NarrowingConversionsCheck.cpp 18 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
//===--- NarrowingConversionsCheck.cpp - clang-tidy------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "NarrowingConversionsCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Type.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"

#include <cstdint>

using namespace clang::ast_matchers;

namespace clang {
namespace tidy {
namespace cppcoreguidelines {

NarrowingConversionsCheck::NarrowingConversionsCheck(StringRef Name,
                                                     ClangTidyContext *Context)
    : ClangTidyCheck(Name, Context),
      WarnOnFloatingPointNarrowingConversion(
          Options.get("WarnOnFloatingPointNarrowingConversion", 1)),
      PedanticMode(Options.get("PedanticMode", 0)) {}

void NarrowingConversionsCheck::registerMatchers(MatchFinder *Finder) {
  // ceil() and floor() are guaranteed to return integers, even though the type
  // is not integral.
  const auto IsCeilFloorCallExpr = expr(callExpr(callee(functionDecl(
      hasAnyName("::ceil", "::std::ceil", "::floor", "::std::floor")))));

  // Casts:
  //   i = 0.5;
  //   void f(int); f(0.5);
  Finder->addMatcher(
      implicitCastExpr(hasImplicitDestinationType(builtinType()),
                       hasSourceExpression(hasType(builtinType())),
                       unless(hasSourceExpression(IsCeilFloorCallExpr)),
                       unless(hasParent(castExpr())),
                       unless(isInTemplateInstantiation()))
          .bind("cast"),
      this);

  // Binary operators:
  //   i += 0.5;
  Finder->addMatcher(binaryOperator(isAssignmentOperator(),
                                    hasLHS(expr(hasType(builtinType()))),
                                    hasRHS(expr(hasType(builtinType()))),
                                    unless(hasRHS(IsCeilFloorCallExpr)),
                                    unless(isInTemplateInstantiation()),
                                    // The `=` case generates an implicit cast
                                    // which is covered by the previous matcher.
                                    unless(hasOperatorName("=")))
                         .bind("binary_op"),
                     this);
}

static const BuiltinType *getBuiltinType(const Expr &E) {
  return E.getType().getCanonicalType().getTypePtr()->getAs<BuiltinType>();
}

static QualType getUnqualifiedType(const Expr &E) {
  return E.getType().getUnqualifiedType();
}

static APValue getConstantExprValue(const ASTContext &Ctx, const Expr &E) {
  llvm::APSInt IntegerConstant;
  if (E.isIntegerConstantExpr(IntegerConstant, Ctx))
    return APValue(IntegerConstant);
  APValue Constant;
  if (Ctx.getLangOpts().CPlusPlus && E.isCXX11ConstantExpr(Ctx, &Constant))
    return Constant;
  return {};
}

static bool getIntegerConstantExprValue(const ASTContext &Context,
                                        const Expr &E, llvm::APSInt &Value) {
  APValue Constant = getConstantExprValue(Context, E);
  if (!Constant.isInt())
    return false;
  Value = Constant.getInt();
  return true;
}

static bool getFloatingConstantExprValue(const ASTContext &Context,
                                         const Expr &E, llvm::APFloat &Value) {
  APValue Constant = getConstantExprValue(Context, E);
  if (!Constant.isFloat())
    return false;
  Value = Constant.getFloat();
  return true;
}

namespace {

struct IntegerRange {
  bool Contains(const IntegerRange &From) const {
    return llvm::APSInt::compareValues(Lower, From.Lower) <= 0 &&
           llvm::APSInt::compareValues(Upper, From.Upper) >= 0;
  }

  bool Contains(const llvm::APSInt &Value) const {
    return llvm::APSInt::compareValues(Lower, Value) <= 0 &&
           llvm::APSInt::compareValues(Upper, Value) >= 0;
  }

  llvm::APSInt Lower;
  llvm::APSInt Upper;
};

} // namespace

static IntegerRange createFromType(const ASTContext &Context,
                                   const BuiltinType &T) {
  if (T.isFloatingPoint()) {
    unsigned PrecisionBits = llvm::APFloatBase::semanticsPrecision(
        Context.getFloatTypeSemantics(T.desugar()));
    // Contrary to two's complement integer, floating point values are
    // symmetric and have the same number of positive and negative values.
    // The range of valid integers for a floating point value is:
    // [-2^PrecisionBits, 2^PrecisionBits]

    // Values are created with PrecisionBits plus two bits:
    // - One to express the missing negative value of 2's complement
    //   representation.
    // - One for the sign.
    llvm::APSInt UpperValue(PrecisionBits + 2, /*isUnsigned*/ false);
    UpperValue.setBit(PrecisionBits);
    llvm::APSInt LowerValue(PrecisionBits + 2, /*isUnsigned*/ false);
    LowerValue.setBit(PrecisionBits);
    LowerValue.setSignBit();
    return {LowerValue, UpperValue};
  }
  assert(T.isInteger() && "Unexpected builtin type");
  uint64_t TypeSize = Context.getTypeSize(&T);
  bool IsUnsignedInteger = T.isUnsignedInteger();
  return {llvm::APSInt::getMinValue(TypeSize, IsUnsignedInteger),
          llvm::APSInt::getMaxValue(TypeSize, IsUnsignedInteger)};
}

static bool isWideEnoughToHold(const ASTContext &Context,
                               const BuiltinType &FromType,
                               const BuiltinType &ToType) {
  IntegerRange FromIntegerRange = createFromType(Context, FromType);
  IntegerRange ToIntegerRange = createFromType(Context, ToType);
  return ToIntegerRange.Contains(FromIntegerRange);
}

static bool isWideEnoughToHold(const ASTContext &Context,
                               const llvm::APSInt &IntegerConstant,
                               const BuiltinType &ToType) {
  IntegerRange ToIntegerRange = createFromType(Context, ToType);
  return ToIntegerRange.Contains(IntegerConstant);
}

static llvm::SmallString<64> getValueAsString(const llvm::APSInt &Value,
                                              uint64_t HexBits) {
  llvm::SmallString<64> Str;
  Value.toString(Str, 10);
  if (HexBits > 0) {
    Str.append(" (0x");
    llvm::SmallString<32> HexValue;
    Value.toStringUnsigned(HexValue, 16);
    for (size_t I = HexValue.size(); I < (HexBits / 4); ++I)
      Str.append("0");
    Str.append(HexValue);
    Str.append(")");
  }
  return Str;
}

void NarrowingConversionsCheck::diagNarrowType(SourceLocation SourceLoc,
                                               const Expr &Lhs,
                                               const Expr &Rhs) {
  diag(SourceLoc, "narrowing conversion from %0 to %1")
      << getUnqualifiedType(Rhs) << getUnqualifiedType(Lhs);
}

void NarrowingConversionsCheck::diagNarrowTypeToSignedInt(
    SourceLocation SourceLoc, const Expr &Lhs, const Expr &Rhs) {
  diag(SourceLoc, "narrowing conversion from %0 to signed type %1 is "
                  "implementation-defined")
      << getUnqualifiedType(Rhs) << getUnqualifiedType(Lhs);
}

void NarrowingConversionsCheck::diagNarrowIntegerConstant(
    SourceLocation SourceLoc, const Expr &Lhs, const Expr &Rhs,
    const llvm::APSInt &Value) {
  diag(SourceLoc,
       "narrowing conversion from constant value %0 of type %1 to %2")
      << getValueAsString(Value, /*NoHex*/ 0) << getUnqualifiedType(Rhs)
      << getUnqualifiedType(Lhs);
}

void NarrowingConversionsCheck::diagNarrowIntegerConstantToSignedInt(
    SourceLocation SourceLoc, const Expr &Lhs, const Expr &Rhs,
    const llvm::APSInt &Value, const uint64_t HexBits) {
  diag(SourceLoc, "narrowing conversion from constant value %0 of type %1 "
                  "to signed type %2 is implementation-defined")
      << getValueAsString(Value, HexBits) << getUnqualifiedType(Rhs)
      << getUnqualifiedType(Lhs);
}

void NarrowingConversionsCheck::diagNarrowConstant(SourceLocation SourceLoc,
                                                   const Expr &Lhs,
                                                   const Expr &Rhs) {
  diag(SourceLoc, "narrowing conversion from constant %0 to %1")
      << getUnqualifiedType(Rhs) << getUnqualifiedType(Lhs);
}

void NarrowingConversionsCheck::diagConstantCast(SourceLocation SourceLoc,
                                                 const Expr &Lhs,
                                                 const Expr &Rhs) {
  diag(SourceLoc, "constant value should be of type of type %0 instead of %1")
      << getUnqualifiedType(Lhs) << getUnqualifiedType(Rhs);
}

void NarrowingConversionsCheck::diagNarrowTypeOrConstant(
    const ASTContext &Context, SourceLocation SourceLoc, const Expr &Lhs,
    const Expr &Rhs) {
  APValue Constant = getConstantExprValue(Context, Rhs);
  if (Constant.isInt())
    return diagNarrowIntegerConstant(SourceLoc, Lhs, Rhs, Constant.getInt());
  if (Constant.isFloat())
    return diagNarrowConstant(SourceLoc, Lhs, Rhs);
  return diagNarrowType(SourceLoc, Lhs, Rhs);
}

void NarrowingConversionsCheck::handleIntegralCast(const ASTContext &Context,
                                                   SourceLocation SourceLoc,
                                                   const Expr &Lhs,
                                                   const Expr &Rhs) {
  const BuiltinType *ToType = getBuiltinType(Lhs);
  // From [conv.integral]p7.3.8:
  // Conversions to unsigned integer is well defined so no warning is issued.
  // "The resulting value is the smallest unsigned value equal to the source
  // value modulo 2^n where n is the number of bits used to represent the
  // destination type."
  if (ToType->isUnsignedInteger())
    return;
  const BuiltinType *FromType = getBuiltinType(Rhs);
  llvm::APSInt IntegerConstant;
  if (getIntegerConstantExprValue(Context, Rhs, IntegerConstant)) {
    if (!isWideEnoughToHold(Context, IntegerConstant, *ToType))
      diagNarrowIntegerConstantToSignedInt(SourceLoc, Lhs, Rhs, IntegerConstant,
                                           Context.getTypeSize(FromType));
    return;
  }
  if (!isWideEnoughToHold(Context, *FromType, *ToType))
    diagNarrowTypeToSignedInt(SourceLoc, Lhs, Rhs);
}

void NarrowingConversionsCheck::handleIntegralToBoolean(
    const ASTContext &Context, SourceLocation SourceLoc, const Expr &Lhs,
    const Expr &Rhs) {
  // Conversion from Integral to Bool value is well defined.

  // We keep this function (even if it is empty) to make sure that
  // handleImplicitCast and handleBinaryOperator are symmetric in their behavior
  // and handle the same cases.
}

void NarrowingConversionsCheck::handleIntegralToFloating(
    const ASTContext &Context, SourceLocation SourceLoc, const Expr &Lhs,
    const Expr &Rhs) {
  const BuiltinType *ToType = getBuiltinType(Lhs);
  llvm::APSInt IntegerConstant;
  if (getIntegerConstantExprValue(Context, Rhs, IntegerConstant)) {
    if (!isWideEnoughToHold(Context, IntegerConstant, *ToType))
      diagNarrowIntegerConstant(SourceLoc, Lhs, Rhs, IntegerConstant);
    return;
  }
  const BuiltinType *FromType = getBuiltinType(Rhs);
  if (!isWideEnoughToHold(Context, *FromType, *ToType))
    diagNarrowType(SourceLoc, Lhs, Rhs);
}

void NarrowingConversionsCheck::handleFloatingToIntegral(
    const ASTContext &Context, SourceLocation SourceLoc, const Expr &Lhs,
    const Expr &Rhs) {
  llvm::APFloat FloatConstant(0.0);

  // We always warn when Rhs is non-constexpr.
  if (!getFloatingConstantExprValue(Context, Rhs, FloatConstant))
    return diagNarrowType(SourceLoc, Lhs, Rhs);

  QualType DestType = Lhs.getType();
  unsigned DestWidth = Context.getIntWidth(DestType);
  bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
  llvm::APSInt Result = llvm::APSInt(DestWidth, !DestSigned);
  bool IsExact = false;
  bool Overflows = FloatConstant.convertToInteger(
                       Result, llvm::APFloat::rmTowardZero, &IsExact) &
                   llvm::APFloat::opInvalidOp;
  // We warn iff the constant floating point value is not exactly representable.
  if (Overflows || !IsExact)
    return diagNarrowConstant(SourceLoc, Lhs, Rhs);

  if (PedanticMode)
    return diagConstantCast(SourceLoc, Lhs, Rhs);
}

void NarrowingConversionsCheck::handleFloatingToBoolean(
    const ASTContext &Context, SourceLocation SourceLoc, const Expr &Lhs,
    const Expr &Rhs) {
  return diagNarrowTypeOrConstant(Context, SourceLoc, Lhs, Rhs);
}

void NarrowingConversionsCheck::handleBooleanToSignedIntegral(
    const ASTContext &Context, SourceLocation SourceLoc, const Expr &Lhs,
    const Expr &Rhs) {
  // Conversion from Bool to SignedIntegral value is well defined.

  // We keep this function (even if it is empty) to make sure that
  // handleImplicitCast and handleBinaryOperator are symmetric in their behavior
  // and handle the same cases.
}

void NarrowingConversionsCheck::handleFloatingCast(const ASTContext &Context,
                                                   SourceLocation SourceLoc,
                                                   const Expr &Lhs,
                                                   const Expr &Rhs) {
  if (WarnOnFloatingPointNarrowingConversion) {
    const BuiltinType *ToType = getBuiltinType(Lhs);
    APValue Constant = getConstantExprValue(Context, Rhs);
    if (Constant.isFloat()) {
      // From [dcl.init.list]p7.2:
      // Floating point constant narrowing only takes place when the value is
      // not within destination range. We convert the value to the destination
      // type and check if the resulting value is infinity.
      llvm::APFloat Tmp = Constant.getFloat();
      bool UnusedLosesInfo;
      Tmp.convert(Context.getFloatTypeSemantics(ToType->desugar()),
                  llvm::APFloatBase::rmNearestTiesToEven, &UnusedLosesInfo);
      if (Tmp.isInfinity())
        diagNarrowConstant(SourceLoc, Lhs, Rhs);
      return;
    }
    const BuiltinType *FromType = getBuiltinType(Rhs);
    if (ToType->getKind() < FromType->getKind())
      diagNarrowType(SourceLoc, Lhs, Rhs);
  }
}

void NarrowingConversionsCheck::handleBinaryOperator(const ASTContext &Context,
                                                     SourceLocation SourceLoc,
                                                     const Expr &Lhs,
                                                     const Expr &Rhs) {
  assert(!Lhs.isInstantiationDependent() && !Rhs.isInstantiationDependent() &&
         "Dependent types must be check before calling this function");
  const BuiltinType *LhsType = getBuiltinType(Lhs);
  const BuiltinType *RhsType = getBuiltinType(Rhs);
  if (RhsType == nullptr || LhsType == nullptr)
    return;
  if (RhsType->getKind() == BuiltinType::Bool && LhsType->isSignedInteger())
    return handleBooleanToSignedIntegral(Context, SourceLoc, Lhs, Rhs);
  if (RhsType->isInteger() && LhsType->getKind() == BuiltinType::Bool)
    return handleIntegralToBoolean(Context, SourceLoc, Lhs, Rhs);
  if (RhsType->isInteger() && LhsType->isFloatingPoint())
    return handleIntegralToFloating(Context, SourceLoc, Lhs, Rhs);
  if (RhsType->isInteger() && LhsType->isInteger())
    return handleIntegralCast(Context, SourceLoc, Lhs, Rhs);
  if (RhsType->isFloatingPoint() && LhsType->getKind() == BuiltinType::Bool)
    return handleFloatingToBoolean(Context, SourceLoc, Lhs, Rhs);
  if (RhsType->isFloatingPoint() && LhsType->isInteger())
    return handleFloatingToIntegral(Context, SourceLoc, Lhs, Rhs);
  if (RhsType->isFloatingPoint() && LhsType->isFloatingPoint())
    return handleFloatingCast(Context, SourceLoc, Lhs, Rhs);
}

bool NarrowingConversionsCheck::handleConditionalOperator(
    const ASTContext &Context, const Expr &Lhs, const Expr &Rhs) {
  if (const auto *CO = llvm::dyn_cast<ConditionalOperator>(&Rhs)) {
    // We have an expression like so: `output = cond ? lhs : rhs`
    // From the point of view of narrowing conversion we treat it as two
    // expressions `output = lhs` and `output = rhs`.
    handleBinaryOperator(Context, CO->getLHS()->getExprLoc(), Lhs,
                         *CO->getLHS());
    handleBinaryOperator(Context, CO->getRHS()->getExprLoc(), Lhs,
                         *CO->getRHS());
    return true;
  }
  return false;
}

void NarrowingConversionsCheck::handleImplicitCast(
    const ASTContext &Context, const ImplicitCastExpr &Cast) {
  if (Cast.getExprLoc().isMacroID())
    return;
  const Expr &Lhs = Cast;
  const Expr &Rhs = *Cast.getSubExpr();
  if (Lhs.isInstantiationDependent() || Rhs.isInstantiationDependent())
    return;
  if (handleConditionalOperator(Context, Lhs, Rhs))
    return;
  SourceLocation SourceLoc = Lhs.getExprLoc();
  switch (Cast.getCastKind()) {
  case CK_BooleanToSignedIntegral:
    return handleBooleanToSignedIntegral(Context, SourceLoc, Lhs, Rhs);
  case CK_IntegralToBoolean:
    return handleIntegralToBoolean(Context, SourceLoc, Lhs, Rhs);
  case CK_IntegralToFloating:
    return handleIntegralToFloating(Context, SourceLoc, Lhs, Rhs);
  case CK_IntegralCast:
    return handleIntegralCast(Context, SourceLoc, Lhs, Rhs);
  case CK_FloatingToBoolean:
    return handleFloatingToBoolean(Context, SourceLoc, Lhs, Rhs);
  case CK_FloatingToIntegral:
    return handleFloatingToIntegral(Context, SourceLoc, Lhs, Rhs);
  case CK_FloatingCast:
    return handleFloatingCast(Context, SourceLoc, Lhs, Rhs);
  default:
    break;
  }
}

void NarrowingConversionsCheck::handleBinaryOperator(const ASTContext &Context,
                                                     const BinaryOperator &Op) {
  if (Op.getBeginLoc().isMacroID())
    return;
  const Expr &Lhs = *Op.getLHS();
  const Expr &Rhs = *Op.getRHS();
  if (Lhs.isInstantiationDependent() || Rhs.isInstantiationDependent())
    return;
  if (handleConditionalOperator(Context, Lhs, Rhs))
    return;
  handleBinaryOperator(Context, Rhs.getBeginLoc(), Lhs, Rhs);
}

void NarrowingConversionsCheck::check(const MatchFinder::MatchResult &Result) {
  if (const auto *Op = Result.Nodes.getNodeAs<BinaryOperator>("binary_op"))
    return handleBinaryOperator(*Result.Context, *Op);
  if (const auto *Cast = Result.Nodes.getNodeAs<ImplicitCastExpr>("cast"))
    return handleImplicitCast(*Result.Context, *Cast);
  llvm_unreachable("must be binary operator or cast expression");
}

} // namespace cppcoreguidelines
} // namespace tidy
} // namespace clang