32>;
  def LCDBR : UnaryRRE<"lcdbr", 0xB313, null_frag, FP64,  FP64>;
  def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>;
}
// Generic form, which does not set CC.
def LCDFR : UnaryRRE<"lcdfr", 0xB373, fneg, FP64,  FP64>;
let isCodeGenOnly = 1 in
  def LCDFR_32 : UnaryRRE<"lcdfr", 0xB373, fneg, FP32,  FP32>;

// Absolute value (Load Positive).
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
  def LPEBR : UnaryRRE<"lpebr", 0xB300, null_frag, FP32,  FP32>;
  def LPDBR : UnaryRRE<"lpdbr", 0xB310, null_frag, FP64,  FP64>;
  def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>;
}
// Generic form, which does not set CC.
def LPDFR : UnaryRRE<"lpdfr", 0xB370, fabs, FP64,  FP64>;
let isCodeGenOnly = 1 in
  def LPDFR_32 : UnaryRRE<"lpdfr", 0xB370, fabs, FP32,  FP32>;

// Negative absolute value (Load Negative).
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
  def LNEBR : UnaryRRE<"lnebr", 0xB301, null_frag, FP32,  FP32>;
  def LNDBR : UnaryRRE<"lndbr", 0xB311, null_frag, FP64,  FP64>;
  def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>;
}
// Generic form, which does not set CC.
def LNDFR : UnaryRRE<"lndfr", 0xB371, fnabs, FP64,  FP64>;
let isCodeGenOnly = 1 in
  def LNDFR_32 : UnaryRRE<"lndfr", 0xB371, fnabs, FP32,  FP32>;

// Square root.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def SQEBR : UnaryRRE<"sqebr", 0xB314, any_fsqrt, FP32,  FP32>;
  def SQDBR : UnaryRRE<"sqdbr", 0xB315, any_fsqrt, FP64,  FP64>;
  def SQXBR : UnaryRRE<"sqxbr", 0xB316, any_fsqrt, FP128, FP128>;

  def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<any_fsqrt>, FP32, 4>;
  def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<any_fsqrt>, FP64, 8>;
}

// Round to an integer, with the second operand (modifier M3) specifying
// the rounding mode.  These forms always check for inexact conditions.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def FIEBR : BinaryRRFe<"fiebr", 0xB357, FP32,  FP32>;
  def FIDBR : BinaryRRFe<"fidbr", 0xB35F, FP64,  FP64>;
  def FIXBR : BinaryRRFe<"fixbr", 0xB347, FP128, FP128>;
}

// frint rounds according to the current mode (modifier 0) and detects
// inexact conditions.
def : Pat<(any_frint FP32:$src),  (FIEBR 0, FP32:$src)>;
def : Pat<(any_frint FP64:$src),  (FIDBR 0, FP64:$src)>;
def : Pat<(any_frint FP128:$src), (FIXBR 0, FP128:$src)>;

let Predicates = [FeatureFPExtension] in {
  // Extended forms of the FIxBR instructions.  M4 can be set to 4
  // to suppress detection of inexact conditions.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def FIEBRA : TernaryRRFe<"fiebra", 0xB357, FP32,  FP32>;
    def FIDBRA : TernaryRRFe<"fidbra", 0xB35F, FP64,  FP64>;
    def FIXBRA : TernaryRRFe<"fixbra", 0xB347, FP128, FP128>;
  }

  // fnearbyint is like frint but does not detect inexact conditions.
  def : Pat<(any_fnearbyint FP32:$src),  (FIEBRA 0, FP32:$src,  4)>;
  def : Pat<(any_fnearbyint FP64:$src),  (FIDBRA 0, FP64:$src,  4)>;
  def : Pat<(any_fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>;

  // floor is no longer allowed to raise an inexact condition,
  // so restrict it to the cases where the condition can be suppressed.
  // Mode 7 is round towards -inf.
  def : Pat<(any_ffloor FP32:$src),  (FIEBRA 7, FP32:$src,  4)>;
  def : Pat<(any_ffloor FP64:$src),  (FIDBRA 7, FP64:$src,  4)>;
  def : Pat<(any_ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>;

  // Same idea for ceil, where mode 6 is round towards +inf.
  def : Pat<(any_fceil FP32:$src),  (FIEBRA 6, FP32:$src,  4)>;
  def : Pat<(any_fceil FP64:$src),  (FIDBRA 6, FP64:$src,  4)>;
  def : Pat<(any_fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>;

  // Same idea for trunc, where mode 5 is round towards zero.
  def : Pat<(any_ftrunc FP32:$src),  (FIEBRA 5, FP32:$src,  4)>;
  def : Pat<(any_ftrunc FP64:$src),  (FIDBRA 5, FP64:$src,  4)>;
  def : Pat<(any_ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>;

  // Same idea for round, where mode 1 is round towards nearest with
  // ties away from zero.
  def : Pat<(any_fround FP32:$src),  (FIEBRA 1, FP32:$src,  4)>;
  def : Pat<(any_fround FP64:$src),  (FIDBRA 1, FP64:$src,  4)>;
  def : Pat<(any_fround FP128:$src), (FIXBRA 1, FP128:$src, 4)>;
}

//===----------------------------------------------------------------------===//
// Binary arithmetic
//===----------------------------------------------------------------------===//

// Addition.
let Uses = [FPC], mayRaiseFPException = 1,
    Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
  let isCommutable = 1 in {
    def AEBR : BinaryRRE<"aebr", 0xB30A, any_fadd, FP32,  FP32>;
    def ADBR : BinaryRRE<"adbr", 0xB31A, any_fadd, FP64,  FP64>;
    def AXBR : BinaryRRE<"axbr", 0xB34A, any_fadd, FP128, FP128>;
  }
  def AEB : BinaryRXE<"aeb", 0xED0A, any_fadd, FP32, load, 4>;
  def ADB : BinaryRXE<"adb", 0xED1A, any_fadd, FP64, load, 8>;
}

// Subtraction.
let Uses = [FPC], mayRaiseFPException = 1,
    Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
  def SEBR : BinaryRRE<"sebr", 0xB30B, any_fsub, FP32,  FP32>;
  def SDBR : BinaryRRE<"sdbr", 0xB31B, any_fsub, FP64,  FP64>;
  def SXBR : BinaryRRE<"sxbr", 0xB34B, any_fsub, FP128, FP128>;

  def SEB : BinaryRXE<"seb",  0xED0B, any_fsub, FP32, load, 4>;
  def SDB : BinaryRXE<"sdb",  0xED1B, any_fsub, FP64, load, 8>;
}

// Multiplication.
let Uses = [FPC], mayRaiseFPException = 1 in {
  let isCommutable = 1 in {
    def MEEBR : BinaryRRE<"meebr", 0xB317, any_fmul, FP32,  FP32>;
    def MDBR  : BinaryRRE<"mdbr",  0xB31C, any_fmul, FP64,  FP64>;
    def MXBR  : BinaryRRE<"mxbr",  0xB34C, any_fmul, FP128, FP128>;
  }
  def MEEB : BinaryRXE<"meeb", 0xED17, any_fmul, FP32, load, 4>;
  def MDB  : BinaryRXE<"mdb",  0xED1C, any_fmul, FP64, load, 8>;
}

// f64 multiplication of two FP32 registers.
let Uses = [FPC], mayRaiseFPException = 1 in
  def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>;
def : Pat<(any_fmul (f64 (any_fpextend FP32:$src1)),
                    (f64 (any_fpextend FP32:$src2))),
          (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
                                FP32:$src1, subreg_h32), FP32:$src2)>;

// f64 multiplication of an FP32 register and an f32 memory.
let Uses = [FPC], mayRaiseFPException = 1 in
  def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>;
def : Pat<(any_fmul (f64 (any_fpextend FP32:$src1)),
                    (f64 (any_extloadf32 bdxaddr12only:$addr))),
          (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_h32),
                bdxaddr12only:$addr)>;

// f128 multiplication of two FP64 registers.
let Uses = [FPC], mayRaiseFPException = 1 in
  def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>;
let Predicates = [FeatureNoVectorEnhancements1] in
  def : Pat<(any_fmul (f128 (any_fpextend FP64:$src1)),
                      (f128 (any_fpextend FP64:$src2))),
            (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
                                  FP64:$src1, subreg_h64), FP64:$src2)>;

// f128 multiplication of an FP64 register and an f64 memory.
let Uses = [FPC], mayRaiseFPException = 1 in
  def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>;
let Predicates = [FeatureNoVectorEnhancements1] in
  def : Pat<(any_fmul (f128 (any_fpextend FP64:$src1)),
                      (f128 (any_extloadf64 bdxaddr12only:$addr))),
            (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64),
                  bdxaddr12only:$addr)>;

// Fused multiply-add.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def MAEBR : TernaryRRD<"maebr", 0xB30E, z_any_fma, FP32, FP32>;
  def MADBR : TernaryRRD<"madbr", 0xB31E, z_any_fma, FP64, FP64>;

  def MAEB : TernaryRXF<"maeb", 0xED0E, z_any_fma, FP32, FP32, load, 4>;
  def MADB : TernaryRXF<"madb", 0xED1E, z_any_fma, FP64, FP64, load, 8>;
}

// Fused multiply-subtract.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def MSEBR : TernaryRRD<"msebr", 0xB30F, z_any_fms, FP32, FP32>;
  def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_any_fms, FP64, FP64>;

  def MSEB : TernaryRXF<"mseb", 0xED0F, z_any_fms, FP32, FP32, load, 4>;
  def MSDB : TernaryRXF<"msdb", 0xED1F, z_any_fms, FP64, FP64, load, 8>;
}

// Division.
let Uses = [FPC], mayRaiseFPException = 1 in {
  def DEBR : BinaryRRE<"debr", 0xB30D, any_fdiv, FP32,  FP32>;
  def DDBR : BinaryRRE<"ddbr", 0xB31D, any_fdiv, FP64,  FP64>;
  def DXBR : BinaryRRE<"dxbr", 0xB34D, any_fdiv, FP128, FP128>;

  def DEB : BinaryRXE<"deb", 0xED0D, any_fdiv, FP32, load, 4>;
  def DDB : BinaryRXE<"ddb", 0xED1D, any_fdiv, FP64, load, 8>;
}

// Divide to integer.
let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
  def DIEBR : TernaryRRFb<"diebr", 0xB353, FP32, FP32, FP32>;
  def DIDBR : TernaryRRFb<"didbr", 0xB35B, FP64, FP64, FP64>;
}

//===----------------------------------------------------------------------===//
// Comparisons
//===----------------------------------------------------------------------===//

let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC], CCValues = 0xF in {
  def CEBR : CompareRRE<"cebr", 0xB309, z_any_fcmp, FP32,  FP32>;
  def CDBR : CompareRRE<"cdbr", 0xB319, z_any_fcmp, FP64,  FP64>;
  def CXBR : CompareRRE<"cxbr", 0xB349, z_any_fcmp, FP128, FP128>;

  def CEB : CompareRXE<"ceb", 0xED09, z_any_fcmp, FP32, load, 4>;
  def CDB : CompareRXE<"cdb", 0xED19, z_any_fcmp, FP64, load, 8>;

  def KEBR : CompareRRE<"kebr", 0xB308, z_strict_fcmps, FP32,  FP32>;
  def KDBR : CompareRRE<"kdbr", 0xB318, z_strict_fcmps, FP64,  FP64>;
  def KXBR : CompareRRE<"kxbr", 0xB348, z_strict_fcmps, FP128, FP128>;

  def KEB : CompareRXE<"keb", 0xED08, z_strict_fcmps, FP32, load, 4>;
  def KDB : CompareRXE<"kdb", 0xED18, z_strict_fcmps, FP64, load, 8>;
}

// Test Data Class.
let Defs = [CC], CCValues = 0xC in {
  def TCEB : TestRXE<"tceb", 0xED10, z_tdc, FP32>;
  def TCDB : TestRXE<"tcdb", 0xED11, z_tdc, FP64>;
  def TCXB : TestRXE<"tcxb", 0xED12, z_tdc, FP128>;
}

//===----------------------------------------------------------------------===//
// Floating-point control register instructions
//===----------------------------------------------------------------------===//

let hasSideEffects = 1 in {
  let mayLoad = 1, mayStore = 1 in {
    // TODO: EFPC and SFPC do not touch memory at all
    let Uses = [FPC] in {
      def EFPC  : InherentRRE<"efpc", 0xB38C, GR32, int_s390_efpc>;
      def STFPC : StoreInherentS<"stfpc", 0xB29C, storei<int_s390_efpc>, 4>;
    }

    let Defs = [FPC] in {
      def SFPC : SideEffectUnaryRRE<"sfpc", 0xB384, GR32, int_s390_sfpc>;
      def LFPC : SideEffectUnaryS<"lfpc", 0xB29D, loadu<int_s390_sfpc>, 4>;
    }
  }

  let Defs = [FPC], mayRaiseFPException = 1 in {
    def SFASR : SideEffectUnaryRRE<"sfasr", 0xB385, GR32, null_frag>;
    def LFAS  : SideEffectUnaryS<"lfas", 0xB2BD, null_frag, 4>;
  }

  let Uses = [FPC], Defs = [FPC] in {
    def SRNMB : SideEffectAddressS<"srnmb", 0xB2B8, null_frag, shift12only>,
                Requires<[FeatureFPExtension]>;
    def SRNM  : SideEffectAddressS<"srnm", 0xB299, null_frag, shift12only>;
    def SRNMT : SideEffectAddressS<"srnmt", 0xB2B9, null_frag, shift12only>;
  }
}

//===----------------------------------------------------------------------===//
// Peepholes
//===----------------------------------------------------------------------===//

def : Pat<(f32  fpimmneg0), (LCDFR_32 (LZER))>;
def : Pat<(f64  fpimmneg0), (LCDFR (LZDR))>;
def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;