NullabilityChecker.cpp 44.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
//===-- NullabilityChecker.cpp - Nullability checker ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker tries to find nullability violations. There are several kinds of
// possible violations:
// * Null pointer is passed to a pointer which has a _Nonnull type.
// * Null pointer is returned from a function which has a _Nonnull return type.
// * Nullable pointer is passed to a pointer which has a _Nonnull type.
// * Nullable pointer is returned from a function which has a _Nonnull return
//   type.
// * Nullable pointer is dereferenced.
//
// This checker propagates the nullability information of the pointers and looks
// for the patterns that are described above. Explicit casts are trusted and are
// considered a way to suppress false positives for this checker. The other way
// to suppress warnings would be to add asserts or guarding if statements to the
// code. In addition to the nullability propagation this checker also uses some
// heuristics to suppress potential false positives.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"

#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"

#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Path.h"

using namespace clang;
using namespace ento;

namespace {

/// Returns the most nullable nullability. This is used for message expressions
/// like [receiver method], where the nullability of this expression is either
/// the nullability of the receiver or the nullability of the return type of the
/// method, depending on which is more nullable. Contradicted is considered to
/// be the most nullable, to avoid false positive results.
Nullability getMostNullable(Nullability Lhs, Nullability Rhs) {
  return static_cast<Nullability>(
      std::min(static_cast<char>(Lhs), static_cast<char>(Rhs)));
}

const char *getNullabilityString(Nullability Nullab) {
  switch (Nullab) {
  case Nullability::Contradicted:
    return "contradicted";
  case Nullability::Nullable:
    return "nullable";
  case Nullability::Unspecified:
    return "unspecified";
  case Nullability::Nonnull:
    return "nonnull";
  }
  llvm_unreachable("Unexpected enumeration.");
  return "";
}

// These enums are used as an index to ErrorMessages array.
enum class ErrorKind : int {
  NilAssignedToNonnull,
  NilPassedToNonnull,
  NilReturnedToNonnull,
  NullableAssignedToNonnull,
  NullableReturnedToNonnull,
  NullableDereferenced,
  NullablePassedToNonnull
};

class NullabilityChecker
    : public Checker<check::Bind, check::PreCall, check::PreStmt<ReturnStmt>,
                     check::PostCall, check::PostStmt<ExplicitCastExpr>,
                     check::PostObjCMessage, check::DeadSymbols,
                     check::Event<ImplicitNullDerefEvent>> {
  mutable std::unique_ptr<BugType> BT;

public:
  // If true, the checker will not diagnose nullabilility issues for calls
  // to system headers. This option is motivated by the observation that large
  // projects may have many nullability warnings. These projects may
  // find warnings about nullability annotations that they have explicitly
  // added themselves higher priority to fix than warnings on calls to system
  // libraries.
  DefaultBool NoDiagnoseCallsToSystemHeaders;

  void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const;
  void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const;
  void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
  void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
  void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
  void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
  void checkEvent(ImplicitNullDerefEvent Event) const;

  void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
                  const char *Sep) const override;

  struct NullabilityChecksFilter {
    DefaultBool CheckNullPassedToNonnull;
    DefaultBool CheckNullReturnedFromNonnull;
    DefaultBool CheckNullableDereferenced;
    DefaultBool CheckNullablePassedToNonnull;
    DefaultBool CheckNullableReturnedFromNonnull;

    CheckerNameRef CheckNameNullPassedToNonnull;
    CheckerNameRef CheckNameNullReturnedFromNonnull;
    CheckerNameRef CheckNameNullableDereferenced;
    CheckerNameRef CheckNameNullablePassedToNonnull;
    CheckerNameRef CheckNameNullableReturnedFromNonnull;
  };

  NullabilityChecksFilter Filter;
  // When set to false no nullability information will be tracked in
  // NullabilityMap. It is possible to catch errors like passing a null pointer
  // to a callee that expects nonnull argument without the information that is
  // stroed in the NullabilityMap. This is an optimization.
  DefaultBool NeedTracking;

private:
  class NullabilityBugVisitor : public BugReporterVisitor {
  public:
    NullabilityBugVisitor(const MemRegion *M) : Region(M) {}

    void Profile(llvm::FoldingSetNodeID &ID) const override {
      static int X = 0;
      ID.AddPointer(&X);
      ID.AddPointer(Region);
    }

    PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
                                     BugReporterContext &BRC,
                                     PathSensitiveBugReport &BR) override;

  private:
    // The tracked region.
    const MemRegion *Region;
  };

  /// When any of the nonnull arguments of the analyzed function is null, do not
  /// report anything and turn off the check.
  ///
  /// When \p SuppressPath is set to true, no more bugs will be reported on this
  /// path by this checker.
  void reportBugIfInvariantHolds(StringRef Msg, ErrorKind Error,
                                 ExplodedNode *N, const MemRegion *Region,
                                 CheckerContext &C,
                                 const Stmt *ValueExpr = nullptr,
                                  bool SuppressPath = false) const;

  void reportBug(StringRef Msg, ErrorKind Error, ExplodedNode *N,
                 const MemRegion *Region, BugReporter &BR,
                 const Stmt *ValueExpr = nullptr) const {
    if (!BT)
      BT.reset(new BugType(this, "Nullability", categories::MemoryError));

    auto R = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
    if (Region) {
      R->markInteresting(Region);
      R->addVisitor(std::make_unique<NullabilityBugVisitor>(Region));
    }
    if (ValueExpr) {
      R->addRange(ValueExpr->getSourceRange());
      if (Error == ErrorKind::NilAssignedToNonnull ||
          Error == ErrorKind::NilPassedToNonnull ||
          Error == ErrorKind::NilReturnedToNonnull)
        if (const auto *Ex = dyn_cast<Expr>(ValueExpr))
          bugreporter::trackExpressionValue(N, Ex, *R);
    }
    BR.emitReport(std::move(R));
  }

  /// If an SVal wraps a region that should be tracked, it will return a pointer
  /// to the wrapped region. Otherwise it will return a nullptr.
  const SymbolicRegion *getTrackRegion(SVal Val,
                                       bool CheckSuperRegion = false) const;

  /// Returns true if the call is diagnosable in the current analyzer
  /// configuration.
  bool isDiagnosableCall(const CallEvent &Call) const {
    if (NoDiagnoseCallsToSystemHeaders && Call.isInSystemHeader())
      return false;

    return true;
  }
};

class NullabilityState {
public:
  NullabilityState(Nullability Nullab, const Stmt *Source = nullptr)
      : Nullab(Nullab), Source(Source) {}

  const Stmt *getNullabilitySource() const { return Source; }

  Nullability getValue() const { return Nullab; }

  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddInteger(static_cast<char>(Nullab));
    ID.AddPointer(Source);
  }

  void print(raw_ostream &Out) const {
    Out << getNullabilityString(Nullab) << "\n";
  }

private:
  Nullability Nullab;
  // Source is the expression which determined the nullability. For example in a
  // message like [nullable nonnull_returning] has nullable nullability, because
  // the receiver is nullable. Here the receiver will be the source of the
  // nullability. This is useful information when the diagnostics are generated.
  const Stmt *Source;
};

bool operator==(NullabilityState Lhs, NullabilityState Rhs) {
  return Lhs.getValue() == Rhs.getValue() &&
         Lhs.getNullabilitySource() == Rhs.getNullabilitySource();
}

} // end anonymous namespace

REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *,
                               NullabilityState)

// We say "the nullability type invariant is violated" when a location with a
// non-null type contains NULL or a function with a non-null return type returns
// NULL. Violations of the nullability type invariant can be detected either
// directly (for example, when NULL is passed as an argument to a nonnull
// parameter) or indirectly (for example, when, inside a function, the
// programmer defensively checks whether a nonnull parameter contains NULL and
// finds that it does).
//
// As a matter of policy, the nullability checker typically warns on direct
// violations of the nullability invariant (although it uses various
// heuristics to suppress warnings in some cases) but will not warn if the
// invariant has already been violated along the path (either directly or
// indirectly). As a practical matter, this prevents the analyzer from
// (1) warning on defensive code paths where a nullability precondition is
// determined to have been violated, (2) warning additional times after an
// initial direct violation has been discovered, and (3) warning after a direct
// violation that has been implicitly or explicitly suppressed (for
// example, with a cast of NULL to _Nonnull). In essence, once an invariant
// violation is detected on a path, this checker will be essentially turned off
// for the rest of the analysis
//
// The analyzer takes this approach (rather than generating a sink node) to
// ensure coverage of defensive paths, which may be important for backwards
// compatibility in codebases that were developed without nullability in mind.
REGISTER_TRAIT_WITH_PROGRAMSTATE(InvariantViolated, bool)

enum class NullConstraint { IsNull, IsNotNull, Unknown };

static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val,
                                        ProgramStateRef State) {
  ConditionTruthVal Nullness = State->isNull(Val);
  if (Nullness.isConstrainedFalse())
    return NullConstraint::IsNotNull;
  if (Nullness.isConstrainedTrue())
    return NullConstraint::IsNull;
  return NullConstraint::Unknown;
}

const SymbolicRegion *
NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const {
  if (!NeedTracking)
    return nullptr;

  auto RegionSVal = Val.getAs<loc::MemRegionVal>();
  if (!RegionSVal)
    return nullptr;

  const MemRegion *Region = RegionSVal->getRegion();

  if (CheckSuperRegion) {
    if (auto FieldReg = Region->getAs<FieldRegion>())
      return dyn_cast<SymbolicRegion>(FieldReg->getSuperRegion());
    if (auto ElementReg = Region->getAs<ElementRegion>())
      return dyn_cast<SymbolicRegion>(ElementReg->getSuperRegion());
  }

  return dyn_cast<SymbolicRegion>(Region);
}

PathDiagnosticPieceRef NullabilityChecker::NullabilityBugVisitor::VisitNode(
    const ExplodedNode *N, BugReporterContext &BRC,
    PathSensitiveBugReport &BR) {
  ProgramStateRef State = N->getState();
  ProgramStateRef StatePrev = N->getFirstPred()->getState();

  const NullabilityState *TrackedNullab = State->get<NullabilityMap>(Region);
  const NullabilityState *TrackedNullabPrev =
      StatePrev->get<NullabilityMap>(Region);
  if (!TrackedNullab)
    return nullptr;

  if (TrackedNullabPrev &&
      TrackedNullabPrev->getValue() == TrackedNullab->getValue())
    return nullptr;

  // Retrieve the associated statement.
  const Stmt *S = TrackedNullab->getNullabilitySource();
  if (!S || S->getBeginLoc().isInvalid()) {
    S = N->getStmtForDiagnostics();
  }

  if (!S)
    return nullptr;

  std::string InfoText =
      (llvm::Twine("Nullability '") +
       getNullabilityString(TrackedNullab->getValue()) + "' is inferred")
          .str();

  // Generate the extra diagnostic.
  PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
                             N->getLocationContext());
  return std::make_shared<PathDiagnosticEventPiece>(Pos, InfoText, true);
}

/// Returns true when the value stored at the given location has been
/// constrained to null after being passed through an object of nonnnull type.
static bool checkValueAtLValForInvariantViolation(ProgramStateRef State,
                                                  SVal LV, QualType T) {
  if (getNullabilityAnnotation(T) != Nullability::Nonnull)
    return false;

  auto RegionVal = LV.getAs<loc::MemRegionVal>();
  if (!RegionVal)
    return false;

  // If the value was constrained to null *after* it was passed through that
  // location, it could not have been a concrete pointer *when* it was passed.
  // In that case we would have handled the situation when the value was
  // bound to that location, by emitting (or not emitting) a report.
  // Therefore we are only interested in symbolic regions that can be either
  // null or non-null depending on the value of their respective symbol.
  auto StoredVal = State->getSVal(*RegionVal).getAs<loc::MemRegionVal>();
  if (!StoredVal || !isa<SymbolicRegion>(StoredVal->getRegion()))
    return false;

  if (getNullConstraint(*StoredVal, State) == NullConstraint::IsNull)
    return true;

  return false;
}

static bool
checkParamsForPreconditionViolation(ArrayRef<ParmVarDecl *> Params,
                                    ProgramStateRef State,
                                    const LocationContext *LocCtxt) {
  for (const auto *ParamDecl : Params) {
    if (ParamDecl->isParameterPack())
      break;

    SVal LV = State->getLValue(ParamDecl, LocCtxt);
    if (checkValueAtLValForInvariantViolation(State, LV,
                                              ParamDecl->getType())) {
      return true;
    }
  }
  return false;
}

static bool
checkSelfIvarsForInvariantViolation(ProgramStateRef State,
                                    const LocationContext *LocCtxt) {
  auto *MD = dyn_cast<ObjCMethodDecl>(LocCtxt->getDecl());
  if (!MD || !MD->isInstanceMethod())
    return false;

  const ImplicitParamDecl *SelfDecl = LocCtxt->getSelfDecl();
  if (!SelfDecl)
    return false;

  SVal SelfVal = State->getSVal(State->getRegion(SelfDecl, LocCtxt));

  const ObjCObjectPointerType *SelfType =
      dyn_cast<ObjCObjectPointerType>(SelfDecl->getType());
  if (!SelfType)
    return false;

  const ObjCInterfaceDecl *ID = SelfType->getInterfaceDecl();
  if (!ID)
    return false;

  for (const auto *IvarDecl : ID->ivars()) {
    SVal LV = State->getLValue(IvarDecl, SelfVal);
    if (checkValueAtLValForInvariantViolation(State, LV, IvarDecl->getType())) {
      return true;
    }
  }
  return false;
}

static bool checkInvariantViolation(ProgramStateRef State, ExplodedNode *N,
                                    CheckerContext &C) {
  if (State->get<InvariantViolated>())
    return true;

  const LocationContext *LocCtxt = C.getLocationContext();
  const Decl *D = LocCtxt->getDecl();
  if (!D)
    return false;

  ArrayRef<ParmVarDecl*> Params;
  if (const auto *BD = dyn_cast<BlockDecl>(D))
    Params = BD->parameters();
  else if (const auto *FD = dyn_cast<FunctionDecl>(D))
    Params = FD->parameters();
  else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
    Params = MD->parameters();
  else
    return false;

  if (checkParamsForPreconditionViolation(Params, State, LocCtxt) ||
      checkSelfIvarsForInvariantViolation(State, LocCtxt)) {
    if (!N->isSink())
      C.addTransition(State->set<InvariantViolated>(true), N);
    return true;
  }
  return false;
}

void NullabilityChecker::reportBugIfInvariantHolds(StringRef Msg,
    ErrorKind Error, ExplodedNode *N, const MemRegion *Region,
    CheckerContext &C, const Stmt *ValueExpr, bool SuppressPath) const {
  ProgramStateRef OriginalState = N->getState();

  if (checkInvariantViolation(OriginalState, N, C))
    return;
  if (SuppressPath) {
    OriginalState = OriginalState->set<InvariantViolated>(true);
    N = C.addTransition(OriginalState, N);
  }

  reportBug(Msg, Error, N, Region, C.getBugReporter(), ValueExpr);
}

/// Cleaning up the program state.
void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR,
                                          CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  NullabilityMapTy Nullabilities = State->get<NullabilityMap>();
  for (NullabilityMapTy::iterator I = Nullabilities.begin(),
                                  E = Nullabilities.end();
       I != E; ++I) {
    const auto *Region = I->first->getAs<SymbolicRegion>();
    assert(Region && "Non-symbolic region is tracked.");
    if (SR.isDead(Region->getSymbol())) {
      State = State->remove<NullabilityMap>(I->first);
    }
  }
  // When one of the nonnull arguments are constrained to be null, nullability
  // preconditions are violated. It is not enough to check this only when we
  // actually report an error, because at that time interesting symbols might be
  // reaped.
  if (checkInvariantViolation(State, C.getPredecessor(), C))
    return;
  C.addTransition(State);
}

/// This callback triggers when a pointer is dereferenced and the analyzer does
/// not know anything about the value of that pointer. When that pointer is
/// nullable, this code emits a warning.
void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const {
  if (Event.SinkNode->getState()->get<InvariantViolated>())
    return;

  const MemRegion *Region =
      getTrackRegion(Event.Location, /*CheckSuperRegion=*/true);
  if (!Region)
    return;

  ProgramStateRef State = Event.SinkNode->getState();
  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(Region);

  if (!TrackedNullability)
    return;

  if (Filter.CheckNullableDereferenced &&
      TrackedNullability->getValue() == Nullability::Nullable) {
    BugReporter &BR = *Event.BR;
    // Do not suppress errors on defensive code paths, because dereferencing
    // a nullable pointer is always an error.
    if (Event.IsDirectDereference)
      reportBug("Nullable pointer is dereferenced",
                ErrorKind::NullableDereferenced, Event.SinkNode, Region, BR);
    else {
      reportBug("Nullable pointer is passed to a callee that requires a "
                "non-null", ErrorKind::NullablePassedToNonnull,
                Event.SinkNode, Region, BR);
    }
  }
}

/// Find the outermost subexpression of E that is not an implicit cast.
/// This looks through the implicit casts to _Nonnull that ARC adds to
/// return expressions of ObjC types when the return type of the function or
/// method is non-null but the express is not.
static const Expr *lookThroughImplicitCasts(const Expr *E) {
  assert(E);

  while (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
    E = ICE->getSubExpr();
  }

  return E;
}

/// This method check when nullable pointer or null value is returned from a
/// function that has nonnull return type.
void NullabilityChecker::checkPreStmt(const ReturnStmt *S,
                                      CheckerContext &C) const {
  auto RetExpr = S->getRetValue();
  if (!RetExpr)
    return;

  if (!RetExpr->getType()->isAnyPointerType())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  auto RetSVal = C.getSVal(S).getAs<DefinedOrUnknownSVal>();
  if (!RetSVal)
    return;

  bool InSuppressedMethodFamily = false;

  QualType RequiredRetType;
  AnalysisDeclContext *DeclCtxt =
      C.getLocationContext()->getAnalysisDeclContext();
  const Decl *D = DeclCtxt->getDecl();
  if (auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
    // HACK: This is a big hammer to avoid warning when there are defensive
    // nil checks in -init and -copy methods. We should add more sophisticated
    // logic here to suppress on common defensive idioms but still
    // warn when there is a likely problem.
    ObjCMethodFamily Family = MD->getMethodFamily();
    if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family)
      InSuppressedMethodFamily = true;

    RequiredRetType = MD->getReturnType();
  } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
    RequiredRetType = FD->getReturnType();
  } else {
    return;
  }

  NullConstraint Nullness = getNullConstraint(*RetSVal, State);

  Nullability RequiredNullability = getNullabilityAnnotation(RequiredRetType);

  // If the returned value is null but the type of the expression
  // generating it is nonnull then we will suppress the diagnostic.
  // This enables explicit suppression when returning a nil literal in a
  // function with a _Nonnull return type:
  //    return (NSString * _Nonnull)0;
  Nullability RetExprTypeLevelNullability =
        getNullabilityAnnotation(lookThroughImplicitCasts(RetExpr)->getType());

  bool NullReturnedFromNonNull = (RequiredNullability == Nullability::Nonnull &&
                                  Nullness == NullConstraint::IsNull);
  if (Filter.CheckNullReturnedFromNonnull &&
      NullReturnedFromNonNull &&
      RetExprTypeLevelNullability != Nullability::Nonnull &&
      !InSuppressedMethodFamily &&
      C.getLocationContext()->inTopFrame()) {
    static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull");
    ExplodedNode *N = C.generateErrorNode(State, &Tag);
    if (!N)
      return;

    SmallString<256> SBuf;
    llvm::raw_svector_ostream OS(SBuf);
    OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null");
    OS << " returned from a " << C.getDeclDescription(D) <<
          " that is expected to return a non-null value";
    reportBugIfInvariantHolds(OS.str(),
                              ErrorKind::NilReturnedToNonnull, N, nullptr, C,
                              RetExpr);
    return;
  }

  // If null was returned from a non-null function, mark the nullability
  // invariant as violated even if the diagnostic was suppressed.
  if (NullReturnedFromNonNull) {
    State = State->set<InvariantViolated>(true);
    C.addTransition(State);
    return;
  }

  const MemRegion *Region = getTrackRegion(*RetSVal);
  if (!Region)
    return;

  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(Region);
  if (TrackedNullability) {
    Nullability TrackedNullabValue = TrackedNullability->getValue();
    if (Filter.CheckNullableReturnedFromNonnull &&
        Nullness != NullConstraint::IsNotNull &&
        TrackedNullabValue == Nullability::Nullable &&
        RequiredNullability == Nullability::Nonnull) {
      static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull");
      ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);

      SmallString<256> SBuf;
      llvm::raw_svector_ostream OS(SBuf);
      OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) <<
            " that is expected to return a non-null value";

      reportBugIfInvariantHolds(OS.str(),
                                ErrorKind::NullableReturnedToNonnull, N,
                                Region, C);
    }
    return;
  }
  if (RequiredNullability == Nullability::Nullable) {
    State = State->set<NullabilityMap>(Region,
                                       NullabilityState(RequiredNullability,
                                                        S));
    C.addTransition(State);
  }
}

/// This callback warns when a nullable pointer or a null value is passed to a
/// function that expects its argument to be nonnull.
void NullabilityChecker::checkPreCall(const CallEvent &Call,
                                      CheckerContext &C) const {
  if (!Call.getDecl())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  ProgramStateRef OrigState = State;

  unsigned Idx = 0;
  for (const ParmVarDecl *Param : Call.parameters()) {
    if (Param->isParameterPack())
      break;

    if (Idx >= Call.getNumArgs())
      break;

    const Expr *ArgExpr = Call.getArgExpr(Idx);
    auto ArgSVal = Call.getArgSVal(Idx++).getAs<DefinedOrUnknownSVal>();
    if (!ArgSVal)
      continue;

    if (!Param->getType()->isAnyPointerType() &&
        !Param->getType()->isReferenceType())
      continue;

    NullConstraint Nullness = getNullConstraint(*ArgSVal, State);

    Nullability RequiredNullability =
        getNullabilityAnnotation(Param->getType());
    Nullability ArgExprTypeLevelNullability =
        getNullabilityAnnotation(ArgExpr->getType());

    unsigned ParamIdx = Param->getFunctionScopeIndex() + 1;

    if (Filter.CheckNullPassedToNonnull && Nullness == NullConstraint::IsNull &&
        ArgExprTypeLevelNullability != Nullability::Nonnull &&
        RequiredNullability == Nullability::Nonnull &&
        isDiagnosableCall(Call)) {
      ExplodedNode *N = C.generateErrorNode(State);
      if (!N)
        return;

      SmallString<256> SBuf;
      llvm::raw_svector_ostream OS(SBuf);
      OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null");
      OS << " passed to a callee that requires a non-null " << ParamIdx
         << llvm::getOrdinalSuffix(ParamIdx) << " parameter";
      reportBugIfInvariantHolds(OS.str(), ErrorKind::NilPassedToNonnull, N,
                                nullptr, C,
                                ArgExpr, /*SuppressPath=*/false);
      return;
    }

    const MemRegion *Region = getTrackRegion(*ArgSVal);
    if (!Region)
      continue;

    const NullabilityState *TrackedNullability =
        State->get<NullabilityMap>(Region);

    if (TrackedNullability) {
      if (Nullness == NullConstraint::IsNotNull ||
          TrackedNullability->getValue() != Nullability::Nullable)
        continue;

      if (Filter.CheckNullablePassedToNonnull &&
          RequiredNullability == Nullability::Nonnull &&
          isDiagnosableCall(Call)) {
        ExplodedNode *N = C.addTransition(State);
        SmallString<256> SBuf;
        llvm::raw_svector_ostream OS(SBuf);
        OS << "Nullable pointer is passed to a callee that requires a non-null "
           << ParamIdx << llvm::getOrdinalSuffix(ParamIdx) << " parameter";
        reportBugIfInvariantHolds(OS.str(),
                                  ErrorKind::NullablePassedToNonnull, N,
                                  Region, C, ArgExpr, /*SuppressPath=*/true);
        return;
      }
      if (Filter.CheckNullableDereferenced &&
          Param->getType()->isReferenceType()) {
        ExplodedNode *N = C.addTransition(State);
        reportBugIfInvariantHolds("Nullable pointer is dereferenced",
                                  ErrorKind::NullableDereferenced, N, Region,
                                  C, ArgExpr, /*SuppressPath=*/true);
        return;
      }
      continue;
    }
  }
  if (State != OrigState)
    C.addTransition(State);
}

/// Suppress the nullability warnings for some functions.
void NullabilityChecker::checkPostCall(const CallEvent &Call,
                                       CheckerContext &C) const {
  auto Decl = Call.getDecl();
  if (!Decl)
    return;
  // ObjC Messages handles in a different callback.
  if (Call.getKind() == CE_ObjCMessage)
    return;
  const FunctionType *FuncType = Decl->getFunctionType();
  if (!FuncType)
    return;
  QualType ReturnType = FuncType->getReturnType();
  if (!ReturnType->isAnyPointerType())
    return;
  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  const MemRegion *Region = getTrackRegion(Call.getReturnValue());
  if (!Region)
    return;

  // CG headers are misannotated. Do not warn for symbols that are the results
  // of CG calls.
  const SourceManager &SM = C.getSourceManager();
  StringRef FilePath = SM.getFilename(SM.getSpellingLoc(Decl->getBeginLoc()));
  if (llvm::sys::path::filename(FilePath).startswith("CG")) {
    State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
    C.addTransition(State);
    return;
  }

  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(Region);

  if (!TrackedNullability &&
      getNullabilityAnnotation(ReturnType) == Nullability::Nullable) {
    State = State->set<NullabilityMap>(Region, Nullability::Nullable);
    C.addTransition(State);
  }
}

static Nullability getReceiverNullability(const ObjCMethodCall &M,
                                          ProgramStateRef State) {
  if (M.isReceiverSelfOrSuper()) {
    // For super and super class receivers we assume that the receiver is
    // nonnull.
    return Nullability::Nonnull;
  }
  // Otherwise look up nullability in the state.
  SVal Receiver = M.getReceiverSVal();
  if (auto DefOrUnknown = Receiver.getAs<DefinedOrUnknownSVal>()) {
    // If the receiver is constrained to be nonnull, assume that it is nonnull
    // regardless of its type.
    NullConstraint Nullness = getNullConstraint(*DefOrUnknown, State);
    if (Nullness == NullConstraint::IsNotNull)
      return Nullability::Nonnull;
  }
  auto ValueRegionSVal = Receiver.getAs<loc::MemRegionVal>();
  if (ValueRegionSVal) {
    const MemRegion *SelfRegion = ValueRegionSVal->getRegion();
    assert(SelfRegion);

    const NullabilityState *TrackedSelfNullability =
        State->get<NullabilityMap>(SelfRegion);
    if (TrackedSelfNullability)
      return TrackedSelfNullability->getValue();
  }
  return Nullability::Unspecified;
}

/// Calculate the nullability of the result of a message expr based on the
/// nullability of the receiver, the nullability of the return value, and the
/// constraints.
void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M,
                                              CheckerContext &C) const {
  auto Decl = M.getDecl();
  if (!Decl)
    return;
  QualType RetType = Decl->getReturnType();
  if (!RetType->isAnyPointerType())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  const MemRegion *ReturnRegion = getTrackRegion(M.getReturnValue());
  if (!ReturnRegion)
    return;

  auto Interface = Decl->getClassInterface();
  auto Name = Interface ? Interface->getName() : "";
  // In order to reduce the noise in the diagnostics generated by this checker,
  // some framework and programming style based heuristics are used. These
  // heuristics are for Cocoa APIs which have NS prefix.
  if (Name.startswith("NS")) {
    // Developers rely on dynamic invariants such as an item should be available
    // in a collection, or a collection is not empty often. Those invariants can
    // not be inferred by any static analysis tool. To not to bother the users
    // with too many false positives, every item retrieval function should be
    // ignored for collections. The instance methods of dictionaries in Cocoa
    // are either item retrieval related or not interesting nullability wise.
    // Using this fact, to keep the code easier to read just ignore the return
    // value of every instance method of dictionaries.
    if (M.isInstanceMessage() && Name.contains("Dictionary")) {
      State =
          State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
      C.addTransition(State);
      return;
    }
    // For similar reasons ignore some methods of Cocoa arrays.
    StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(0);
    if (Name.contains("Array") &&
        (FirstSelectorSlot == "firstObject" ||
         FirstSelectorSlot == "lastObject")) {
      State =
          State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
      C.addTransition(State);
      return;
    }

    // Encoding related methods of string should not fail when lossless
    // encodings are used. Using lossless encodings is so frequent that ignoring
    // this class of methods reduced the emitted diagnostics by about 30% on
    // some projects (and all of that was false positives).
    if (Name.contains("String")) {
      for (auto Param : M.parameters()) {
        if (Param->getName() == "encoding") {
          State = State->set<NullabilityMap>(ReturnRegion,
                                             Nullability::Contradicted);
          C.addTransition(State);
          return;
        }
      }
    }
  }

  const ObjCMessageExpr *Message = M.getOriginExpr();
  Nullability SelfNullability = getReceiverNullability(M, State);

  const NullabilityState *NullabilityOfReturn =
      State->get<NullabilityMap>(ReturnRegion);

  if (NullabilityOfReturn) {
    // When we have a nullability tracked for the return value, the nullability
    // of the expression will be the most nullable of the receiver and the
    // return value.
    Nullability RetValTracked = NullabilityOfReturn->getValue();
    Nullability ComputedNullab =
        getMostNullable(RetValTracked, SelfNullability);
    if (ComputedNullab != RetValTracked &&
        ComputedNullab != Nullability::Unspecified) {
      const Stmt *NullabilitySource =
          ComputedNullab == RetValTracked
              ? NullabilityOfReturn->getNullabilitySource()
              : Message->getInstanceReceiver();
      State = State->set<NullabilityMap>(
          ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
      C.addTransition(State);
    }
    return;
  }

  // No tracked information. Use static type information for return value.
  Nullability RetNullability = getNullabilityAnnotation(RetType);

  // Properties might be computed. For this reason the static analyzer creates a
  // new symbol each time an unknown property  is read. To avoid false pozitives
  // do not treat unknown properties as nullable, even when they explicitly
  // marked nullable.
  if (M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined)
    RetNullability = Nullability::Nonnull;

  Nullability ComputedNullab = getMostNullable(RetNullability, SelfNullability);
  if (ComputedNullab == Nullability::Nullable) {
    const Stmt *NullabilitySource = ComputedNullab == RetNullability
                                        ? Message
                                        : Message->getInstanceReceiver();
    State = State->set<NullabilityMap>(
        ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
    C.addTransition(State);
  }
}

/// Explicit casts are trusted. If there is a disagreement in the nullability
/// annotations in the destination and the source or '0' is casted to nonnull
/// track the value as having contraditory nullability. This will allow users to
/// suppress warnings.
void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE,
                                       CheckerContext &C) const {
  QualType OriginType = CE->getSubExpr()->getType();
  QualType DestType = CE->getType();
  if (!OriginType->isAnyPointerType())
    return;
  if (!DestType->isAnyPointerType())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  Nullability DestNullability = getNullabilityAnnotation(DestType);

  // No explicit nullability in the destination type, so this cast does not
  // change the nullability.
  if (DestNullability == Nullability::Unspecified)
    return;

  auto RegionSVal = C.getSVal(CE).getAs<DefinedOrUnknownSVal>();
  const MemRegion *Region = getTrackRegion(*RegionSVal);
  if (!Region)
    return;

  // When 0 is converted to nonnull mark it as contradicted.
  if (DestNullability == Nullability::Nonnull) {
    NullConstraint Nullness = getNullConstraint(*RegionSVal, State);
    if (Nullness == NullConstraint::IsNull) {
      State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
      C.addTransition(State);
      return;
    }
  }

  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(Region);

  if (!TrackedNullability) {
    if (DestNullability != Nullability::Nullable)
      return;
    State = State->set<NullabilityMap>(Region,
                                       NullabilityState(DestNullability, CE));
    C.addTransition(State);
    return;
  }

  if (TrackedNullability->getValue() != DestNullability &&
      TrackedNullability->getValue() != Nullability::Contradicted) {
    State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
    C.addTransition(State);
  }
}

/// For a given statement performing a bind, attempt to syntactically
/// match the expression resulting in the bound value.
static const Expr * matchValueExprForBind(const Stmt *S) {
  // For `x = e` the value expression is the right-hand side.
  if (auto *BinOp = dyn_cast<BinaryOperator>(S)) {
    if (BinOp->getOpcode() == BO_Assign)
      return BinOp->getRHS();
  }

  // For `int x = e` the value expression is the initializer.
  if (auto *DS = dyn_cast<DeclStmt>(S))  {
    if (DS->isSingleDecl()) {
      auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
      if (!VD)
        return nullptr;

      if (const Expr *Init = VD->getInit())
        return Init;
    }
  }

  return nullptr;
}

/// Returns true if \param S is a DeclStmt for a local variable that
/// ObjC automated reference counting initialized with zero.
static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) {
  // We suppress diagnostics for ARC zero-initialized _Nonnull locals. This
  // prevents false positives when a _Nonnull local variable cannot be
  // initialized with an initialization expression:
  //    NSString * _Nonnull s; // no-warning
  //    @autoreleasepool {
  //      s = ...
  //    }
  //
  // FIXME: We should treat implicitly zero-initialized _Nonnull locals as
  // uninitialized in Sema's UninitializedValues analysis to warn when a use of
  // the zero-initialized definition will unexpectedly yield nil.

  // Locals are only zero-initialized when automated reference counting
  // is turned on.
  if (!C.getASTContext().getLangOpts().ObjCAutoRefCount)
    return false;

  auto *DS = dyn_cast<DeclStmt>(S);
  if (!DS || !DS->isSingleDecl())
    return false;

  auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
  if (!VD)
    return false;

  // Sema only zero-initializes locals with ObjCLifetimes.
  if(!VD->getType().getQualifiers().hasObjCLifetime())
    return false;

  const Expr *Init = VD->getInit();
  assert(Init && "ObjC local under ARC without initializer");

  // Return false if the local is explicitly initialized (e.g., with '= nil').
  if (!isa<ImplicitValueInitExpr>(Init))
    return false;

  return true;
}

/// Propagate the nullability information through binds and warn when nullable
/// pointer or null symbol is assigned to a pointer with a nonnull type.
void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S,
                                   CheckerContext &C) const {
  const TypedValueRegion *TVR =
      dyn_cast_or_null<TypedValueRegion>(L.getAsRegion());
  if (!TVR)
    return;

  QualType LocType = TVR->getValueType();
  if (!LocType->isAnyPointerType())
    return;

  ProgramStateRef State = C.getState();
  if (State->get<InvariantViolated>())
    return;

  auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>();
  if (!ValDefOrUnknown)
    return;

  NullConstraint RhsNullness = getNullConstraint(*ValDefOrUnknown, State);

  Nullability ValNullability = Nullability::Unspecified;
  if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol())
    ValNullability = getNullabilityAnnotation(Sym->getType());

  Nullability LocNullability = getNullabilityAnnotation(LocType);

  // If the type of the RHS expression is nonnull, don't warn. This
  // enables explicit suppression with a cast to nonnull.
  Nullability ValueExprTypeLevelNullability = Nullability::Unspecified;
  const Expr *ValueExpr = matchValueExprForBind(S);
  if (ValueExpr) {
    ValueExprTypeLevelNullability =
      getNullabilityAnnotation(lookThroughImplicitCasts(ValueExpr)->getType());
  }

  bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull &&
                                RhsNullness == NullConstraint::IsNull);
  if (Filter.CheckNullPassedToNonnull &&
      NullAssignedToNonNull &&
      ValNullability != Nullability::Nonnull &&
      ValueExprTypeLevelNullability != Nullability::Nonnull &&
      !isARCNilInitializedLocal(C, S)) {
    static CheckerProgramPointTag Tag(this, "NullPassedToNonnull");
    ExplodedNode *N = C.generateErrorNode(State, &Tag);
    if (!N)
      return;


    const Stmt *ValueStmt = S;
    if (ValueExpr)
      ValueStmt = ValueExpr;

    SmallString<256> SBuf;
    llvm::raw_svector_ostream OS(SBuf);
    OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null");
    OS << " assigned to a pointer which is expected to have non-null value";
    reportBugIfInvariantHolds(OS.str(),
                              ErrorKind::NilAssignedToNonnull, N, nullptr, C,
                              ValueStmt);
    return;
  }

  // If null was returned from a non-null function, mark the nullability
  // invariant as violated even if the diagnostic was suppressed.
  if (NullAssignedToNonNull) {
    State = State->set<InvariantViolated>(true);
    C.addTransition(State);
    return;
  }

  // Intentionally missing case: '0' is bound to a reference. It is handled by
  // the DereferenceChecker.

  const MemRegion *ValueRegion = getTrackRegion(*ValDefOrUnknown);
  if (!ValueRegion)
    return;

  const NullabilityState *TrackedNullability =
      State->get<NullabilityMap>(ValueRegion);

  if (TrackedNullability) {
    if (RhsNullness == NullConstraint::IsNotNull ||
        TrackedNullability->getValue() != Nullability::Nullable)
      return;
    if (Filter.CheckNullablePassedToNonnull &&
        LocNullability == Nullability::Nonnull) {
      static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull");
      ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
      reportBugIfInvariantHolds("Nullable pointer is assigned to a pointer "
                                "which is expected to have non-null value",
                                ErrorKind::NullableAssignedToNonnull, N,
                                ValueRegion, C);
    }
    return;
  }

  const auto *BinOp = dyn_cast<BinaryOperator>(S);

  if (ValNullability == Nullability::Nullable) {
    // Trust the static information of the value more than the static
    // information on the location.
    const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S;
    State = State->set<NullabilityMap>(
        ValueRegion, NullabilityState(ValNullability, NullabilitySource));
    C.addTransition(State);
    return;
  }

  if (LocNullability == Nullability::Nullable) {
    const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S;
    State = State->set<NullabilityMap>(
        ValueRegion, NullabilityState(LocNullability, NullabilitySource));
    C.addTransition(State);
  }
}

void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State,
                                    const char *NL, const char *Sep) const {

  NullabilityMapTy B = State->get<NullabilityMap>();

  if (State->get<InvariantViolated>())
    Out << Sep << NL
        << "Nullability invariant was violated, warnings suppressed." << NL;

  if (B.isEmpty())
    return;

  if (!State->get<InvariantViolated>())
    Out << Sep << NL;

  for (NullabilityMapTy::iterator I = B.begin(), E = B.end(); I != E; ++I) {
    Out << I->first << " : ";
    I->second.print(Out);
    Out << NL;
  }
}

void ento::registerNullabilityBase(CheckerManager &mgr) {
  mgr.registerChecker<NullabilityChecker>();
}

bool ento::shouldRegisterNullabilityBase(const LangOptions &LO) {
  return true;
}

#define REGISTER_CHECKER(name, trackingRequired)                               \
  void ento::register##name##Checker(CheckerManager &mgr) {                    \
    NullabilityChecker *checker = mgr.getChecker<NullabilityChecker>();        \
    checker->Filter.Check##name = true;                                        \
    checker->Filter.CheckName##name = mgr.getCurrentCheckerName();             \
    checker->NeedTracking = checker->NeedTracking || trackingRequired;         \
    checker->NoDiagnoseCallsToSystemHeaders =                                  \
        checker->NoDiagnoseCallsToSystemHeaders ||                             \
        mgr.getAnalyzerOptions().getCheckerBooleanOption(                      \
            checker, "NoDiagnoseCallsToSystemHeaders", true);                  \
  }                                                                            \
                                                                               \
  bool ento::shouldRegister##name##Checker(const LangOptions &LO) {            \
    return true;                                                               \
  }

// The checks are likely to be turned on by default and it is possible to do
// them without tracking any nullability related information. As an optimization
// no nullability information will be tracked when only these two checks are
// enables.
REGISTER_CHECKER(NullPassedToNonnull, false)
REGISTER_CHECKER(NullReturnedFromNonnull, false)

REGISTER_CHECKER(NullableDereferenced, true)
REGISTER_CHECKER(NullablePassedToNonnull, true)
REGISTER_CHECKER(NullableReturnedFromNonnull, true)