SystemZInstrInfo.td 103 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Stack allocation
//===----------------------------------------------------------------------===//

// The callseq_start node requires the hasSideEffects flag, even though these
// instructions are noops on SystemZ.
let hasNoSchedulingInfo = 1, hasSideEffects = 1 in {
  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
                                [(callseq_start timm:$amt1, timm:$amt2)]>;
  def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
                                [(callseq_end timm:$amt1, timm:$amt2)]>;
}

// Takes as input the value of the stack pointer after a dynamic allocation
// has been made.  Sets the output to the address of the dynamically-
// allocated area itself, skipping the outgoing arguments.
//
// This expands to an LA or LAY instruction.  We restrict the offset
// to the range of LA and keep the LAY range in reserve for when
// the size of the outgoing arguments is added.
def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
                         [(set GR64:$dst, dynalloc12only:$src)]>;


//===----------------------------------------------------------------------===//
// Branch instructions
//===----------------------------------------------------------------------===//

// Conditional branches.
let isBranch = 1, isTerminator = 1, Uses = [CC] in {
  // It's easier for LLVM to handle these branches in their raw BRC/BRCL form
  // with the condition-code mask being the first operand.  It seems friendlier
  // to use mnemonic forms like JE and JLH when writing out the assembly though.
  let isCodeGenOnly = 1 in {
    // An assembler extended mnemonic for BRC.
    def BRC  : CondBranchRI <"j#",  0xA74, z_br_ccmask>;
    // An assembler extended mnemonic for BRCL.  (The extension is "G"
    // rather than "L" because "JL" is "Jump if Less".)
    def BRCL : CondBranchRIL<"jg#", 0xC04>;
    let isIndirectBranch = 1 in {
      def BC  : CondBranchRX<"b#",  0x47>;
      def BCR : CondBranchRR<"b#r", 0x07>;
      def BIC : CondBranchRXY<"bi#", 0xe347>,
                Requires<[FeatureMiscellaneousExtensions2]>;
    }
  }

  // Allow using the raw forms directly from the assembler (and occasional
  // special code generation needs) as well.
  def BRCAsm  : AsmCondBranchRI <"brc",  0xA74>;
  def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>;
  let isIndirectBranch = 1 in {
    def BCAsm  : AsmCondBranchRX<"bc",  0x47>;
    def BCRAsm : AsmCondBranchRR<"bcr", 0x07>;
    def BICAsm : AsmCondBranchRXY<"bic", 0xe347>,
                 Requires<[FeatureMiscellaneousExtensions2]>;
  }

  // Define AsmParser extended mnemonics for each general condition-code mask
  // (integer or floating-point)
  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
    def JAsm#V  : FixedCondBranchRI <CV<V>, "j#",  0xA74>;
    def JGAsm#V : FixedCondBranchRIL<CV<V>, "jg#", 0xC04>;
    let isIndirectBranch = 1 in {
      def BAsm#V  : FixedCondBranchRX <CV<V>, "b#",  0x47>;
      def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>;
      def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>,
                    Requires<[FeatureMiscellaneousExtensions2]>;
    }
  }
}

// Unconditional branches.  These are in fact simply variants of the
// conditional branches with the condition mask set to "always".
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
  def J  : FixedCondBranchRI <CondAlways, "j",  0xA74, br>;
  def JG : FixedCondBranchRIL<CondAlways, "jg", 0xC04>;
  let isIndirectBranch = 1 in {
    def B  : FixedCondBranchRX<CondAlways, "b",  0x47>;
    def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>;
    def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>,
             Requires<[FeatureMiscellaneousExtensions2]>;
  }
}

// NOPs.  These are again variants of the conditional branches,
// with the condition mask set to "never".
def NOP  : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>;
def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>;

// Fused compare-and-branch instructions.
//
// These instructions do not use or clobber the condition codes.
// We nevertheless pretend that the relative compare-and-branch
// instructions clobber CC, so that we can lower them to separate
// comparisons and BRCLs if the branch ends up being out of range.
let isBranch = 1, isTerminator = 1 in {
  // As for normal branches, we handle these instructions internally in
  // their raw CRJ-like form, but use assembly macros like CRJE when writing
  // them out.  Using the *Pair multiclasses, we also create the raw forms.
  let Defs = [CC] in {
    defm CRJ   : CmpBranchRIEbPair<"crj",   0xEC76, GR32>;
    defm CGRJ  : CmpBranchRIEbPair<"cgrj",  0xEC64, GR64>;
    defm CIJ   : CmpBranchRIEcPair<"cij",   0xEC7E, GR32, imm32sx8>;
    defm CGIJ  : CmpBranchRIEcPair<"cgij",  0xEC7C, GR64, imm64sx8>;
    defm CLRJ  : CmpBranchRIEbPair<"clrj",  0xEC77, GR32>;
    defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>;
    defm CLIJ  : CmpBranchRIEcPair<"clij",  0xEC7F, GR32, imm32zx8>;
    defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>;
  }
  let isIndirectBranch = 1 in {
    defm CRB   : CmpBranchRRSPair<"crb",   0xECF6, GR32>;
    defm CGRB  : CmpBranchRRSPair<"cgrb",  0xECE4, GR64>;
    defm CIB   : CmpBranchRISPair<"cib",   0xECFE, GR32, imm32sx8>;
    defm CGIB  : CmpBranchRISPair<"cgib",  0xECFC, GR64, imm64sx8>;
    defm CLRB  : CmpBranchRRSPair<"clrb",  0xECF7, GR32>;
    defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>;
    defm CLIB  : CmpBranchRISPair<"clib",  0xECFF, GR32, imm32zx8>;
    defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>;
  }

  // Define AsmParser mnemonics for each integer condition-code mask.
  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
    let Defs = [CC] in {
      def CRJAsm#V   : FixedCmpBranchRIEb<ICV<V>, "crj",   0xEC76, GR32>;
      def CGRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "cgrj",  0xEC64, GR64>;
      def CIJAsm#V   : FixedCmpBranchRIEc<ICV<V>, "cij",   0xEC7E, GR32,
                                          imm32sx8>;
      def CGIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "cgij",  0xEC7C, GR64,
                                          imm64sx8>;
      def CLRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "clrj",  0xEC77, GR32>;
      def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>;
      def CLIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "clij",  0xEC7F, GR32,
                                          imm32zx8>;
      def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64,
                                          imm64zx8>;
    }
    let isIndirectBranch = 1 in {
      def CRBAsm#V   : FixedCmpBranchRRS<ICV<V>, "crb",   0xECF6, GR32>;
      def CGRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "cgrb",  0xECE4, GR64>;
      def CIBAsm#V   : FixedCmpBranchRIS<ICV<V>, "cib",   0xECFE, GR32,
                                         imm32sx8>;
      def CGIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "cgib",  0xECFC, GR64,
                                         imm64sx8>;
      def CLRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "clrb",  0xECF7, GR32>;
      def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>;
      def CLIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "clib",  0xECFF, GR32,
                                         imm32zx8>;
      def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64,
                                         imm64zx8>;
    }
  }
}

// Decrement a register and branch if it is nonzero.  These don't clobber CC,
// but we might need to split long relative branches into sequences that do.
let isBranch = 1, isTerminator = 1 in {
  let Defs = [CC] in {
    def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
    def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
  }
  // This doesn't need to clobber CC since we never need to split it.
  def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>,
              Requires<[FeatureHighWord]>;

  def BCT   : BranchUnaryRX<"bct",  0x46,GR32>;
  def BCTR  : BranchUnaryRR<"bctr", 0x06, GR32>;
  def BCTG  : BranchUnaryRXY<"bctg",  0xE346, GR64>;
  def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>;
}

let isBranch = 1, isTerminator = 1 in {
  let Defs = [CC] in {
    def BRXH  : BranchBinaryRSI<"brxh",  0x84, GR32>;
    def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>;
    def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>;
    def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>;
  }
  def BXH   : BranchBinaryRS<"bxh",  0x86, GR32>;
  def BXLE  : BranchBinaryRS<"bxle", 0x87, GR32>;
  def BXHG  : BranchBinaryRSY<"bxhg",  0xEB44, GR64>;
  def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>;
}

//===----------------------------------------------------------------------===//
// Trap instructions
//===----------------------------------------------------------------------===//

// Unconditional trap.
let hasCtrlDep = 1, hasSideEffects = 1 in
  def Trap : Alias<4, (outs), (ins), [(trap)]>;

// Conditional trap.
let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in
  def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;

// Fused compare-and-trap instructions.
let hasCtrlDep = 1, hasSideEffects = 1 in {
  // These patterns work the same way as for compare-and-branch.
  defm CRT   : CmpBranchRRFcPair<"crt",   0xB972, GR32>;
  defm CGRT  : CmpBranchRRFcPair<"cgrt",  0xB960, GR64>;
  defm CLRT  : CmpBranchRRFcPair<"clrt",  0xB973, GR32>;
  defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>;
  defm CIT   : CmpBranchRIEaPair<"cit",   0xEC72, GR32, imm32sx16>;
  defm CGIT  : CmpBranchRIEaPair<"cgit",  0xEC70, GR64, imm64sx16>;
  defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>;
  defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>;
  let Predicates = [FeatureMiscellaneousExtensions] in {
    defm CLT  : CmpBranchRSYbPair<"clt",  0xEB23, GR32>;
    defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>;
  }

  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
    def CRTAsm#V   : FixedCmpBranchRRFc<ICV<V>, "crt",   0xB972, GR32>;
    def CGRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "cgrt",  0xB960, GR64>;
    def CLRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "clrt",  0xB973, GR32>;
    def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>;
    def CITAsm#V   : FixedCmpBranchRIEa<ICV<V>, "cit",   0xEC72, GR32,
                                         imm32sx16>;
    def CGITAsm#V  : FixedCmpBranchRIEa<ICV<V>, "cgit",  0xEC70, GR64,
                                         imm64sx16>;
    def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32,
                                         imm32zx16>;
    def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64,
                                         imm64zx16>;
    let Predicates = [FeatureMiscellaneousExtensions] in {
      def CLTAsm#V  : FixedCmpBranchRSYb<ICV<V>, "clt",  0xEB23, GR32>;
      def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>;
    }
  }
}

//===----------------------------------------------------------------------===//
// Call and return instructions
//===----------------------------------------------------------------------===//

// Define the general form of the call instructions for the asm parser.
// These instructions don't hard-code %r14 as the return address register.
let isCall = 1, Defs = [CC] in {
  def BRAS  : CallRI <"bras", 0xA75>;
  def BRASL : CallRIL<"brasl", 0xC05>;
  def BAS   : CallRX <"bas", 0x4D>;
  def BASR  : CallRR <"basr", 0x0D>;
}

// Regular calls.
let isCall = 1, Defs = [R14D, CC], Uses = [FPC] in {
  def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
                        [(z_call pcrel32:$I2)]>;
  def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
                        [(z_call ADDR64:$R2)]>;
}

// TLS calls.  These will be lowered into a call to __tls_get_offset,
// with an extra relocation specifying the TLS symbol.
let isCall = 1, Defs = [R14D, CC] in {
  def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
                         [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
  def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
                         [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
}

// Sibling calls.  Indirect sibling calls must be via R1, since R2 upwards
// are argument registers and since branching to R0 is a no-op.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
  def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
                     [(z_sibcall pcrel32:$I2)]>;
  let Uses = [R1D] in
    def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
}

// Conditional sibling calls.
let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
  def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
                                   pcrel32:$I2), []>;
  let Uses = [R1D] in
    def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
}

// Fused compare and conditional sibling calls.
let isCall = 1, isTerminator = 1, isReturn = 1, Uses = [R1D] in {
  def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
  def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
  def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
  def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
  def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
  def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
  def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
  def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
}

// A return instruction (br %r14).
let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
  def Return : Alias<2, (outs), (ins), [(z_retflag)]>;

// A conditional return instruction (bcr <cond>, %r14).
let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
  def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;

// Fused compare and conditional returns.
let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
  def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
  def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
  def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
  def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
  def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
  def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
  def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
  def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
}

//===----------------------------------------------------------------------===//
// Select instructions
//===----------------------------------------------------------------------===//

def Select32    : SelectWrapper<i32, GR32>,
                  Requires<[FeatureNoLoadStoreOnCond]>;
def Select64    : SelectWrapper<i64, GR64>,
                  Requires<[FeatureNoLoadStoreOnCond]>;

// We don't define 32-bit Mux stores if we don't have STOCFH, because the
// low-only STOC should then always be used if possible.
defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
                                 nonvolatile_anyextloadi8, bdxaddr20only>,
                      Requires<[FeatureHighWord]>;
defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
                                 nonvolatile_anyextloadi16, bdxaddr20only>,
                      Requires<[FeatureHighWord]>;
defm CondStore32Mux : CondStores<GRX32, simple_store,
                                 simple_load, bdxaddr20only>,
                      Requires<[FeatureLoadStoreOnCond2]>;
defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
                                 nonvolatile_anyextloadi8, bdxaddr20only>;
defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
                                 nonvolatile_anyextloadi16, bdxaddr20only>;
defm CondStore32    : CondStores<GR32, simple_store,
                                 simple_load, bdxaddr20only>;

defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
                    nonvolatile_anyextloadi8, bdxaddr20only>;
defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
                    nonvolatile_anyextloadi16, bdxaddr20only>;
defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
                    nonvolatile_anyextloadi32, bdxaddr20only>;
defm CondStore64 : CondStores<GR64, simple_store,
                              simple_load, bdxaddr20only>;

//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//

// Register moves.
def LR  : UnaryRR <"lr",  0x18,   null_frag, GR32, GR32>;
def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;

let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
  def LTR  : UnaryRR <"ltr",  0x12,   null_frag, GR32, GR32>;
  def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>;
}

let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
  def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>;

// Immediate moves.
let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
  // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
  // deopending on the choice of register.
  def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
               Requires<[FeatureHighWord]>;
  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;

  // Other 16-bit immediates.
  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;

  // 32-bit immediates.
  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
}

// Register loads.
let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
  // Expands to L, LY or LFH, depending on the choice of register.
  def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
             Requires<[FeatureHighWord]>;
  defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
  def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
            Requires<[FeatureHighWord]>;
  def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;

  // These instructions are split after register allocation, so we don't
  // want a custom inserter.
  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
  }
}
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
  def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
  def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
}

let canFoldAsLoad = 1 in {
  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
}

// Load and zero rightmost byte.
let Predicates = [FeatureLoadAndZeroRightmostByte] in {
  def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>;
  def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>;
  def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00),
            (LZRF bdxaddr20only:$src)>;
  def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00),
            (LZRG bdxaddr20only:$src)>;
}

// Load and trap.
let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
  def LAT   : UnaryRXY<"lat",   0xE39F, null_frag, GR32, 4>;
  def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>;
  def LGAT  : UnaryRXY<"lgat",  0xE385, null_frag, GR64, 8>;
}

// Register stores.
let SimpleBDXStore = 1, mayStore = 1 in {
  // Expands to ST, STY or STFH, depending on the choice of register.
  def STMux : StoreRXYPseudo<store, GRX32, 4>,
              Requires<[FeatureHighWord]>;
  defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
  def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
             Requires<[FeatureHighWord]>;
  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;

  // These instructions are split after register allocation, so we don't
  // want a custom inserter.
  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
  }
}
def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;

// 8-bit immediate stores to 8-bit fields.
defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;

// 16-bit immediate stores to 16-, 32- or 64-bit fields.
def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;

// Memory-to-memory moves.
let mayLoad = 1, mayStore = 1 in
  defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
let mayLoad = 1, mayStore = 1, Defs = [CC] in {
  def MVCL  : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>;
  def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>;
  def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>;
}

// Move right.
let Predicates = [FeatureMiscellaneousExtensions3],
    mayLoad = 1, mayStore = 1, Uses = [R0L] in
  def MVCRL : SideEffectBinarySSE<"mvcrl", 0xE50A>;

// String moves.
let mayLoad = 1, mayStore = 1, Defs = [CC] in
  defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;

//===----------------------------------------------------------------------===//
// Conditional move instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureMiscellaneousExtensions3], Uses = [CC] in {
  // Select.
  let isCommutable = 1 in {
    // Expands to SELR or SELFHR or a branch-and-move sequence,
    // depending on the choice of registers.
    def  SELRMux : CondBinaryRRFaPseudo<"selrmux", GRX32, GRX32, GRX32>;
    defm SELFHR  : CondBinaryRRFaPair<"selfhr", 0xB9C0, GRH32, GRH32, GRH32>;
    defm SELR    : CondBinaryRRFaPair<"selr",   0xB9F0, GR32, GR32, GR32>;
    defm SELGR   : CondBinaryRRFaPair<"selgr",  0xB9E3, GR64, GR64, GR64>;
  }

  // Define AsmParser extended mnemonics for each general condition-code mask.
  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
    def SELRAsm#V   : FixedCondBinaryRRFa<CV<V>, "selr",   0xB9F0,
                                          GR32, GR32, GR32>;
    def SELFHRAsm#V : FixedCondBinaryRRFa<CV<V>, "selfhr", 0xB9C0,
                                          GRH32, GRH32, GRH32>;
    def SELGRAsm#V  : FixedCondBinaryRRFa<CV<V>, "selgr",  0xB9E3,
                                          GR64, GR64, GR64>;
  }
}

let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in {
  // Load immediate on condition.  Matched via DAG pattern and created
  // by the PeepholeOptimizer via FoldImmediate.

  // Expands to LOCHI or LOCHHI, depending on the choice of register.
  def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>;
  defm LOCHHI  : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>;
  defm LOCHI   : CondBinaryRIEPair<"lochi",  0xEC42, GR32, imm32sx16>;
  defm LOCGHI  : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>;

  // Move register on condition.  Matched via DAG pattern and
  // created by early if-conversion.
  let isCommutable = 1 in {
    // Expands to LOCR or LOCFHR or a branch-and-move sequence,
    // depending on the choice of registers.
    def LOCRMux : CondBinaryRRFPseudo<"locrmux", GRX32, GRX32>;
    defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>;
  }

  // Load on condition.  Matched via DAG pattern.
  // Expands to LOC or LOCFH, depending on the choice of register.
  def LOCMux : CondUnaryRSYPseudo<simple_load, GRX32, 4>;
  defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, simple_load, GRH32, 4>;

  // Store on condition.  Expanded from CondStore* pseudos.
  // Expands to STOC or STOCFH, depending on the choice of register.
  def STOCMux : CondStoreRSYPseudo<GRX32, 4>;
  defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>;

  // Define AsmParser extended mnemonics for each general condition-code mask.
  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
    def LOCHIAsm#V  : FixedCondBinaryRIE<CV<V>, "lochi",  0xEC42, GR32,
                                         imm32sx16>;
    def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64,
                                         imm64sx16>;
    def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32,
                                         imm32sx16>;
    def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>;
    def LOCFHAsm#V  : FixedCondUnaryRSY<CV<V>, "locfh",  0xEBE0, GRH32, 4>;
    def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>;
  }
}

let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in {
  // Move register on condition.  Matched via DAG pattern and
  // created by early if-conversion.
  let isCommutable = 1 in {
    defm LOCR  : CondBinaryRRFPair<"locr",  0xB9F2, GR32, GR32>;
    defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>;
  }

  // Load on condition.  Matched via DAG pattern.
  defm LOC  : CondUnaryRSYPair<"loc",  0xEBF2, simple_load, GR32, 4>;
  defm LOCG : CondUnaryRSYPair<"locg", 0xEBE2, simple_load, GR64, 8>;

  // Store on condition.  Expanded from CondStore* pseudos.
  defm STOC  : CondStoreRSYPair<"stoc",  0xEBF3, GR32, 4>;
  defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>;

  // Define AsmParser extended mnemonics for each general condition-code mask.
  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
    def LOCRAsm#V   : FixedCondBinaryRRF<CV<V>, "locr",  0xB9F2, GR32, GR32>;
    def LOCGRAsm#V  : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>;
    def LOCAsm#V    : FixedCondUnaryRSY<CV<V>, "loc",   0xEBF2, GR32, 4>;
    def LOCGAsm#V   : FixedCondUnaryRSY<CV<V>, "locg",  0xEBE2, GR64, 8>;
    def STOCAsm#V   : FixedCondStoreRSY<CV<V>, "stoc",  0xEBF3, GR32, 4>;
    def STOCGAsm#V  : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>;
  }
}
//===----------------------------------------------------------------------===//
// Sign extensions
//===----------------------------------------------------------------------===//
//
// Note that putting these before zero extensions mean that we will prefer
// them for anyextload*.  There's not really much to choose between the two
// either way, but signed-extending loads have a short LH and a long LHY,
// while zero-extending loads have only the long LLH.
//
//===----------------------------------------------------------------------===//

// 32-bit extensions from registers.
def LBR : UnaryRRE<"lbr", 0xB926, sext8,  GR32, GR32>;
def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;

// 64-bit extensions from registers.
def LGBR : UnaryRRE<"lgbr", 0xB906, sext8,  GR64, GR64>;
def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;

let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
  def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>;

// Match 32-to-64-bit sign extensions in which the source is already
// in a 64-bit register.
def : Pat<(sext_inreg GR64:$src, i32),
          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;

// 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
// depending on the choice of register.
def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
            Requires<[FeatureHighWord]>;
def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
          Requires<[FeatureHighWord]>;

// 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
// depending on the choice of register.
def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
            Requires<[FeatureHighWord]>;
defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
            Requires<[FeatureHighWord]>;
def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;

// 64-bit extensions from memory.
def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
  def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;

//===----------------------------------------------------------------------===//
// Zero extensions
//===----------------------------------------------------------------------===//

// 32-bit extensions from registers.

// Expands to LLCR or RISB[LH]G, depending on the choice of registers.
def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>,
              Requires<[FeatureHighWord]>;
def LLCR    : UnaryRRE<"llcr", 0xB994, zext8,  GR32, GR32>;
// Expands to LLHR or RISB[LH]G, depending on the choice of registers.
def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>,
              Requires<[FeatureHighWord]>;
def LLHR    : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;

// 64-bit extensions from registers.
def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8,  GR64, GR64>;
def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;

// Match 32-to-64-bit zero extensions in which the source is already
// in a 64-bit register.
def : Pat<(and GR64:$src, 0xffffffff),
          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;

// 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
// depending on the choice of register.
def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
             Requires<[FeatureHighWord]>;
def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>,
           Requires<[FeatureHighWord]>;

// 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
// depending on the choice of register.
def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
             Requires<[FeatureHighWord]>;
def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>,
            Requires<[FeatureHighWord]>;
def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;

// 64-bit extensions from memory.
def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;

// 31-to-64-bit zero extensions.
def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>;
def LLGT  : UnaryRXY<"llgt",  0xE317, null_frag, GR64, 4>;
def : Pat<(and GR64:$src, 0x7fffffff),
          (LLGTR GR64:$src)>;
def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff),
          (LLGT bdxaddr20only:$src)>;

// Load and zero rightmost byte.
let Predicates = [FeatureLoadAndZeroRightmostByte] in {
  def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>;
  def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00),
            (LLZRGF bdxaddr20only:$src)>;
}

// Load and trap.
let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
  def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>;
  def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>;
}

// Extend GR64s to GR128s.
let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
  def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;

//===----------------------------------------------------------------------===//
// "Any" extensions
//===----------------------------------------------------------------------===//

// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
def : Pat<(i64 (anyext GR32:$src)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;

// Extend GR64s to GR128s.
let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
  def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;

//===----------------------------------------------------------------------===//
// Truncations
//===----------------------------------------------------------------------===//

// Truncations of 64-bit registers to 32-bit registers.
def : Pat<(i32 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, subreg_l32)>;

// Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
// STC, STCY or STCH, depending on the choice of register.
def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
             Requires<[FeatureHighWord]>;
defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
           Requires<[FeatureHighWord]>;

// Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
// STH, STHY or STHH, depending on the choice of register.
def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
             Requires<[FeatureHighWord]>;
defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
           Requires<[FeatureHighWord]>;
def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;

// Truncations of 64-bit registers to memory.
defm : StoreGR64Pair<STC, STCY, truncstorei8>;
defm : StoreGR64Pair<STH, STHY, truncstorei16>;
def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
defm : StoreGR64Pair<ST, STY, truncstorei32>;
def  : StoreGR64PC<STRL, aligned_truncstorei32>;

// Store characters under mask -- not (yet) used for codegen.
defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>;
def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>;

//===----------------------------------------------------------------------===//
// Multi-register moves
//===----------------------------------------------------------------------===//

// Multi-register loads.
defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>;

// Multi-register stores.
defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;

//===----------------------------------------------------------------------===//
// Byte swaps
//===----------------------------------------------------------------------===//

// Byte-swapping register moves.
def LRVR  : UnaryRRE<"lrvr",  0xB91F, bswap, GR32, GR32>;
def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;

// Byte-swapping loads.
def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>;
def LRV  : UnaryRXY<"lrv",  0xE31E, z_loadbswap32, GR32, 4>;
def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>;

// Byte-swapping stores.
def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>;
def STRV  : StoreRXY<"strv",  0xE33E, z_storebswap32, GR32, 4>;
def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>;

// Byte-swapping memory-to-memory moves.
let mayLoad = 1, mayStore = 1 in
  def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>;

//===----------------------------------------------------------------------===//
// Load address instructions
//===----------------------------------------------------------------------===//

// Load BDX-style addresses.
let isAsCheapAsAMove = 1, isReMaterializable = 1 in
  defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>;

// Load a PC-relative address.  There's no version of this instruction
// with a 16-bit offset, so there's no relaxation.
let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in
  def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>;

// Load the Global Offset Table address.  This will be lowered into a
//     larl $R1, _GLOBAL_OFFSET_TABLE_
// instruction.
def GOT : Alias<6, (outs GR64:$R1), (ins),
                [(set GR64:$R1, (global_offset_table))]>;

//===----------------------------------------------------------------------===//
// Absolute and Negation
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    def LPR  : UnaryRR <"lpr",  0x10,   z_iabs, GR32, GR32>;
    def LPGR : UnaryRRE<"lpgr", 0xB900, z_iabs, GR64, GR64>;
  }
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>;
}
def : Pat<(z_iabs32 GR32:$src), (LPR  GR32:$src)>;
def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>;
defm : SXU<z_iabs,   LPGFR>;
defm : SXU<z_iabs64, LPGFR>;

let Defs = [CC] in {
  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    def LNR  : UnaryRR <"lnr",  0x11,   z_inegabs, GR32, GR32>;
    def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>;
  }
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>;
}
def : Pat<(z_inegabs32 GR32:$src), (LNR  GR32:$src)>;
def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>;
defm : SXU<z_inegabs,   LNGFR>;
defm : SXU<z_inegabs64, LNGFR>;

let Defs = [CC] in {
  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    def LCR  : UnaryRR <"lcr",  0x13,   ineg, GR32, GR32>;
    def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
  }
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
}
defm : SXU<ineg, LCGFR>;

//===----------------------------------------------------------------------===//
// Insertion
//===----------------------------------------------------------------------===//

let isCodeGenOnly = 1 in
  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;

defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;

defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;

// Insert characters under mask -- not (yet) used for codegen.
let Defs = [CC] in {
  defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
  def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
}

// Insertions of a 16-bit immediate, leaving other bits unaffected.
// We don't have or_as_insert equivalents of these operations because
// OI is available instead.
//
// IIxMux expands to II[LH]x, depending on the choice of register.
def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
             Requires<[FeatureHighWord]>;
def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
             Requires<[FeatureHighWord]>;
def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;

// ...likewise for 32-bit immediates.  For GR32s this is a general
// full-width move.  (We use IILF rather than something like LLILF
// for 32-bit moves because IILF leaves the upper 32 bits of the
// GR64 unchanged.)
let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
  def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
               Requires<[FeatureHighWord]>;
  def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
  def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
}
def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;

// An alternative model of inserthf, with the first operand being
// a zero-extended value.
def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
          (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
                  imm64hf32:$imm)>;

//===----------------------------------------------------------------------===//
// Addition
//===----------------------------------------------------------------------===//

// Addition producing a signed overflow flag.
let Defs = [CC], CCValues = 0xF, CCIfNoSignedWrap = 1 in {
  // Addition of a register.
  let isCommutable = 1 in {
    defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
    defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>;
  }
  def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;

  // Addition to a high register.
  def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>,
              Requires<[FeatureHighWord]>;
  def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>,
              Requires<[FeatureHighWord]>;

  // Addition of signed 16-bit immediates.
  defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>;
  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>;
  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>;

  // Addition of signed 32-bit immediates.
  def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>,
               Requires<[FeatureHighWord]>;
  def AFI  : BinaryRIL<"afi",  0xC29, z_sadd, GR32, simm32>;
  def AIH  : BinaryRIL<"aih",  0xCC8, z_sadd, GRH32, simm32>,
             Requires<[FeatureHighWord]>;
  def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>;

  // Addition of memory.
  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, asextloadi16, 2>;
  defm A   : BinaryRXPairAndPseudo<"a",  0x5A, 0xE35A, z_sadd, GR32, load, 4>;
  def  AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, asextloadi16, 2>,
             Requires<[FeatureMiscellaneousExtensions2]>;
  def  AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, asextloadi32, 4>;
  defm AG  : BinaryRXYAndPseudo<"ag",  0xE308, z_sadd, GR64, load, 8>;

  // Addition to memory.
  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
}
defm : SXB<z_sadd, GR64, AGFR>;

// Addition producing a carry.
let Defs = [CC], CCValues = 0xF, IsLogical = 1 in {
  // Addition of a register.
  let isCommutable = 1 in {
    defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>;
    defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>;
  }
  def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;

  // Addition to a high register.
  def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>,
               Requires<[FeatureHighWord]>;
  def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>,
               Requires<[FeatureHighWord]>;

  // Addition of signed 16-bit immediates.
  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, z_uadd, GR32, imm32sx16>,
                Requires<[FeatureDistinctOps]>;
  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>,
                Requires<[FeatureDistinctOps]>;

  // Addition of unsigned 32-bit immediates.
  def ALFI  : BinaryRIL<"alfi",  0xC2B, z_uadd, GR32, uimm32>;
  def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>;

  // Addition of signed 32-bit immediates.
  def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>,
              Requires<[FeatureHighWord]>;

  // Addition of memory.
  defm AL   : BinaryRXPairAndPseudo<"al", 0x5E, 0xE35E, z_uadd, GR32, load, 4>;
  def  ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, azextloadi32, 4>;
  defm ALG  : BinaryRXYAndPseudo<"alg",  0xE30A, z_uadd, GR64, load, 8>;

  // Addition to memory.
  def ALSI  : BinarySIY<"alsi",  0xEB6E, null_frag, imm32sx8>;
  def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>;
}
defm : ZXB<z_uadd, GR64, ALGFR>;

// Addition producing and using a carry.
let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
  // Addition of a register.
  def ALCR  : BinaryRRE<"alcr",  0xB998, z_addcarry, GR32, GR32>;
  def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>;

  // Addition of memory.
  def ALC  : BinaryRXY<"alc",  0xE398, z_addcarry, GR32, load, 4>;
  def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, load, 8>;
}

// Addition that does not modify the condition code.
def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>,
             Requires<[FeatureHighWord]>;


//===----------------------------------------------------------------------===//
// Subtraction
//===----------------------------------------------------------------------===//

// Subtraction producing a signed overflow flag.
let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8,
    CCIfNoSignedWrap = 1 in {
  // Subtraction of a register.
  defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>;
  def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
  defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>;

  // Subtraction from a high register.
  def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>,
              Requires<[FeatureHighWord]>;
  def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>,
              Requires<[FeatureHighWord]>;

  // Subtraction of memory.
  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, asextloadi16, 2>;
  defm S   : BinaryRXPairAndPseudo<"s", 0x5B, 0xE35B, z_ssub, GR32, load, 4>;
  def  SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, asextloadi16, 2>,
             Requires<[FeatureMiscellaneousExtensions2]>;
  def  SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, asextloadi32, 4>;
  defm SG  : BinaryRXYAndPseudo<"sg",  0xE309, z_ssub, GR64, load, 8>;
}
defm : SXB<z_ssub, GR64, SGFR>;

// Subtracting an immediate is the same as adding the negated immediate.
let AddedComplexity = 1 in {
  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
            (AHIMux GR32:$src1, imm32sx16n:$src2)>,
        Requires<[FeatureHighWord]>;
  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
            (AFIMux GR32:$src1, simm32n:$src2)>,
        Requires<[FeatureHighWord]>;
  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
            (AHI GR32:$src1, imm32sx16n:$src2)>;
  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
            (AFI GR32:$src1, simm32n:$src2)>;
  def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2),
            (AGHI GR64:$src1, imm64sx16n:$src2)>;
  def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2),
            (AGFI GR64:$src1, imm64sx32n:$src2)>;
}

// And vice versa in one special case, where we need to load a
// constant into a register in any case, but the negated constant
// requires fewer instructions to load.
def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2),
          (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>;
def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2),
          (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>;

// Subtraction producing a carry.
let Defs = [CC], CCValues = 0x7, IsLogical = 1 in {
  // Subtraction of a register.
  defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>;
  def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
  defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>;

  // Subtraction from a high register.
  def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>,
               Requires<[FeatureHighWord]>;
  def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>,
               Requires<[FeatureHighWord]>;

  // Subtraction of unsigned 32-bit immediates.
  def SLFI  : BinaryRIL<"slfi",  0xC25, z_usub, GR32, uimm32>;
  def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>;

  // Subtraction of memory.
  defm SL   : BinaryRXPairAndPseudo<"sl", 0x5F, 0xE35F, z_usub, GR32, load, 4>;
  def  SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, azextloadi32, 4>;
  defm SLG  : BinaryRXYAndPseudo<"slg",  0xE30B, z_usub, GR64, load, 8>;
}
defm : ZXB<z_usub, GR64, SLGFR>;

// Subtracting an immediate is the same as adding the negated immediate.
let AddedComplexity = 1 in {
  def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2),
            (ALHSIK GR32:$src1, imm32sx16n:$src2)>,
        Requires<[FeatureDistinctOps]>;
  def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2),
            (ALGHSIK GR64:$src1, imm64sx16n:$src2)>,
        Requires<[FeatureDistinctOps]>;
}

// And vice versa in one special case (but we prefer addition).
def : Pat<(add GR64:$src1, imm64zx32n:$src2),
          (SLGFI GR64:$src1, imm64zx32n:$src2)>;

// Subtraction producing and using a carry.
let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
  // Subtraction of a register.
  def SLBR  : BinaryRRE<"slbr",  0xB999, z_subcarry, GR32, GR32>;
  def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>;

  // Subtraction of memory.
  def SLB  : BinaryRXY<"slb",  0xE399, z_subcarry, GR32, load, 4>;
  def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, load, 8>;
}


//===----------------------------------------------------------------------===//
// AND
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  // ANDs of a register.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>;
    defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>;
  }

  let isConvertibleToThreeAddress = 1 in {
    // ANDs of a 16-bit immediate, leaving other bits unaffected.
    // The CC result only reflects the 16-bit field, not the full register.
    //
    // NIxMux expands to NI[LH]x, depending on the choice of register.
    def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
                 Requires<[FeatureHighWord]>;
    def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
                 Requires<[FeatureHighWord]>;
    def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
    def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
    def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
    def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
    def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
    def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
    def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
    def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;

    // ANDs of a 32-bit immediate, leaving other bits unaffected.
    // The CC result only reflects the 32-bit field, which means we can
    // use it as a zero indicator for i32 operations but not otherwise.
    let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
      // Expands to NILF or NIHF, depending on the choice of register.
      def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
                   Requires<[FeatureHighWord]>;
      def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
      def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
    }
    def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
    def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
  }

  // ANDs of memory.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm N  : BinaryRXPairAndPseudo<"n", 0x54, 0xE354, and, GR32, load, 4>;
    defm NG : BinaryRXYAndPseudo<"ng", 0xE380, and, GR64, load, 8>;
  }

  // AND to memory
  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;

  // Block AND.
  let mayLoad = 1, mayStore = 1 in
    defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
}
defm : RMWIByte<and, bdaddr12pair, NI>;
defm : RMWIByte<and, bdaddr20pair, NIY>;

//===----------------------------------------------------------------------===//
// OR
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  // ORs of a register.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>;
    defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>;
  }

  // ORs of a 16-bit immediate, leaving other bits unaffected.
  // The CC result only reflects the 16-bit field, not the full register.
  //
  // OIxMux expands to OI[LH]x, depending on the choice of register.
  def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
               Requires<[FeatureHighWord]>;
  def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
               Requires<[FeatureHighWord]>;
  def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
  def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
  def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
  def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
  def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
  def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
  def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
  def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;

  // ORs of a 32-bit immediate, leaving other bits unaffected.
  // The CC result only reflects the 32-bit field, which means we can
  // use it as a zero indicator for i32 operations but not otherwise.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    // Expands to OILF or OIHF, depending on the choice of register.
    def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
                 Requires<[FeatureHighWord]>;
    def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
    def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
  }
  def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
  def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;

  // ORs of memory.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm O  : BinaryRXPairAndPseudo<"o", 0x56, 0xE356, or, GR32, load, 4>;
    defm OG : BinaryRXYAndPseudo<"og", 0xE381, or, GR64, load, 8>;
  }

  // OR to memory
  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;

  // Block OR.
  let mayLoad = 1, mayStore = 1 in
    defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
}
defm : RMWIByte<or, bdaddr12pair, OI>;
defm : RMWIByte<or, bdaddr20pair, OIY>;

//===----------------------------------------------------------------------===//
// XOR
//===----------------------------------------------------------------------===//

let Defs = [CC] in {
  // XORs of a register.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>;
    defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>;
  }

  // XORs of a 32-bit immediate, leaving other bits unaffected.
  // The CC result only reflects the 32-bit field, which means we can
  // use it as a zero indicator for i32 operations but not otherwise.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    // Expands to XILF or XIHF, depending on the choice of register.
    def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
                 Requires<[FeatureHighWord]>;
    def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
    def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
  }
  def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
  def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;

  // XORs of memory.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    defm X  : BinaryRXPairAndPseudo<"x",0x57, 0xE357, xor, GR32, load, 4>;
    defm XG : BinaryRXYAndPseudo<"xg", 0xE382, xor, GR64, load, 8>;
  }

  // XOR to memory
  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;

  // Block XOR.
  let mayLoad = 1, mayStore = 1 in
    defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
}
defm : RMWIByte<xor, bdaddr12pair, XI>;
defm : RMWIByte<xor, bdaddr20pair, XIY>;

//===----------------------------------------------------------------------===//
// Combined logical operations
//===----------------------------------------------------------------------===//

let Predicates = [FeatureMiscellaneousExtensions3],
    Defs = [CC] in {
  // AND with complement.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    def NCRK : BinaryRRFa<"ncrk", 0xB9F5, andc, GR32, GR32, GR32>;
    def NCGRK : BinaryRRFa<"ncgrk", 0xB9E5, andc, GR64, GR64, GR64>;
  }

  // OR with complement.
  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    def OCRK : BinaryRRFa<"ocrk", 0xB975, orc, GR32, GR32, GR32>;
    def OCGRK : BinaryRRFa<"ocgrk", 0xB965, orc, GR64, GR64, GR64>;
  }

  // NAND.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    def NNRK : BinaryRRFa<"nnrk", 0xB974, nand, GR32, GR32, GR32>;
    def NNGRK : BinaryRRFa<"nngrk", 0xB964, nand, GR64, GR64, GR64>;
  }

  // NOR.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    def NORK : BinaryRRFa<"nork", 0xB976, nor, GR32, GR32, GR32>;
    def NOGRK : BinaryRRFa<"nogrk", 0xB966, nor, GR64, GR64, GR64>;
  }

  // NXOR.
  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
    def NXRK : BinaryRRFa<"nxrk", 0xB977, nxor, GR32, GR32, GR32>;
    def NXGRK : BinaryRRFa<"nxgrk", 0xB967, nxor, GR64, GR64, GR64>;
  }
}

//===----------------------------------------------------------------------===//
// Multiplication
//===----------------------------------------------------------------------===//

// Multiplication of a register, setting the condition code.  We prefer these
// over MS(G)R if available, even though we cannot use the condition code,
// since they are three-operand instructions.
let Predicates = [FeatureMiscellaneousExtensions2],
    Defs = [CC], isCommutable = 1 in {
  def MSRKC  : BinaryRRFa<"msrkc",  0xB9FD, mul, GR32, GR32, GR32>;
  def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>;
}

// Multiplication of a register.
let isCommutable = 1 in {
  def MSR  : BinaryRRE<"msr",  0xB252, mul, GR32, GR32>;
  def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
}
def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
defm : SXB<mul, GR64, MSGFR>;

// Multiplication of a signed 16-bit immediate.
def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;

// Multiplication of a signed 32-bit immediate.
def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;

// Multiplication of memory.
defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
def  MGH  : BinaryRXY<"mgh", 0xE33C, mul, GR64, asextloadi16, 2>,
            Requires<[FeatureMiscellaneousExtensions2]>;
def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;

// Multiplication of memory, setting the condition code.
let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in {
  def MSC  : BinaryRXY<"msc",  0xE353, null_frag, GR32, load, 4>;
  def MSGC : BinaryRXY<"msgc", 0xE383, null_frag, GR64, load, 8>;
}

// Multiplication of a register, producing two results.
def MR   : BinaryRR <"mr",    0x1C,   null_frag, GR128, GR32>;
def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>,
           Requires<[FeatureMiscellaneousExtensions2]>;
def MLR  : BinaryRRE<"mlr",  0xB996, null_frag, GR128, GR32>;
def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>;

def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2),
          (MGRK GR64:$src1, GR64:$src2)>;
def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2),
          (MLGR (AEXT128 GR64:$src1), GR64:$src2)>;

// Multiplication of memory, producing two results.
def M   : BinaryRX <"m",   0x5C,   null_frag, GR128, load, 4>;
def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>;
def MG  : BinaryRXY<"mg",  0xE384, null_frag, GR128, load, 8>,
          Requires<[FeatureMiscellaneousExtensions2]>;
def ML  : BinaryRXY<"ml",  0xE396, null_frag, GR128, load, 4>;
def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>;

def : Pat<(z_smul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
          (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
          (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;

//===----------------------------------------------------------------------===//
// Division and remainder
//===----------------------------------------------------------------------===//

let hasSideEffects = 1 in {  // Do not speculatively execute.
  // Division and remainder, from registers.
  def DR    : BinaryRR <"dr",    0x1D,   null_frag, GR128, GR32>;
  def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
  def DSGR  : BinaryRRE<"dsgr",  0xB90D, null_frag, GR128, GR64>;
  def DLR   : BinaryRRE<"dlr",   0xB997, null_frag, GR128, GR32>;
  def DLGR  : BinaryRRE<"dlgr",  0xB987, null_frag, GR128, GR64>;

  // Division and remainder, from memory.
  def D    : BinaryRX <"d",    0x5D,   null_frag, GR128, load, 4>;
  def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>;
  def DSG  : BinaryRXY<"dsg",  0xE30D, null_frag, GR128, load, 8>;
  def DL   : BinaryRXY<"dl",   0xE397, null_frag, GR128, load, 4>;
  def DLG  : BinaryRXY<"dlg",  0xE387, null_frag, GR128, load, 8>;
}
def : Pat<(z_sdivrem GR64:$src1, GR32:$src2),
          (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>;
def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))),
          (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
def : Pat<(z_sdivrem GR64:$src1, GR64:$src2),
          (DSGR (AEXT128 GR64:$src1), GR64:$src2)>;
def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
          (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;

def : Pat<(z_udivrem GR32:$src1, GR32:$src2),
          (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
                                       subreg_l32)), GR32:$src2)>;
def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))),
          (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
                                      subreg_l32)), bdxaddr20only:$src2)>;
def : Pat<(z_udivrem GR64:$src1, GR64:$src2),
          (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>;
def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
          (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>;

//===----------------------------------------------------------------------===//
// Shifts
//===----------------------------------------------------------------------===//

// Logical shift left.
defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>;
def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>;
def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>;

// Arithmetic shift left.
let Defs = [CC] in {
  defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
  def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>;
  def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>;
}

// Logical shift right.
defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>;
def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>;
def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>;

// Arithmetic shift right.
let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
  defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>;
  def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>;
  def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>;
}

// Rotate left.
def RLL  : BinaryRSY<"rll",  0xEB1D, shiftop<rotl>, GR32>;
def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>;

// Rotate second operand left and inserted selected bits into first operand.
// These can act like 32-bit operands provided that the constant start and
// end bits (operands 2 and 3) are in the range [32, 64).
let Defs = [CC] in {
  let isCodeGenOnly = 1 in
    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
  let CCValues = 0xE, CompareZeroCCMask = 0xE in
    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
}

// On zEC12 we have a variant of RISBG that does not set CC.
let Predicates = [FeatureMiscellaneousExtensions] in
  def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;

// Forms of RISBG that only affect one word of the destination register.
// They do not set CC.
let Predicates = [FeatureHighWord] in {
  def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
  def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
  def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
  def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
  def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
  def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
  def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
}

// Rotate second operand left and perform a logical operation with selected
// bits of the first operand.  The CC result only describes the selected bits,
// so isn't useful for a full comparison against zero.
let Defs = [CC] in {
  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
}

//===----------------------------------------------------------------------===//
// Comparison
//===----------------------------------------------------------------------===//

// Signed comparisons.  We put these before the unsigned comparisons because
// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
// of the unsigned forms do.
let Defs = [CC], CCValues = 0xE in {
  // Comparison with a register.
  def CR   : CompareRR <"cr",   0x19,   z_scmp,    GR32, GR32>;
  def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
  def CGR  : CompareRRE<"cgr",  0xB920, z_scmp,    GR64, GR64>;

  // Comparison with a high register.
  def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>,
             Requires<[FeatureHighWord]>;
  def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>,
             Requires<[FeatureHighWord]>;

  // Comparison with a signed 16-bit immediate.  CHIMux expands to CHI or CIH,
  // depending on the choice of register.
  def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>,
               Requires<[FeatureHighWord]>;
  def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
  def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;

  // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
  // depending on the choice of register.
  def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
               Requires<[FeatureHighWord]>;
  def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
  def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
             Requires<[FeatureHighWord]>;
  def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;

  // Comparison with memory.
  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
  def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
               Requires<[FeatureHighWord]>;
  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
  def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
               Requires<[FeatureHighWord]>;
  def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
  def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
  def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
  def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;

  // Comparison between memory and a signed 16-bit immediate.
  def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
  def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
  def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
}
defm : SXB<z_scmp, GR64, CGFR>;

// Unsigned comparisons.
let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
  // Comparison with a register.
  def CLR   : CompareRR <"clr",   0x15,   z_ucmp,    GR32, GR32>;
  def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
  def CLGR  : CompareRRE<"clgr",  0xB921, z_ucmp,    GR64, GR64>;

  // Comparison with a high register.
  def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>,
              Requires<[FeatureHighWord]>;
  def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>,
              Requires<[FeatureHighWord]>;

  // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
  // or CLIH, depending on the choice of register.
  def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
                Requires<[FeatureHighWord]>;
  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
  def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>,
              Requires<[FeatureHighWord]>;
  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;

  // Comparison with memory.
  def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
                Requires<[FeatureHighWord]>;
  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
  def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
                Requires<[FeatureHighWord]>;
  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
                             aligned_azextloadi16>;
  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
                             aligned_load>;
  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
                             aligned_azextloadi16>;
  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
                             aligned_azextloadi32>;
  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
                             aligned_load>;

  // Comparison between memory and an unsigned 8-bit immediate.
  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;

  // Comparison between memory and an unsigned 16-bit immediate.
  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
}
defm : ZXB<z_ucmp, GR64, CLGFR>;

// Memory-to-memory comparison.
let mayLoad = 1, Defs = [CC] in {
  defm CLC : CompareMemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
  def CLCL  : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>;
  def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>;
  def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>;
}

// String comparison.
let mayLoad = 1, Defs = [CC] in
  defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;

// Test under mask.
let Defs = [CC] in {
  // TMxMux expands to TM[LH]x, depending on the choice of register.
  def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
               Requires<[FeatureHighWord]>;
  def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
               Requires<[FeatureHighWord]>;
  def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
  def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
  def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
  def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;

  def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
  def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
  def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
  def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;

  defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
}

def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;

// Compare logical characters under mask -- not (yet) used for codegen.
let Defs = [CC] in {
  defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>;
  def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>;
}

//===----------------------------------------------------------------------===//
// Prefetch and execution hint
//===----------------------------------------------------------------------===//

let mayLoad = 1, mayStore = 1 in {
  def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
  def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
}

let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in {
  // Branch Prediction Preload
  def BPP : BranchPreloadSMI<"bpp", 0xC7>;
  def BPRP : BranchPreloadMII<"bprp", 0xC5>;

  // Next Instruction Access Intent
  def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>;
}

//===----------------------------------------------------------------------===//
// Atomic operations
//===----------------------------------------------------------------------===//

// A serialization instruction that acts as a barrier for all memory
// accesses, which expands to "bcr 14, 0".
let hasSideEffects = 1 in
def Serialize : Alias<2, (outs), (ins), []>;

// A pseudo instruction that serves as a compiler barrier.
let hasSideEffects = 1, hasNoSchedulingInfo = 1 in
def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>;

let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
  def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>;
  def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>;
  def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
  def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
  def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>;
  def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>;
  def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>;
  def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>;
  def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>;
  def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>;
}

def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;

def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
let Predicates = [FeatureNoInterlockedAccess1] in {
  def ATOMIC_LOAD_AR   : AtomicLoadBinaryReg32<atomic_load_add_32>;
  def ATOMIC_LOAD_AHI  : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
  def ATOMIC_LOAD_AFI  : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
  def ATOMIC_LOAD_AGR  : AtomicLoadBinaryReg64<atomic_load_add_64>;
  def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
  def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
}

def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
def ATOMIC_LOAD_SR  : AtomicLoadBinaryReg32<atomic_load_sub_32>;
def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;

def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
let Predicates = [FeatureNoInterlockedAccess1] in {
  def ATOMIC_LOAD_NR     : AtomicLoadBinaryReg32<atomic_load_and_32>;
  def ATOMIC_LOAD_NILL   : AtomicLoadBinaryImm32<atomic_load_and_32,
                                                 imm32ll16c>;
  def ATOMIC_LOAD_NILH   : AtomicLoadBinaryImm32<atomic_load_and_32,
                                                 imm32lh16c>;
  def ATOMIC_LOAD_NILF   : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
  def ATOMIC_LOAD_NGR    : AtomicLoadBinaryReg64<atomic_load_and_64>;
  def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64ll16c>;
  def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64lh16c>;
  def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64hl16c>;
  def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64hh16c>;
  def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64lf32c>;
  def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
                                                 imm64hf32c>;
}

def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
let Predicates = [FeatureNoInterlockedAccess1] in {
  def ATOMIC_LOAD_OR     : AtomicLoadBinaryReg32<atomic_load_or_32>;
  def ATOMIC_LOAD_OILL   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
  def ATOMIC_LOAD_OILH   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
  def ATOMIC_LOAD_OILF   : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
  def ATOMIC_LOAD_OGR    : AtomicLoadBinaryReg64<atomic_load_or_64>;
  def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
  def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
  def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
  def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
  def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
  def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
}

def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
let Predicates = [FeatureNoInterlockedAccess1] in {
  def ATOMIC_LOAD_XR     : AtomicLoadBinaryReg32<atomic_load_xor_32>;
  def ATOMIC_LOAD_XILF   : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
  def ATOMIC_LOAD_XGR    : AtomicLoadBinaryReg64<atomic_load_xor_64>;
  def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
  def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
}

def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
                                               imm32lh16c>;
def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
                                                imm32ll16c>;
def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
                                                imm32lh16c>;
def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64ll16c>;
def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64lh16c>;
def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64hl16c>;
def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64hh16c>;
def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64lf32c>;
def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
                                                imm64hf32c>;

def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;

def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;

def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;

def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;

def ATOMIC_CMP_SWAPW
  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
                                  ADDR32:$bitshift, ADDR32:$negbitshift,
                                  uimm32:$bitsize),
           [(set GR32:$dst,
                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
                                     ADDR32:$bitshift, ADDR32:$negbitshift,
                                     uimm32:$bitsize))]> {
  let Defs = [CC];
  let mayLoad = 1;
  let mayStore = 1;
  let usesCustomInserter = 1;
  let hasNoSchedulingInfo = 1;
}

// Test and set.
let mayLoad = 1, Defs = [CC] in
  def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>;

// Compare and swap.
let Defs = [CC] in {
  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>;
  def  CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>;
}

// Compare double and swap.
let Defs = [CC] in {
  defm CDS  : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>;
  def  CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>;
}

// Compare and swap and store.
let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in
  def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>;

// Perform locked operation.
let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in
  def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>;

// Load/store pair from/to quadword.
def LPQ  : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>;
def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>;

// Load pair disjoint.
let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
  def LPD  : BinarySSF<"lpd", 0xC84, GR128>;
  def LPDG : BinarySSF<"lpdg", 0xC85, GR128>;
}

//===----------------------------------------------------------------------===//
// Translate and convert
//===----------------------------------------------------------------------===//

let mayLoad = 1, mayStore = 1 in
  def TR : SideEffectBinarySSa<"tr", 0xDC>;

let mayLoad = 1, Defs = [CC, R0L, R1D] in {
  def TRT  : SideEffectBinarySSa<"trt", 0xDD>;
  def TRTR : SideEffectBinarySSa<"trtr", 0xD0>;
}

let mayLoad = 1, mayStore = 1, Uses = [R0L] in
  def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>;

let mayLoad = 1, Uses = [R1D], Defs = [CC] in {
  defm TRTE  : BinaryMemRRFcOpt<"trte",  0xB9BF, GR128, GR64>;
  defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>;
}

let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
  defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>;
  defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>;
  defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>;
  defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>;
}

let mayLoad = 1, mayStore = 1, Defs = [CC] in {
  defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>;
  defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>;
  defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>;
  defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>;
  def  CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>;
  def  CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>;

  let isAsmParserOnly = 1 in {
    defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>;
    defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>;
  }
}

//===----------------------------------------------------------------------===//
// Message-security assist
//===----------------------------------------------------------------------===//

let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
  def KM  : SideEffectBinaryMemMemRRE<"km",  0xB92E, GR128, GR128>;
  def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>;

  def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>;
  def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>;
  def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>;

  let Predicates = [FeatureMessageSecurityAssist4] in {
    def KMF   : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>;
    def KMO   : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>;
    def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D,
                                               GR128, GR128, GR128>;
    def PCC   : SideEffectInherentRRE<"pcc", 0xB92C>;
  }

  let Predicates = [FeatureMessageSecurityAssist5] in
    def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>;
  let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in
    def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>;

  let Predicates = [FeatureMessageSecurityAssist8] in
    def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929,
                                              GR128, GR128, GR128>;

  let Predicates = [FeatureMessageSecurityAssist9] in
    def KDSA : SideEffectBinaryMemRRE<"kdsa", 0xB93A, GR64, GR128>;
}

//===----------------------------------------------------------------------===//
// Guarded storage
//===----------------------------------------------------------------------===//

// These instructions use and/or modify the guarded storage control
// registers, which we do not otherwise model, so they should have
// hasSideEffects.
let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in {
  def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>;
  def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>;

  let mayLoad = 1 in
    def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>;
  let mayStore = 1 in
    def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>;
}

//===----------------------------------------------------------------------===//
// Decimal arithmetic
//===----------------------------------------------------------------------===//

defm CVB  : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>;
def  CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>;

defm CVD  : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>;
def  CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>;

let mayLoad = 1, mayStore = 1 in {
  def MVN : SideEffectBinarySSa<"mvn", 0xD1>;
  def MVZ : SideEffectBinarySSa<"mvz", 0xD3>;
  def MVO : SideEffectBinarySSb<"mvo", 0xF1>;

  def PACK : SideEffectBinarySSb<"pack", 0xF2>;
  def PKA  : SideEffectBinarySSf<"pka", 0xE9>;
  def PKU  : SideEffectBinarySSf<"pku", 0xE1>;
  def UNPK : SideEffectBinarySSb<"unpk", 0xF3>;
  let Defs = [CC] in {
    def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>;
    def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>;
  }
}

let mayLoad = 1, mayStore = 1 in {
  let Defs = [CC] in {
    def AP : SideEffectBinarySSb<"ap", 0xFA>;
    def SP : SideEffectBinarySSb<"sp", 0xFB>;
    def ZAP : SideEffectBinarySSb<"zap", 0xF8>;
    def SRP : SideEffectTernarySSc<"srp", 0xF0>;
  }
  def MP : SideEffectBinarySSb<"mp", 0xFC>;
  def DP : SideEffectBinarySSb<"dp", 0xFD>;
  let Defs = [CC] in {
    def ED : SideEffectBinarySSa<"ed", 0xDE>;
    def EDMK : SideEffectBinarySSa<"edmk", 0xDF>;
  }
}

let Defs = [CC] in {
  def CP : CompareSSb<"cp", 0xF9>;
  def TP : TestRSL<"tp", 0xEBC0>;
}

//===----------------------------------------------------------------------===//
// Access registers
//===----------------------------------------------------------------------===//

// Read a 32-bit access register into a GR32.  As with all GR32 operations,
// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
// when a 64-bit address is stored in a pair of access registers.
def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>;

// Set access register.
def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>;

// Copy access register.
def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>;

// Load address extended.
defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>;

// Load access multiple.
defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>;

// Store access multiple.
defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>;

//===----------------------------------------------------------------------===//
// Program mask and addressing mode
//===----------------------------------------------------------------------===//

// Extract CC and program mask into a register.  CC ends up in bits 29 and 28.
let Uses = [CC] in
  def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>;

// Set CC and program mask from a register.
let hasSideEffects = 1, Defs = [CC] in
  def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>;

// Branch and link - like BAS, but also extracts CC and program mask.
let isCall = 1, Uses = [CC], Defs = [CC] in {
  def BAL  : CallRX<"bal", 0x45>;
  def BALR : CallRR<"balr", 0x05>;
}

// Test addressing mode.
let Defs = [CC] in
  def TAM : SideEffectInherentE<"tam", 0x010B>;

// Set addressing mode.
let hasSideEffects = 1 in {
  def SAM24 : SideEffectInherentE<"sam24", 0x010C>;
  def SAM31 : SideEffectInherentE<"sam31", 0x010D>;
  def SAM64 : SideEffectInherentE<"sam64", 0x010E>;
}

// Branch and set mode.  Not really a call, but also sets an output register.
let isBranch = 1, isTerminator = 1, isBarrier = 1 in
  def BSM : CallRR<"bsm", 0x0B>;

// Branch and save and set mode.
let isCall = 1, Defs = [CC] in
  def BASSM : CallRR<"bassm", 0x0C>;

//===----------------------------------------------------------------------===//
// Transactional execution
//===----------------------------------------------------------------------===//

let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in {
  // Transaction Begin
  let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in {
    def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>;
    let hasNoSchedulingInfo = 1 in
     def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>;
    def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561,
                                      int_s390_tbeginc, imm32zx16>;
  }

  // Transaction End
  let Defs = [CC] in
    def TEND : TestInherentS<"tend", 0xB2F8, z_tend>;

  // Transaction Abort
  let isTerminator = 1, isBarrier = 1, mayStore = 1,
      hasSideEffects = 1 in
    def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>;

  // Nontransactional Store
  def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;

  // Extract Transaction Nesting Depth
  def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>;
}

//===----------------------------------------------------------------------===//
// Processor assist
//===----------------------------------------------------------------------===//

let Predicates = [FeatureProcessorAssist] in {
  let hasSideEffects = 1 in
    def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>;
  def : Pat<(int_s390_ppa_txassist GR32:$src),
            (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
                 zero_reg, 1)>;
}

//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//===----------------------------------------------------------------------===//

// Find leftmost one, AKA count leading zeros.  The instruction actually
// returns a pair of GR64s, the first giving the number of leading zeros
// and the second giving a copy of the source with the leftmost one bit
// cleared.  We only use the first result here.
let Defs = [CC] in
  def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
def : Pat<(i64 (ctlz GR64:$src)),
          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;

// Population count.  Counts bits set per byte or doubleword.
let Predicates = [FeatureMiscellaneousExtensions3] in {
  let Defs = [CC] in
    def POPCNTOpt : BinaryRRFc<"popcnt", 0xB9E1, GR64, GR64>;
  def : Pat<(ctpop GR64:$src), (POPCNTOpt GR64:$src, 8)>;
}
let Predicates = [FeaturePopulationCount], Defs = [CC] in
  def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>;

// Search a block of memory for a character.
let mayLoad = 1, Defs = [CC] in
  defm SRST : StringRRE<"srst", 0xB25E, z_search_string>;
let mayLoad = 1, Defs = [CC], Uses = [R0L] in
  def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>;

// Compare until substring equal.
let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in
  def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>;

// Compare and form codeword.
let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in
  def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>;

// Update tree.
let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D],
    Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in
  def UPT : SideEffectInherentE<"upt", 0x0102>;

// Checksum.
let mayLoad = 1, Defs = [CC] in
  def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>;

// Compression call.
let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in
  def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>;

// Sort lists.
let Predicates = [FeatureEnhancedSort],
    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
  def SORTL : SideEffectBinaryMemMemRRE<"sortl", 0xB938, GR128, GR128>;

// Deflate conversion call.
let Predicates = [FeatureDeflateConversion],
    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
  def DFLTCC : SideEffectTernaryMemMemRRFa<"dfltcc", 0xB939,
                                           GR128, GR128, GR64>;

// Execute.
let hasSideEffects = 1 in {
  def EX   : SideEffectBinaryRX<"ex", 0x44, GR64>;
  def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, GR64>;
}

//===----------------------------------------------------------------------===//
// .insn directive instructions
//===----------------------------------------------------------------------===//

let isCodeGenOnly = 1, hasSideEffects = 1 in {
  def InsnE   : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>;
  def InsnRI  : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
                                             imm32sx16:$I2),
                                ".insn ri,$enc,$R1,$I2", []>;
  def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                              AnyReg:$R3, brtarget16:$I2),
                                 ".insn rie,$enc,$R1,$R3,$I2", []>;
  def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                              brtarget32:$I2),
                                 ".insn ril,$enc,$R1,$I2", []>;
  def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                               uimm32:$I2),
                                  ".insn rilu,$enc,$R1,$I2", []>;
  def InsnRIS : DirectiveInsnRIS<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      imm32sx8:$I2, imm32zx4:$M3,
                                      bdaddr12only:$BD4),
                                 ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>;
  def InsnRR : DirectiveInsnRR<(outs),
                               (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2),
                               ".insn rr,$enc,$R1,$R2", []>;
  def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc,
                                              AnyReg:$R1, AnyReg:$R2),
                                 ".insn rre,$enc,$R1,$R2", []>;
  def InsnRRF : DirectiveInsnRRF<(outs),
                                 (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2,
                                      AnyReg:$R3, imm32zx4:$M4),
                                 ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>;
  def InsnRRS : DirectiveInsnRRS<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R2, imm32zx4:$M3,
                                      bdaddr12only:$BD4),
                                 ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>;
  def InsnRS  : DirectiveInsnRS<(outs),
                                (ins imm64zx32:$enc, AnyReg:$R1,
                                     AnyReg:$R3, bdaddr12only:$BD2),
                                ".insn rs,$enc,$R1,$R3,$BD2", []>;
  def InsnRSE : DirectiveInsnRSE<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R3, bdaddr12only:$BD2),
                                 ".insn rse,$enc,$R1,$R3,$BD2", []>;
  def InsnRSI : DirectiveInsnRSI<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R3, brtarget16:$RI2),
                                 ".insn rsi,$enc,$R1,$R3,$RI2", []>;
  def InsnRSY : DirectiveInsnRSY<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R3, bdaddr20only:$BD2),
                                 ".insn rsy,$enc,$R1,$R3,$BD2", []>;
  def InsnRX  : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
                                             bdxaddr12only:$XBD2),
                                ".insn rx,$enc,$R1,$XBD2", []>;
  def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                              bdxaddr12only:$XBD2),
                                 ".insn rxe,$enc,$R1,$XBD2", []>;
  def InsnRXF : DirectiveInsnRXF<(outs),
                                 (ins imm64zx48:$enc, AnyReg:$R1,
                                      AnyReg:$R3, bdxaddr12only:$XBD2),
                                 ".insn rxf,$enc,$R1,$R3,$XBD2", []>;
  def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
                                              bdxaddr20only:$XBD2),
                                 ".insn rxy,$enc,$R1,$XBD2", []>;
  def InsnS : DirectiveInsnS<(outs),
                             (ins imm64zx32:$enc, bdaddr12only:$BD2),
                             ".insn s,$enc,$BD2", []>;
  def InsnSI : DirectiveInsnSI<(outs),
                               (ins imm64zx32:$enc, bdaddr12only:$BD1,
                                    imm32sx8:$I2),
                               ".insn si,$enc,$BD1,$I2", []>;
  def InsnSIY : DirectiveInsnSIY<(outs),
                                 (ins imm64zx48:$enc,
                                      bdaddr20only:$BD1, imm32zx8:$I2),
                                 ".insn siy,$enc,$BD1,$I2", []>;
  def InsnSIL : DirectiveInsnSIL<(outs),
                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
                                      imm32zx16:$I2),
                                 ".insn sil,$enc,$BD1,$I2", []>;
  def InsnSS : DirectiveInsnSS<(outs),
                               (ins imm64zx48:$enc, bdraddr12only:$RBD1,
                                    bdaddr12only:$BD2, AnyReg:$R3),
                               ".insn ss,$enc,$RBD1,$BD2,$R3", []>;
  def InsnSSE : DirectiveInsnSSE<(outs),
                                 (ins imm64zx48:$enc,
                                      bdaddr12only:$BD1,bdaddr12only:$BD2),
                                 ".insn sse,$enc,$BD1,$BD2", []>;
  def InsnSSF : DirectiveInsnSSF<(outs),
                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
                                      bdaddr12only:$BD2, AnyReg:$R3),
                                 ".insn ssf,$enc,$BD1,$BD2,$R3", []>;
}

//===----------------------------------------------------------------------===//
// Peepholes.
//===----------------------------------------------------------------------===//

// Avoid generating 2 XOR instructions. (xor (and x, y), y) is
// equivalent to (and (xor x, -1), y)
def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
                          (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;

// Shift/rotate instructions only use the last 6 bits of the second operand
// register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
// last 16 bits.
// Complexity is added so that we match this before we match NILF on the AND
// operation alone.
let AddedComplexity = 4 in {
  def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;

  def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
            (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
}

// Substitute (x*64-s) with (-s), since shift/rotate instructions only
// use the last 6 bits of the second operand register (making it modulo 64).
let AddedComplexity = 4 in {
  def : Pat<(shl GR64:$val, (sub imm32mod64,  GR32:$shift)),
            (SLLG GR64:$val, (LCR GR32:$shift), 0)>;

  def : Pat<(sra GR64:$val, (sub imm32mod64,  GR32:$shift)),
            (SRAG GR64:$val, (LCR GR32:$shift), 0)>;

  def : Pat<(srl GR64:$val, (sub imm32mod64,  GR32:$shift)),
            (SRLG GR64:$val, (LCR GR32:$shift), 0)>;

  def : Pat<(rotl GR64:$val, (sub imm32mod64,  GR32:$shift)),
            (RLLG GR64:$val, (LCR GR32:$shift), 0)>;
}

// Peepholes for turning scalar operations into block operations.
defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 1>;
defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 2>;
defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 4>;
defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
                      OCSequence, XCSequence, 1>;
defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 2>;
defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 4>;
defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
                      XCSequence, 8>;