BuildTree.cpp 24.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/Syntax/BuildTree.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "clang/Tooling/Syntax/Nodes.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "clang/Tooling/Syntax/Tree.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <map>

using namespace clang;

LLVM_ATTRIBUTE_UNUSED
static bool isImplicitExpr(clang::Expr *E) { return E->IgnoreImplicit() != E; }

/// A helper class for constructing the syntax tree while traversing a clang
/// AST.
///
/// At each point of the traversal we maintain a list of pending nodes.
/// Initially all tokens are added as pending nodes. When processing a clang AST
/// node, the clients need to:
///   - create a corresponding syntax node,
///   - assign roles to all pending child nodes with 'markChild' and
///     'markChildToken',
///   - replace the child nodes with the new syntax node in the pending list
///     with 'foldNode'.
///
/// Note that all children are expected to be processed when building a node.
///
/// Call finalize() to finish building the tree and consume the root node.
class syntax::TreeBuilder {
public:
  TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
    for (const auto &T : Arena.tokenBuffer().expandedTokens())
      LocationToToken.insert({T.location().getRawEncoding(), &T});
  }

  llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); }

  /// Populate children for \p New node, assuming it covers tokens from \p
  /// Range.
  void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New);

  /// Must be called with the range of each `DeclaratorDecl`. Ensures the
  /// corresponding declarator nodes are covered by `SimpleDeclaration`.
  void noticeDeclaratorRange(llvm::ArrayRef<syntax::Token> Range);

  /// Notifies that we should not consume trailing semicolon when computing
  /// token range of \p D.
  void noticeDeclaratorWithoutSemicolon(Decl *D);

  /// Mark the \p Child node with a corresponding \p Role. All marked children
  /// should be consumed by foldNode.
  /// (!) when called on expressions (clang::Expr is derived from clang::Stmt),
  ///     wraps expressions into expression statement.
  void markStmtChild(Stmt *Child, NodeRole Role);
  /// Should be called for expressions in non-statement position to avoid
  /// wrapping into expression statement.
  void markExprChild(Expr *Child, NodeRole Role);

  /// Set role for a token starting at \p Loc.
  void markChildToken(SourceLocation Loc, NodeRole R);

  /// Finish building the tree and consume the root node.
  syntax::TranslationUnit *finalize() && {
    auto Tokens = Arena.tokenBuffer().expandedTokens();
    assert(!Tokens.empty());
    assert(Tokens.back().kind() == tok::eof);

    // Build the root of the tree, consuming all the children.
    Pending.foldChildren(Arena, Tokens.drop_back(),
                         new (Arena.allocator()) syntax::TranslationUnit);

    auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
    TU->assertInvariantsRecursive();
    return TU;
  }

  /// getRange() finds the syntax tokens corresponding to the passed source
  /// locations.
  /// \p First is the start position of the first token and \p Last is the start
  /// position of the last token.
  llvm::ArrayRef<syntax::Token> getRange(SourceLocation First,
                                         SourceLocation Last) const {
    assert(First.isValid());
    assert(Last.isValid());
    assert(First == Last ||
           Arena.sourceManager().isBeforeInTranslationUnit(First, Last));
    return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
  }
  llvm::ArrayRef<syntax::Token> getRange(const Decl *D) const {
    auto Tokens = getRange(D->getBeginLoc(), D->getEndLoc());
    if (llvm::isa<NamespaceDecl>(D))
      return Tokens;
    if (DeclsWithoutSemicolons.count(D))
      return Tokens;
    // FIXME: do not consume trailing semicolon on function definitions.
    // Most declarations own a semicolon in syntax trees, but not in clang AST.
    return withTrailingSemicolon(Tokens);
  }
  llvm::ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
    return getRange(E->getBeginLoc(), E->getEndLoc());
  }
  /// Find the adjusted range for the statement, consuming the trailing
  /// semicolon when needed.
  llvm::ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
    auto Tokens = getRange(S->getBeginLoc(), S->getEndLoc());
    if (isa<CompoundStmt>(S))
      return Tokens;

    // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
    // all statements that end with those. Consume this semicolon here.
    if (Tokens.back().kind() == tok::semi)
      return Tokens;
    return withTrailingSemicolon(Tokens);
  }

private:
  llvm::ArrayRef<syntax::Token>
  withTrailingSemicolon(llvm::ArrayRef<syntax::Token> Tokens) const {
    assert(!Tokens.empty());
    assert(Tokens.back().kind() != tok::eof);
    // (!) we never consume 'eof', so looking at the next token is ok.
    if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
      return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
    return Tokens;
  }

  /// Finds a token starting at \p L. The token must exist.
  const syntax::Token *findToken(SourceLocation L) const;

  /// A collection of trees covering the input tokens.
  /// When created, each tree corresponds to a single token in the file.
  /// Clients call 'foldChildren' to attach one or more subtrees to a parent
  /// node and update the list of trees accordingly.
  ///
  /// Ensures that added nodes properly nest and cover the whole token stream.
  struct Forest {
    Forest(syntax::Arena &A) {
      assert(!A.tokenBuffer().expandedTokens().empty());
      assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof);
      // Create all leaf nodes.
      // Note that we do not have 'eof' in the tree.
      for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) {
        auto *L = new (A.allocator()) syntax::Leaf(&T);
        L->Original = true;
        L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue();
        Trees.insert(Trees.end(), {&T, NodeAndRole{L}});
      }
    }

    ~Forest() { assert(DelayedFolds.empty()); }

    void assignRole(llvm::ArrayRef<syntax::Token> Range,
                    syntax::NodeRole Role) {
      assert(!Range.empty());
      auto It = Trees.lower_bound(Range.begin());
      assert(It != Trees.end() && "no node found");
      assert(It->first == Range.begin() && "no child with the specified range");
      assert((std::next(It) == Trees.end() ||
              std::next(It)->first == Range.end()) &&
             "no child with the specified range");
      It->second.Role = Role;
    }

    /// Add \p Node to the forest and attach child nodes based on \p Tokens.
    void foldChildren(const syntax::Arena &A,
                      llvm::ArrayRef<syntax::Token> Tokens,
                      syntax::Tree *Node) {
      // Execute delayed folds inside `Tokens`.
      auto BeginExecuted = DelayedFolds.lower_bound(Tokens.begin());
      auto It = BeginExecuted;
      for (; It != DelayedFolds.end() && It->second.End <= Tokens.end(); ++It)
        foldChildrenEager(A, llvm::makeArrayRef(It->first, It->second.End),
                          It->second.Node);
      DelayedFolds.erase(BeginExecuted, It);

      // Attach children to `Node`.
      foldChildrenEager(A, Tokens, Node);
    }

    /// Schedule a call to `foldChildren` that will only be executed when
    /// containing node is folded. The range of delayed nodes can be extended by
    /// calling `extendDelayedFold`. Only one delayed node for each starting
    /// token is allowed.
    void foldChildrenDelayed(llvm::ArrayRef<syntax::Token> Tokens,
                             syntax::Tree *Node) {
      assert(!Tokens.empty());
      bool Inserted =
          DelayedFolds.insert({Tokens.begin(), DelayedFold{Tokens.end(), Node}})
              .second;
      (void)Inserted;
      assert(Inserted && "Multiple delayed folds start at the same token");
    }

    /// If there a delayed fold, starting at `ExtendedRange.begin()`, extends
    /// its endpoint to `ExtendedRange.end()` and returns true.
    /// Otherwise, returns false.
    bool extendDelayedFold(llvm::ArrayRef<syntax::Token> ExtendedRange) {
      assert(!ExtendedRange.empty());
      auto It = DelayedFolds.find(ExtendedRange.data());
      if (It == DelayedFolds.end())
        return false;
      assert(It->second.End <= ExtendedRange.end());
      It->second.End = ExtendedRange.end();
      return true;
    }

    // EXPECTS: all tokens were consumed and are owned by a single root node.
    syntax::Node *finalize() && {
      assert(Trees.size() == 1);
      auto *Root = Trees.begin()->second.Node;
      Trees = {};
      return Root;
    }

    std::string str(const syntax::Arena &A) const {
      std::string R;
      for (auto It = Trees.begin(); It != Trees.end(); ++It) {
        unsigned CoveredTokens =
            It != Trees.end()
                ? (std::next(It)->first - It->first)
                : A.tokenBuffer().expandedTokens().end() - It->first;

        R += llvm::formatv("- '{0}' covers '{1}'+{2} tokens\n",
                           It->second.Node->kind(),
                           It->first->text(A.sourceManager()), CoveredTokens);
        R += It->second.Node->dump(A);
      }
      return R;
    }

  private:
    /// Implementation detail of `foldChildren`, does acutal folding ignoring
    /// delayed folds.
    void foldChildrenEager(const syntax::Arena &A,
                           llvm::ArrayRef<syntax::Token> Tokens,
                           syntax::Tree *Node) {
      assert(Node->firstChild() == nullptr && "node already has children");

      auto *FirstToken = Tokens.begin();
      auto BeginChildren = Trees.lower_bound(FirstToken);
      assert((BeginChildren == Trees.end() ||
              BeginChildren->first == FirstToken) &&
             "fold crosses boundaries of existing subtrees");
      auto EndChildren = Trees.lower_bound(Tokens.end());
      assert(
          (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
          "fold crosses boundaries of existing subtrees");

      // (!) we need to go in reverse order, because we can only prepend.
      for (auto It = EndChildren; It != BeginChildren; --It)
        Node->prependChildLowLevel(std::prev(It)->second.Node,
                                   std::prev(It)->second.Role);

      // Mark that this node came from the AST and is backed by the source code.
      Node->Original = true;
      Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue();

      Trees.erase(BeginChildren, EndChildren);
      Trees.insert({FirstToken, NodeAndRole(Node)});
    }
    /// A with a role that should be assigned to it when adding to a parent.
    struct NodeAndRole {
      explicit NodeAndRole(syntax::Node *Node)
          : Node(Node), Role(NodeRole::Unknown) {}

      syntax::Node *Node;
      NodeRole Role;
    };

    /// Maps from the start token to a subtree starting at that token.
    /// Keys in the map are pointers into the array of expanded tokens, so
    /// pointer order corresponds to the order of preprocessor tokens.
    /// FIXME: storing the end tokens is redundant.
    /// FIXME: the key of a map is redundant, it is also stored in NodeForRange.
    std::map<const syntax::Token *, NodeAndRole> Trees;

    /// See documentation of `foldChildrenDelayed` for details.
    struct DelayedFold {
      const syntax::Token *End = nullptr;
      syntax::Tree *Node = nullptr;
    };
    std::map<const syntax::Token *, DelayedFold> DelayedFolds;
  };

  /// For debugging purposes.
  std::string str() { return Pending.str(Arena); }

  syntax::Arena &Arena;
  /// To quickly find tokens by their start location.
  llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
      LocationToToken;
  Forest Pending;
  llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
};

namespace {
class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
public:
  explicit BuildTreeVisitor(ASTContext &Ctx, syntax::TreeBuilder &Builder)
      : Builder(Builder), LangOpts(Ctx.getLangOpts()) {}

  bool shouldTraversePostOrder() const { return true; }

  bool WalkUpFromDeclaratorDecl(DeclaratorDecl *D) {
    // Ensure declarators are covered by SimpleDeclaration.
    Builder.noticeDeclaratorRange(Builder.getRange(D));
    // FIXME: build nodes for the declarator too.
    return true;
  }
  bool WalkUpFromTypedefNameDecl(TypedefNameDecl *D) {
    // Also a declarator.
    Builder.noticeDeclaratorRange(Builder.getRange(D));
    // FIXME: build nodes for the declarator too.
    return true;
  }

  bool VisitDecl(Decl *D) {
    assert(!D->isImplicit());
    Builder.foldNode(Builder.getRange(D),
                     new (allocator()) syntax::UnknownDeclaration());
    return true;
  }

  bool WalkUpFromTagDecl(TagDecl *C) {
    // FIXME: build the ClassSpecifier node.
    if (C->isFreeStanding()) {
      // Class is a declaration specifier and needs a spanning declaration node.
      Builder.foldNode(Builder.getRange(C),
                       new (allocator()) syntax::SimpleDeclaration);
      return true;
    }
    return true;
  }

  bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
    // (!) we do not want to call VisitDecl(), the declaration for translation
    // unit is built by finalize().
    return true;
  }

  bool WalkUpFromCompoundStmt(CompoundStmt *S) {
    using NodeRole = syntax::NodeRole;

    Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
    for (auto *Child : S->body())
      Builder.markStmtChild(Child, NodeRole::CompoundStatement_statement);
    Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);

    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::CompoundStatement);
    return true;
  }

  // Some statements are not yet handled by syntax trees.
  bool WalkUpFromStmt(Stmt *S) {
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::UnknownStatement);
    return true;
  }

  bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
    // We override to traverse range initializer as VarDecl.
    // RAV traverses it as a statement, we produce invalid node kinds in that
    // case.
    // FIXME: should do this in RAV instead?
    if (S->getInit() && !TraverseStmt(S->getInit()))
      return false;
    if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
      return false;
    if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
      return false;
    if (S->getBody() && !TraverseStmt(S->getBody()))
      return false;
    return true;
  }

  bool TraverseStmt(Stmt *S) {
    if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S)) {
      // We want to consume the semicolon, make sure SimpleDeclaration does not.
      for (auto *D : DS->decls())
        Builder.noticeDeclaratorWithoutSemicolon(D);
    } else if (auto *E = llvm::dyn_cast_or_null<Expr>(S)) {
      // (!) do not recurse into subexpressions.
      // we do not have syntax trees for expressions yet, so we only want to see
      // the first top-level expression.
      return WalkUpFromExpr(E->IgnoreImplicit());
    }
    return RecursiveASTVisitor::TraverseStmt(S);
  }

  // Some expressions are not yet handled by syntax trees.
  bool WalkUpFromExpr(Expr *E) {
    assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
    Builder.foldNode(Builder.getExprRange(E),
                     new (allocator()) syntax::UnknownExpression);
    return true;
  }

  bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
    auto Tokens = Builder.getRange(S);
    if (Tokens.front().kind() == tok::coloncolon) {
      // Handle nested namespace definitions. Those start at '::' token, e.g.
      // namespace a^::b {}
      // FIXME: build corresponding nodes for the name of this namespace.
      return true;
    }
    Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition);
    return true;
  }

  // The code below is very regular, it could even be generated with some
  // preprocessor magic. We merely assign roles to the corresponding children
  // and fold resulting nodes.
  bool WalkUpFromDeclStmt(DeclStmt *S) {
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::DeclarationStatement);
    return true;
  }

  bool WalkUpFromNullStmt(NullStmt *S) {
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::EmptyStatement);
    return true;
  }

  bool WalkUpFromSwitchStmt(SwitchStmt *S) {
    Builder.markChildToken(S->getSwitchLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::SwitchStatement);
    return true;
  }

  bool WalkUpFromCaseStmt(CaseStmt *S) {
    Builder.markChildToken(S->getKeywordLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseStatement_value);
    Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::CaseStatement);
    return true;
  }

  bool WalkUpFromDefaultStmt(DefaultStmt *S) {
    Builder.markChildToken(S->getKeywordLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::DefaultStatement);
    return true;
  }

  bool WalkUpFromIfStmt(IfStmt *S) {
    Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getThen(),
                          syntax::NodeRole::IfStatement_thenStatement);
    Builder.markChildToken(S->getElseLoc(),
                           syntax::NodeRole::IfStatement_elseKeyword);
    Builder.markStmtChild(S->getElse(),
                          syntax::NodeRole::IfStatement_elseStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::IfStatement);
    return true;
  }

  bool WalkUpFromForStmt(ForStmt *S) {
    Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::ForStatement);
    return true;
  }

  bool WalkUpFromWhileStmt(WhileStmt *S) {
    Builder.markChildToken(S->getWhileLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::WhileStatement);
    return true;
  }

  bool WalkUpFromContinueStmt(ContinueStmt *S) {
    Builder.markChildToken(S->getContinueLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::ContinueStatement);
    return true;
  }

  bool WalkUpFromBreakStmt(BreakStmt *S) {
    Builder.markChildToken(S->getBreakLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::BreakStatement);
    return true;
  }

  bool WalkUpFromReturnStmt(ReturnStmt *S) {
    Builder.markChildToken(S->getReturnLoc(),
                           syntax::NodeRole::IntroducerKeyword);
    Builder.markExprChild(S->getRetValue(),
                          syntax::NodeRole::ReturnStatement_value);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::ReturnStatement);
    return true;
  }

  bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
    Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
    Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
    Builder.foldNode(Builder.getStmtRange(S),
                     new (allocator()) syntax::RangeBasedForStatement);
    return true;
  }

  bool WalkUpFromEmptyDecl(EmptyDecl *S) {
    Builder.foldNode(Builder.getRange(S),
                     new (allocator()) syntax::EmptyDeclaration);
    return true;
  }

  bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
    Builder.markExprChild(S->getAssertExpr(),
                          syntax::NodeRole::StaticAssertDeclaration_condition);
    Builder.markExprChild(S->getMessage(),
                          syntax::NodeRole::StaticAssertDeclaration_message);
    Builder.foldNode(Builder.getRange(S),
                     new (allocator()) syntax::StaticAssertDeclaration);
    return true;
  }

  bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
    Builder.foldNode(Builder.getRange(S),
                     new (allocator()) syntax::LinkageSpecificationDeclaration);
    return true;
  }

  bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
    Builder.foldNode(Builder.getRange(S),
                     new (allocator()) syntax::NamespaceAliasDefinition);
    return true;
  }

  bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
    Builder.foldNode(Builder.getRange(S),
                     new (allocator()) syntax::UsingNamespaceDirective);
    return true;
  }

  bool WalkUpFromUsingDecl(UsingDecl *S) {
    Builder.foldNode(Builder.getRange(S),
                     new (allocator()) syntax::UsingDeclaration);
    return true;
  }

  bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
    Builder.foldNode(Builder.getRange(S),
                     new (allocator()) syntax::UsingDeclaration);
    return true;
  }

  bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
    Builder.foldNode(Builder.getRange(S),
                     new (allocator()) syntax::UsingDeclaration);
    return true;
  }

  bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
    Builder.foldNode(Builder.getRange(S),
                     new (allocator()) syntax::TypeAliasDeclaration);
    return true;
  }

private:
  /// A small helper to save some typing.
  llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }

  syntax::TreeBuilder &Builder;
  const LangOptions &LangOpts;
};
} // namespace

void syntax::TreeBuilder::foldNode(llvm::ArrayRef<syntax::Token> Range,
                                   syntax::Tree *New) {
  Pending.foldChildren(Arena, Range, New);
}

void syntax::TreeBuilder::noticeDeclaratorRange(
    llvm::ArrayRef<syntax::Token> Range) {
  if (Pending.extendDelayedFold(Range))
    return;
  Pending.foldChildrenDelayed(Range,
                              new (allocator()) syntax::SimpleDeclaration);
}

void syntax::TreeBuilder::noticeDeclaratorWithoutSemicolon(Decl *D) {
  DeclsWithoutSemicolons.insert(D);
}

void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
  if (Loc.isInvalid())
    return;
  Pending.assignRole(*findToken(Loc), Role);
}

void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
  if (!Child)
    return;

  auto Range = getStmtRange(Child);
  // This is an expression in a statement position, consume the trailing
  // semicolon and form an 'ExpressionStatement' node.
  if (auto *E = dyn_cast<Expr>(Child)) {
    Pending.assignRole(getExprRange(E),
                       NodeRole::ExpressionStatement_expression);
    // (!) 'getRange(Stmt)' ensures this already covers a trailing semicolon.
    Pending.foldChildren(Arena, Range,
                         new (allocator()) syntax::ExpressionStatement);
  }
  Pending.assignRole(Range, Role);
}

void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
  if (!Child)
    return;

  Pending.assignRole(getExprRange(Child), Role);
}

const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
  auto It = LocationToToken.find(L.getRawEncoding());
  assert(It != LocationToToken.end());
  return It->second;
}

syntax::TranslationUnit *
syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
  TreeBuilder Builder(A);
  BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
  return std::move(Builder).finalize();
}