BuildTree.cpp
24.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/Syntax/BuildTree.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "clang/Tooling/Syntax/Nodes.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "clang/Tooling/Syntax/Tree.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
using namespace clang;
LLVM_ATTRIBUTE_UNUSED
static bool isImplicitExpr(clang::Expr *E) { return E->IgnoreImplicit() != E; }
/// A helper class for constructing the syntax tree while traversing a clang
/// AST.
///
/// At each point of the traversal we maintain a list of pending nodes.
/// Initially all tokens are added as pending nodes. When processing a clang AST
/// node, the clients need to:
/// - create a corresponding syntax node,
/// - assign roles to all pending child nodes with 'markChild' and
/// 'markChildToken',
/// - replace the child nodes with the new syntax node in the pending list
/// with 'foldNode'.
///
/// Note that all children are expected to be processed when building a node.
///
/// Call finalize() to finish building the tree and consume the root node.
class syntax::TreeBuilder {
public:
TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
for (const auto &T : Arena.tokenBuffer().expandedTokens())
LocationToToken.insert({T.location().getRawEncoding(), &T});
}
llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); }
/// Populate children for \p New node, assuming it covers tokens from \p
/// Range.
void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New);
/// Must be called with the range of each `DeclaratorDecl`. Ensures the
/// corresponding declarator nodes are covered by `SimpleDeclaration`.
void noticeDeclaratorRange(llvm::ArrayRef<syntax::Token> Range);
/// Notifies that we should not consume trailing semicolon when computing
/// token range of \p D.
void noticeDeclaratorWithoutSemicolon(Decl *D);
/// Mark the \p Child node with a corresponding \p Role. All marked children
/// should be consumed by foldNode.
/// (!) when called on expressions (clang::Expr is derived from clang::Stmt),
/// wraps expressions into expression statement.
void markStmtChild(Stmt *Child, NodeRole Role);
/// Should be called for expressions in non-statement position to avoid
/// wrapping into expression statement.
void markExprChild(Expr *Child, NodeRole Role);
/// Set role for a token starting at \p Loc.
void markChildToken(SourceLocation Loc, NodeRole R);
/// Finish building the tree and consume the root node.
syntax::TranslationUnit *finalize() && {
auto Tokens = Arena.tokenBuffer().expandedTokens();
assert(!Tokens.empty());
assert(Tokens.back().kind() == tok::eof);
// Build the root of the tree, consuming all the children.
Pending.foldChildren(Arena, Tokens.drop_back(),
new (Arena.allocator()) syntax::TranslationUnit);
auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
TU->assertInvariantsRecursive();
return TU;
}
/// getRange() finds the syntax tokens corresponding to the passed source
/// locations.
/// \p First is the start position of the first token and \p Last is the start
/// position of the last token.
llvm::ArrayRef<syntax::Token> getRange(SourceLocation First,
SourceLocation Last) const {
assert(First.isValid());
assert(Last.isValid());
assert(First == Last ||
Arena.sourceManager().isBeforeInTranslationUnit(First, Last));
return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
}
llvm::ArrayRef<syntax::Token> getRange(const Decl *D) const {
auto Tokens = getRange(D->getBeginLoc(), D->getEndLoc());
if (llvm::isa<NamespaceDecl>(D))
return Tokens;
if (DeclsWithoutSemicolons.count(D))
return Tokens;
// FIXME: do not consume trailing semicolon on function definitions.
// Most declarations own a semicolon in syntax trees, but not in clang AST.
return withTrailingSemicolon(Tokens);
}
llvm::ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
return getRange(E->getBeginLoc(), E->getEndLoc());
}
/// Find the adjusted range for the statement, consuming the trailing
/// semicolon when needed.
llvm::ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
auto Tokens = getRange(S->getBeginLoc(), S->getEndLoc());
if (isa<CompoundStmt>(S))
return Tokens;
// Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
// all statements that end with those. Consume this semicolon here.
if (Tokens.back().kind() == tok::semi)
return Tokens;
return withTrailingSemicolon(Tokens);
}
private:
llvm::ArrayRef<syntax::Token>
withTrailingSemicolon(llvm::ArrayRef<syntax::Token> Tokens) const {
assert(!Tokens.empty());
assert(Tokens.back().kind() != tok::eof);
// (!) we never consume 'eof', so looking at the next token is ok.
if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
return Tokens;
}
/// Finds a token starting at \p L. The token must exist.
const syntax::Token *findToken(SourceLocation L) const;
/// A collection of trees covering the input tokens.
/// When created, each tree corresponds to a single token in the file.
/// Clients call 'foldChildren' to attach one or more subtrees to a parent
/// node and update the list of trees accordingly.
///
/// Ensures that added nodes properly nest and cover the whole token stream.
struct Forest {
Forest(syntax::Arena &A) {
assert(!A.tokenBuffer().expandedTokens().empty());
assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof);
// Create all leaf nodes.
// Note that we do not have 'eof' in the tree.
for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) {
auto *L = new (A.allocator()) syntax::Leaf(&T);
L->Original = true;
L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue();
Trees.insert(Trees.end(), {&T, NodeAndRole{L}});
}
}
~Forest() { assert(DelayedFolds.empty()); }
void assignRole(llvm::ArrayRef<syntax::Token> Range,
syntax::NodeRole Role) {
assert(!Range.empty());
auto It = Trees.lower_bound(Range.begin());
assert(It != Trees.end() && "no node found");
assert(It->first == Range.begin() && "no child with the specified range");
assert((std::next(It) == Trees.end() ||
std::next(It)->first == Range.end()) &&
"no child with the specified range");
It->second.Role = Role;
}
/// Add \p Node to the forest and attach child nodes based on \p Tokens.
void foldChildren(const syntax::Arena &A,
llvm::ArrayRef<syntax::Token> Tokens,
syntax::Tree *Node) {
// Execute delayed folds inside `Tokens`.
auto BeginExecuted = DelayedFolds.lower_bound(Tokens.begin());
auto It = BeginExecuted;
for (; It != DelayedFolds.end() && It->second.End <= Tokens.end(); ++It)
foldChildrenEager(A, llvm::makeArrayRef(It->first, It->second.End),
It->second.Node);
DelayedFolds.erase(BeginExecuted, It);
// Attach children to `Node`.
foldChildrenEager(A, Tokens, Node);
}
/// Schedule a call to `foldChildren` that will only be executed when
/// containing node is folded. The range of delayed nodes can be extended by
/// calling `extendDelayedFold`. Only one delayed node for each starting
/// token is allowed.
void foldChildrenDelayed(llvm::ArrayRef<syntax::Token> Tokens,
syntax::Tree *Node) {
assert(!Tokens.empty());
bool Inserted =
DelayedFolds.insert({Tokens.begin(), DelayedFold{Tokens.end(), Node}})
.second;
(void)Inserted;
assert(Inserted && "Multiple delayed folds start at the same token");
}
/// If there a delayed fold, starting at `ExtendedRange.begin()`, extends
/// its endpoint to `ExtendedRange.end()` and returns true.
/// Otherwise, returns false.
bool extendDelayedFold(llvm::ArrayRef<syntax::Token> ExtendedRange) {
assert(!ExtendedRange.empty());
auto It = DelayedFolds.find(ExtendedRange.data());
if (It == DelayedFolds.end())
return false;
assert(It->second.End <= ExtendedRange.end());
It->second.End = ExtendedRange.end();
return true;
}
// EXPECTS: all tokens were consumed and are owned by a single root node.
syntax::Node *finalize() && {
assert(Trees.size() == 1);
auto *Root = Trees.begin()->second.Node;
Trees = {};
return Root;
}
std::string str(const syntax::Arena &A) const {
std::string R;
for (auto It = Trees.begin(); It != Trees.end(); ++It) {
unsigned CoveredTokens =
It != Trees.end()
? (std::next(It)->first - It->first)
: A.tokenBuffer().expandedTokens().end() - It->first;
R += llvm::formatv("- '{0}' covers '{1}'+{2} tokens\n",
It->second.Node->kind(),
It->first->text(A.sourceManager()), CoveredTokens);
R += It->second.Node->dump(A);
}
return R;
}
private:
/// Implementation detail of `foldChildren`, does acutal folding ignoring
/// delayed folds.
void foldChildrenEager(const syntax::Arena &A,
llvm::ArrayRef<syntax::Token> Tokens,
syntax::Tree *Node) {
assert(Node->firstChild() == nullptr && "node already has children");
auto *FirstToken = Tokens.begin();
auto BeginChildren = Trees.lower_bound(FirstToken);
assert((BeginChildren == Trees.end() ||
BeginChildren->first == FirstToken) &&
"fold crosses boundaries of existing subtrees");
auto EndChildren = Trees.lower_bound(Tokens.end());
assert(
(EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
"fold crosses boundaries of existing subtrees");
// (!) we need to go in reverse order, because we can only prepend.
for (auto It = EndChildren; It != BeginChildren; --It)
Node->prependChildLowLevel(std::prev(It)->second.Node,
std::prev(It)->second.Role);
// Mark that this node came from the AST and is backed by the source code.
Node->Original = true;
Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue();
Trees.erase(BeginChildren, EndChildren);
Trees.insert({FirstToken, NodeAndRole(Node)});
}
/// A with a role that should be assigned to it when adding to a parent.
struct NodeAndRole {
explicit NodeAndRole(syntax::Node *Node)
: Node(Node), Role(NodeRole::Unknown) {}
syntax::Node *Node;
NodeRole Role;
};
/// Maps from the start token to a subtree starting at that token.
/// Keys in the map are pointers into the array of expanded tokens, so
/// pointer order corresponds to the order of preprocessor tokens.
/// FIXME: storing the end tokens is redundant.
/// FIXME: the key of a map is redundant, it is also stored in NodeForRange.
std::map<const syntax::Token *, NodeAndRole> Trees;
/// See documentation of `foldChildrenDelayed` for details.
struct DelayedFold {
const syntax::Token *End = nullptr;
syntax::Tree *Node = nullptr;
};
std::map<const syntax::Token *, DelayedFold> DelayedFolds;
};
/// For debugging purposes.
std::string str() { return Pending.str(Arena); }
syntax::Arena &Arena;
/// To quickly find tokens by their start location.
llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
LocationToToken;
Forest Pending;
llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
};
namespace {
class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
public:
explicit BuildTreeVisitor(ASTContext &Ctx, syntax::TreeBuilder &Builder)
: Builder(Builder), LangOpts(Ctx.getLangOpts()) {}
bool shouldTraversePostOrder() const { return true; }
bool WalkUpFromDeclaratorDecl(DeclaratorDecl *D) {
// Ensure declarators are covered by SimpleDeclaration.
Builder.noticeDeclaratorRange(Builder.getRange(D));
// FIXME: build nodes for the declarator too.
return true;
}
bool WalkUpFromTypedefNameDecl(TypedefNameDecl *D) {
// Also a declarator.
Builder.noticeDeclaratorRange(Builder.getRange(D));
// FIXME: build nodes for the declarator too.
return true;
}
bool VisitDecl(Decl *D) {
assert(!D->isImplicit());
Builder.foldNode(Builder.getRange(D),
new (allocator()) syntax::UnknownDeclaration());
return true;
}
bool WalkUpFromTagDecl(TagDecl *C) {
// FIXME: build the ClassSpecifier node.
if (C->isFreeStanding()) {
// Class is a declaration specifier and needs a spanning declaration node.
Builder.foldNode(Builder.getRange(C),
new (allocator()) syntax::SimpleDeclaration);
return true;
}
return true;
}
bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
// (!) we do not want to call VisitDecl(), the declaration for translation
// unit is built by finalize().
return true;
}
bool WalkUpFromCompoundStmt(CompoundStmt *S) {
using NodeRole = syntax::NodeRole;
Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
for (auto *Child : S->body())
Builder.markStmtChild(Child, NodeRole::CompoundStatement_statement);
Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::CompoundStatement);
return true;
}
// Some statements are not yet handled by syntax trees.
bool WalkUpFromStmt(Stmt *S) {
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::UnknownStatement);
return true;
}
bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
// We override to traverse range initializer as VarDecl.
// RAV traverses it as a statement, we produce invalid node kinds in that
// case.
// FIXME: should do this in RAV instead?
if (S->getInit() && !TraverseStmt(S->getInit()))
return false;
if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
return false;
if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
return false;
if (S->getBody() && !TraverseStmt(S->getBody()))
return false;
return true;
}
bool TraverseStmt(Stmt *S) {
if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S)) {
// We want to consume the semicolon, make sure SimpleDeclaration does not.
for (auto *D : DS->decls())
Builder.noticeDeclaratorWithoutSemicolon(D);
} else if (auto *E = llvm::dyn_cast_or_null<Expr>(S)) {
// (!) do not recurse into subexpressions.
// we do not have syntax trees for expressions yet, so we only want to see
// the first top-level expression.
return WalkUpFromExpr(E->IgnoreImplicit());
}
return RecursiveASTVisitor::TraverseStmt(S);
}
// Some expressions are not yet handled by syntax trees.
bool WalkUpFromExpr(Expr *E) {
assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
Builder.foldNode(Builder.getExprRange(E),
new (allocator()) syntax::UnknownExpression);
return true;
}
bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
auto Tokens = Builder.getRange(S);
if (Tokens.front().kind() == tok::coloncolon) {
// Handle nested namespace definitions. Those start at '::' token, e.g.
// namespace a^::b {}
// FIXME: build corresponding nodes for the name of this namespace.
return true;
}
Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition);
return true;
}
// The code below is very regular, it could even be generated with some
// preprocessor magic. We merely assign roles to the corresponding children
// and fold resulting nodes.
bool WalkUpFromDeclStmt(DeclStmt *S) {
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::DeclarationStatement);
return true;
}
bool WalkUpFromNullStmt(NullStmt *S) {
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::EmptyStatement);
return true;
}
bool WalkUpFromSwitchStmt(SwitchStmt *S) {
Builder.markChildToken(S->getSwitchLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::SwitchStatement);
return true;
}
bool WalkUpFromCaseStmt(CaseStmt *S) {
Builder.markChildToken(S->getKeywordLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseStatement_value);
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::CaseStatement);
return true;
}
bool WalkUpFromDefaultStmt(DefaultStmt *S) {
Builder.markChildToken(S->getKeywordLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::DefaultStatement);
return true;
}
bool WalkUpFromIfStmt(IfStmt *S) {
Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getThen(),
syntax::NodeRole::IfStatement_thenStatement);
Builder.markChildToken(S->getElseLoc(),
syntax::NodeRole::IfStatement_elseKeyword);
Builder.markStmtChild(S->getElse(),
syntax::NodeRole::IfStatement_elseStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::IfStatement);
return true;
}
bool WalkUpFromForStmt(ForStmt *S) {
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::ForStatement);
return true;
}
bool WalkUpFromWhileStmt(WhileStmt *S) {
Builder.markChildToken(S->getWhileLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::WhileStatement);
return true;
}
bool WalkUpFromContinueStmt(ContinueStmt *S) {
Builder.markChildToken(S->getContinueLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::ContinueStatement);
return true;
}
bool WalkUpFromBreakStmt(BreakStmt *S) {
Builder.markChildToken(S->getBreakLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::BreakStatement);
return true;
}
bool WalkUpFromReturnStmt(ReturnStmt *S) {
Builder.markChildToken(S->getReturnLoc(),
syntax::NodeRole::IntroducerKeyword);
Builder.markExprChild(S->getRetValue(),
syntax::NodeRole::ReturnStatement_value);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::ReturnStatement);
return true;
}
bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
Builder.foldNode(Builder.getStmtRange(S),
new (allocator()) syntax::RangeBasedForStatement);
return true;
}
bool WalkUpFromEmptyDecl(EmptyDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::EmptyDeclaration);
return true;
}
bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
Builder.markExprChild(S->getAssertExpr(),
syntax::NodeRole::StaticAssertDeclaration_condition);
Builder.markExprChild(S->getMessage(),
syntax::NodeRole::StaticAssertDeclaration_message);
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::StaticAssertDeclaration);
return true;
}
bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::LinkageSpecificationDeclaration);
return true;
}
bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::NamespaceAliasDefinition);
return true;
}
bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::UsingNamespaceDirective);
return true;
}
bool WalkUpFromUsingDecl(UsingDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::UsingDeclaration);
return true;
}
bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::UsingDeclaration);
return true;
}
bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::UsingDeclaration);
return true;
}
bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
Builder.foldNode(Builder.getRange(S),
new (allocator()) syntax::TypeAliasDeclaration);
return true;
}
private:
/// A small helper to save some typing.
llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
syntax::TreeBuilder &Builder;
const LangOptions &LangOpts;
};
} // namespace
void syntax::TreeBuilder::foldNode(llvm::ArrayRef<syntax::Token> Range,
syntax::Tree *New) {
Pending.foldChildren(Arena, Range, New);
}
void syntax::TreeBuilder::noticeDeclaratorRange(
llvm::ArrayRef<syntax::Token> Range) {
if (Pending.extendDelayedFold(Range))
return;
Pending.foldChildrenDelayed(Range,
new (allocator()) syntax::SimpleDeclaration);
}
void syntax::TreeBuilder::noticeDeclaratorWithoutSemicolon(Decl *D) {
DeclsWithoutSemicolons.insert(D);
}
void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
if (Loc.isInvalid())
return;
Pending.assignRole(*findToken(Loc), Role);
}
void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
if (!Child)
return;
auto Range = getStmtRange(Child);
// This is an expression in a statement position, consume the trailing
// semicolon and form an 'ExpressionStatement' node.
if (auto *E = dyn_cast<Expr>(Child)) {
Pending.assignRole(getExprRange(E),
NodeRole::ExpressionStatement_expression);
// (!) 'getRange(Stmt)' ensures this already covers a trailing semicolon.
Pending.foldChildren(Arena, Range,
new (allocator()) syntax::ExpressionStatement);
}
Pending.assignRole(Range, Role);
}
void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
if (!Child)
return;
Pending.assignRole(getExprRange(Child), Role);
}
const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
auto It = LocationToToken.find(L.getRawEncoding());
assert(It != LocationToToken.end());
return It->second;
}
syntax::TranslationUnit *
syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
TreeBuilder Builder(A);
BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
return std::move(Builder).finalize();
}