UninitializedObjectChecker.cpp 20.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
//===----- UninitializedObjectChecker.cpp ------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a checker that reports uninitialized fields in objects
// created after a constructor call.
//
// To read about command line options and how the checker works, refer to the
// top of the file and inline comments in UninitializedObject.h.
//
// Some of the logic is implemented in UninitializedPointee.cpp, to reduce the
// complexity of this file.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "UninitializedObject.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"

using namespace clang;
using namespace clang::ento;
using namespace clang::ast_matchers;

/// We'll mark fields (and pointee of fields) that are confirmed to be
/// uninitialized as already analyzed.
REGISTER_SET_WITH_PROGRAMSTATE(AnalyzedRegions, const MemRegion *)

namespace {

class UninitializedObjectChecker
    : public Checker<check::EndFunction, check::DeadSymbols> {
  std::unique_ptr<BuiltinBug> BT_uninitField;

public:
  // The fields of this struct will be initialized when registering the checker.
  UninitObjCheckerOptions Opts;

  UninitializedObjectChecker()
      : BT_uninitField(new BuiltinBug(this, "Uninitialized fields")) {}

  void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const;
  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
};

/// A basic field type, that is not a pointer or a reference, it's dynamic and
/// static type is the same.
class RegularField final : public FieldNode {
public:
  RegularField(const FieldRegion *FR) : FieldNode(FR) {}

  virtual void printNoteMsg(llvm::raw_ostream &Out) const override {
    Out << "uninitialized field ";
  }

  virtual void printPrefix(llvm::raw_ostream &Out) const override {}

  virtual void printNode(llvm::raw_ostream &Out) const override {
    Out << getVariableName(getDecl());
  }

  virtual void printSeparator(llvm::raw_ostream &Out) const override {
    Out << '.';
  }
};

/// Represents that the FieldNode that comes after this is declared in a base
/// of the previous FieldNode. As such, this descendant doesn't wrap a
/// FieldRegion, and is purely a tool to describe a relation between two other
/// FieldRegion wrapping descendants.
class BaseClass final : public FieldNode {
  const QualType BaseClassT;

public:
  BaseClass(const QualType &T) : FieldNode(nullptr), BaseClassT(T) {
    assert(!T.isNull());
    assert(T->getAsCXXRecordDecl());
  }

  virtual void printNoteMsg(llvm::raw_ostream &Out) const override {
    llvm_unreachable("This node can never be the final node in the "
                     "fieldchain!");
  }

  virtual void printPrefix(llvm::raw_ostream &Out) const override {}

  virtual void printNode(llvm::raw_ostream &Out) const override {
    Out << BaseClassT->getAsCXXRecordDecl()->getName() << "::";
  }

  virtual void printSeparator(llvm::raw_ostream &Out) const override {}

  virtual bool isBase() const override { return true; }
};

} // end of anonymous namespace

// Utility function declarations.

/// Returns the region that was constructed by CtorDecl, or nullptr if that
/// isn't possible.
static const TypedValueRegion *
getConstructedRegion(const CXXConstructorDecl *CtorDecl,
                     CheckerContext &Context);

/// Checks whether the object constructed by \p Ctor will be analyzed later
/// (e.g. if the object is a field of another object, in which case we'd check
/// it multiple times).
static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor,
                                      CheckerContext &Context);

/// Checks whether RD contains a field with a name or type name that matches
/// \p Pattern.
static bool shouldIgnoreRecord(const RecordDecl *RD, StringRef Pattern);

/// Checks _syntactically_ whether it is possible to access FD from the record
/// that contains it without a preceding assert (even if that access happens
/// inside a method). This is mainly used for records that act like unions, like
/// having multiple bit fields, with only a fraction being properly initialized.
/// If these fields are properly guarded with asserts, this method returns
/// false.
///
/// Since this check is done syntactically, this method could be inaccurate.
static bool hasUnguardedAccess(const FieldDecl *FD, ProgramStateRef State);

//===----------------------------------------------------------------------===//
//                  Methods for UninitializedObjectChecker.
//===----------------------------------------------------------------------===//

void UninitializedObjectChecker::checkEndFunction(
    const ReturnStmt *RS, CheckerContext &Context) const {

  const auto *CtorDecl = dyn_cast_or_null<CXXConstructorDecl>(
      Context.getLocationContext()->getDecl());
  if (!CtorDecl)
    return;

  if (!CtorDecl->isUserProvided())
    return;

  if (CtorDecl->getParent()->isUnion())
    return;

  // This avoids essentially the same error being reported multiple times.
  if (willObjectBeAnalyzedLater(CtorDecl, Context))
    return;

  const TypedValueRegion *R = getConstructedRegion(CtorDecl, Context);
  if (!R)
    return;

  FindUninitializedFields F(Context.getState(), R, Opts);

  std::pair<ProgramStateRef, const UninitFieldMap &> UninitInfo =
      F.getResults();

  ProgramStateRef UpdatedState = UninitInfo.first;
  const UninitFieldMap &UninitFields = UninitInfo.second;

  if (UninitFields.empty()) {
    Context.addTransition(UpdatedState);
    return;
  }

  // There are uninitialized fields in the record.

  ExplodedNode *Node = Context.generateNonFatalErrorNode(UpdatedState);
  if (!Node)
    return;

  PathDiagnosticLocation LocUsedForUniqueing;
  const Stmt *CallSite = Context.getStackFrame()->getCallSite();
  if (CallSite)
    LocUsedForUniqueing = PathDiagnosticLocation::createBegin(
        CallSite, Context.getSourceManager(), Node->getLocationContext());

  // For Plist consumers that don't support notes just yet, we'll convert notes
  // to warnings.
  if (Opts.ShouldConvertNotesToWarnings) {
    for (const auto &Pair : UninitFields) {

      auto Report = std::make_unique<PathSensitiveBugReport>(
          *BT_uninitField, Pair.second, Node, LocUsedForUniqueing,
          Node->getLocationContext()->getDecl());
      Context.emitReport(std::move(Report));
    }
    return;
  }

  SmallString<100> WarningBuf;
  llvm::raw_svector_ostream WarningOS(WarningBuf);
  WarningOS << UninitFields.size() << " uninitialized field"
            << (UninitFields.size() == 1 ? "" : "s")
            << " at the end of the constructor call";

  auto Report = std::make_unique<PathSensitiveBugReport>(
      *BT_uninitField, WarningOS.str(), Node, LocUsedForUniqueing,
      Node->getLocationContext()->getDecl());

  for (const auto &Pair : UninitFields) {
    Report->addNote(Pair.second,
                    PathDiagnosticLocation::create(Pair.first->getDecl(),
                                                   Context.getSourceManager()));
  }
  Context.emitReport(std::move(Report));
}

void UninitializedObjectChecker::checkDeadSymbols(SymbolReaper &SR,
                                                  CheckerContext &C) const {
  ProgramStateRef State = C.getState();
  for (const MemRegion *R : State->get<AnalyzedRegions>()) {
    if (!SR.isLiveRegion(R))
      State = State->remove<AnalyzedRegions>(R);
  }
}

//===----------------------------------------------------------------------===//
//                   Methods for FindUninitializedFields.
//===----------------------------------------------------------------------===//

FindUninitializedFields::FindUninitializedFields(
    ProgramStateRef State, const TypedValueRegion *const R,
    const UninitObjCheckerOptions &Opts)
    : State(State), ObjectR(R), Opts(Opts) {

  isNonUnionUninit(ObjectR, FieldChainInfo(ChainFactory));

  // In non-pedantic mode, if ObjectR doesn't contain a single initialized
  // field, we'll assume that Object was intentionally left uninitialized.
  if (!Opts.IsPedantic && !isAnyFieldInitialized())
    UninitFields.clear();
}

bool FindUninitializedFields::addFieldToUninits(FieldChainInfo Chain,
                                                const MemRegion *PointeeR) {
  const FieldRegion *FR = Chain.getUninitRegion();

  assert((PointeeR || !isDereferencableType(FR->getDecl()->getType())) &&
         "One must also pass the pointee region as a parameter for "
         "dereferenceable fields!");

  if (State->getStateManager().getContext().getSourceManager().isInSystemHeader(
          FR->getDecl()->getLocation()))
    return false;

  if (Opts.IgnoreGuardedFields && !hasUnguardedAccess(FR->getDecl(), State))
    return false;

  if (State->contains<AnalyzedRegions>(FR))
    return false;

  if (PointeeR) {
    if (State->contains<AnalyzedRegions>(PointeeR)) {
      return false;
    }
    State = State->add<AnalyzedRegions>(PointeeR);
  }

  State = State->add<AnalyzedRegions>(FR);

  UninitFieldMap::mapped_type NoteMsgBuf;
  llvm::raw_svector_ostream OS(NoteMsgBuf);
  Chain.printNoteMsg(OS);

  return UninitFields.insert({FR, std::move(NoteMsgBuf)}).second;
}

bool FindUninitializedFields::isNonUnionUninit(const TypedValueRegion *R,
                                               FieldChainInfo LocalChain) {
  assert(R->getValueType()->isRecordType() &&
         !R->getValueType()->isUnionType() &&
         "This method only checks non-union record objects!");

  const RecordDecl *RD = R->getValueType()->getAsRecordDecl()->getDefinition();

  if (!RD) {
    IsAnyFieldInitialized = true;
    return true;
  }

  if (!Opts.IgnoredRecordsWithFieldPattern.empty() &&
      shouldIgnoreRecord(RD, Opts.IgnoredRecordsWithFieldPattern)) {
    IsAnyFieldInitialized = true;
    return false;
  }

  bool ContainsUninitField = false;

  // Are all of this non-union's fields initialized?
  for (const FieldDecl *I : RD->fields()) {

    const auto FieldVal =
        State->getLValue(I, loc::MemRegionVal(R)).castAs<loc::MemRegionVal>();
    const auto *FR = FieldVal.getRegionAs<FieldRegion>();
    QualType T = I->getType();

    // If LocalChain already contains FR, then we encountered a cyclic
    // reference. In this case, region FR is already under checking at an
    // earlier node in the directed tree.
    if (LocalChain.contains(FR))
      return false;

    if (T->isStructureOrClassType()) {
      if (isNonUnionUninit(FR, LocalChain.add(RegularField(FR))))
        ContainsUninitField = true;
      continue;
    }

    if (T->isUnionType()) {
      if (isUnionUninit(FR)) {
        if (addFieldToUninits(LocalChain.add(RegularField(FR))))
          ContainsUninitField = true;
      } else
        IsAnyFieldInitialized = true;
      continue;
    }

    if (T->isArrayType()) {
      IsAnyFieldInitialized = true;
      continue;
    }

    SVal V = State->getSVal(FieldVal);

    if (isDereferencableType(T) || V.getAs<nonloc::LocAsInteger>()) {
      if (isDereferencableUninit(FR, LocalChain))
        ContainsUninitField = true;
      continue;
    }

    if (isPrimitiveType(T)) {
      if (isPrimitiveUninit(V)) {
        if (addFieldToUninits(LocalChain.add(RegularField(FR))))
          ContainsUninitField = true;
      }
      continue;
    }

    llvm_unreachable("All cases are handled!");
  }

  // Checking bases. The checker will regard inherited data members as direct
  // fields.
  const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
  if (!CXXRD)
    return ContainsUninitField;

  for (const CXXBaseSpecifier &BaseSpec : CXXRD->bases()) {
    const auto *BaseRegion = State->getLValue(BaseSpec, R)
                                 .castAs<loc::MemRegionVal>()
                                 .getRegionAs<TypedValueRegion>();

    // If the head of the list is also a BaseClass, we'll overwrite it to avoid
    // note messages like 'this->A::B::x'.
    if (!LocalChain.isEmpty() && LocalChain.getHead().isBase()) {
      if (isNonUnionUninit(BaseRegion, LocalChain.replaceHead(
                                           BaseClass(BaseSpec.getType()))))
        ContainsUninitField = true;
    } else {
      if (isNonUnionUninit(BaseRegion,
                           LocalChain.add(BaseClass(BaseSpec.getType()))))
        ContainsUninitField = true;
    }
  }

  return ContainsUninitField;
}

bool FindUninitializedFields::isUnionUninit(const TypedValueRegion *R) {
  assert(R->getValueType()->isUnionType() &&
         "This method only checks union objects!");
  // TODO: Implement support for union fields.
  return false;
}

bool FindUninitializedFields::isPrimitiveUninit(const SVal &V) {
  if (V.isUndef())
    return true;

  IsAnyFieldInitialized = true;
  return false;
}

//===----------------------------------------------------------------------===//
//                       Methods for FieldChainInfo.
//===----------------------------------------------------------------------===//

bool FieldChainInfo::contains(const FieldRegion *FR) const {
  for (const FieldNode &Node : Chain) {
    if (Node.isSameRegion(FR))
      return true;
  }
  return false;
}

/// Prints every element except the last to `Out`. Since ImmutableLists store
/// elements in reverse order, and have no reverse iterators, we use a
/// recursive function to print the fieldchain correctly. The last element in
/// the chain is to be printed by `FieldChainInfo::print`.
static void printTail(llvm::raw_ostream &Out,
                      const FieldChainInfo::FieldChain L);

// FIXME: This function constructs an incorrect string in the following case:
//
//   struct Base { int x; };
//   struct D1 : Base {}; struct D2 : Base {};
//
//   struct MostDerived : D1, D2 {
//     MostDerived() {}
//   }
//
// A call to MostDerived::MostDerived() will cause two notes that say
// "uninitialized field 'this->x'", but we can't refer to 'x' directly,
// we need an explicit namespace resolution whether the uninit field was
// 'D1::x' or 'D2::x'.
void FieldChainInfo::printNoteMsg(llvm::raw_ostream &Out) const {
  if (Chain.isEmpty())
    return;

  const FieldNode &LastField = getHead();

  LastField.printNoteMsg(Out);
  Out << '\'';

  for (const FieldNode &Node : Chain)
    Node.printPrefix(Out);

  Out << "this->";
  printTail(Out, Chain.getTail());
  LastField.printNode(Out);
  Out << '\'';
}

static void printTail(llvm::raw_ostream &Out,
                      const FieldChainInfo::FieldChain L) {
  if (L.isEmpty())
    return;

  printTail(Out, L.getTail());

  L.getHead().printNode(Out);
  L.getHead().printSeparator(Out);
}

//===----------------------------------------------------------------------===//
//                           Utility functions.
//===----------------------------------------------------------------------===//

static const TypedValueRegion *
getConstructedRegion(const CXXConstructorDecl *CtorDecl,
                     CheckerContext &Context) {

  Loc ThisLoc =
      Context.getSValBuilder().getCXXThis(CtorDecl, Context.getStackFrame());

  SVal ObjectV = Context.getState()->getSVal(ThisLoc);

  auto *R = ObjectV.getAsRegion()->getAs<TypedValueRegion>();
  if (R && !R->getValueType()->getAsCXXRecordDecl())
    return nullptr;

  return R;
}

static bool willObjectBeAnalyzedLater(const CXXConstructorDecl *Ctor,
                                      CheckerContext &Context) {

  const TypedValueRegion *CurrRegion = getConstructedRegion(Ctor, Context);
  if (!CurrRegion)
    return false;

  const LocationContext *LC = Context.getLocationContext();
  while ((LC = LC->getParent())) {

    // If \p Ctor was called by another constructor.
    const auto *OtherCtor = dyn_cast<CXXConstructorDecl>(LC->getDecl());
    if (!OtherCtor)
      continue;

    const TypedValueRegion *OtherRegion =
        getConstructedRegion(OtherCtor, Context);
    if (!OtherRegion)
      continue;

    // If the CurrRegion is a subregion of OtherRegion, it will be analyzed
    // during the analysis of OtherRegion.
    if (CurrRegion->isSubRegionOf(OtherRegion))
      return true;
  }

  return false;
}

static bool shouldIgnoreRecord(const RecordDecl *RD, StringRef Pattern) {
  llvm::Regex R(Pattern);

  for (const FieldDecl *FD : RD->fields()) {
    if (R.match(FD->getType().getAsString()))
      return true;
    if (R.match(FD->getName()))
      return true;
  }

  return false;
}

static const Stmt *getMethodBody(const CXXMethodDecl *M) {
  if (isa<CXXConstructorDecl>(M))
    return nullptr;

  if (!M->isDefined())
    return nullptr;

  return M->getDefinition()->getBody();
}

static bool hasUnguardedAccess(const FieldDecl *FD, ProgramStateRef State) {

  if (FD->getAccess() == AccessSpecifier::AS_public)
    return true;

  const auto *Parent = dyn_cast<CXXRecordDecl>(FD->getParent());

  if (!Parent)
    return true;

  Parent = Parent->getDefinition();
  assert(Parent && "The record's definition must be avaible if an uninitialized"
                   " field of it was found!");

  ASTContext &AC = State->getStateManager().getContext();

  auto FieldAccessM = memberExpr(hasDeclaration(equalsNode(FD))).bind("access");

  auto AssertLikeM = callExpr(callee(functionDecl(
      anyOf(hasName("exit"), hasName("panic"), hasName("error"),
            hasName("Assert"), hasName("assert"), hasName("ziperr"),
            hasName("assfail"), hasName("db_error"), hasName("__assert"),
            hasName("__assert2"), hasName("_wassert"), hasName("__assert_rtn"),
            hasName("__assert_fail"), hasName("dtrace_assfail"),
            hasName("yy_fatal_error"), hasName("_XCAssertionFailureHandler"),
            hasName("_DTAssertionFailureHandler"),
            hasName("_TSAssertionFailureHandler")))));

  auto NoReturnFuncM = callExpr(callee(functionDecl(isNoReturn())));

  auto GuardM =
      stmt(anyOf(ifStmt(), switchStmt(), conditionalOperator(), AssertLikeM,
            NoReturnFuncM))
          .bind("guard");

  for (const CXXMethodDecl *M : Parent->methods()) {
    const Stmt *MethodBody = getMethodBody(M);
    if (!MethodBody)
      continue;

    auto Accesses = match(stmt(hasDescendant(FieldAccessM)), *MethodBody, AC);
    if (Accesses.empty())
      continue;
    const auto *FirstAccess = Accesses[0].getNodeAs<MemberExpr>("access");
    assert(FirstAccess);

    auto Guards = match(stmt(hasDescendant(GuardM)), *MethodBody, AC);
    if (Guards.empty())
      return true;
    const auto *FirstGuard = Guards[0].getNodeAs<Stmt>("guard");
    assert(FirstGuard);

    if (FirstAccess->getBeginLoc() < FirstGuard->getBeginLoc())
      return true;
  }

  return false;
}

std::string clang::ento::getVariableName(const FieldDecl *Field) {
  // If Field is a captured lambda variable, Field->getName() will return with
  // an empty string. We can however acquire it's name from the lambda's
  // captures.
  const auto *CXXParent = dyn_cast<CXXRecordDecl>(Field->getParent());

  if (CXXParent && CXXParent->isLambda()) {
    assert(CXXParent->captures_begin());
    auto It = CXXParent->captures_begin() + Field->getFieldIndex();

    if (It->capturesVariable())
      return llvm::Twine("/*captured variable*/" +
                         It->getCapturedVar()->getName())
          .str();

    if (It->capturesThis())
      return "/*'this' capture*/";

    llvm_unreachable("No other capture type is expected!");
  }

  return Field->getName();
}

void ento::registerUninitializedObjectChecker(CheckerManager &Mgr) {
  auto Chk = Mgr.registerChecker<UninitializedObjectChecker>();

  AnalyzerOptions &AnOpts = Mgr.getAnalyzerOptions();
  UninitObjCheckerOptions &ChOpts = Chk->Opts;

  ChOpts.IsPedantic = AnOpts.getCheckerBooleanOption(Chk, "Pedantic");
  ChOpts.ShouldConvertNotesToWarnings = AnOpts.getCheckerBooleanOption(
      Chk, "NotesAsWarnings");
  ChOpts.CheckPointeeInitialization = AnOpts.getCheckerBooleanOption(
      Chk, "CheckPointeeInitialization");
  ChOpts.IgnoredRecordsWithFieldPattern =
      AnOpts.getCheckerStringOption(Chk, "IgnoreRecordsWithField");
  ChOpts.IgnoreGuardedFields =
      AnOpts.getCheckerBooleanOption(Chk, "IgnoreGuardedFields");

  std::string ErrorMsg;
  if (!llvm::Regex(ChOpts.IgnoredRecordsWithFieldPattern).isValid(ErrorMsg))
    Mgr.reportInvalidCheckerOptionValue(Chk, "IgnoreRecordsWithField",
        "a valid regex, building failed with error message "
        "\"" + ErrorMsg + "\"");
}

bool ento::shouldRegisterUninitializedObjectChecker(const LangOptions &LO) {
  return true;
}