MipsCallingConv.td 17.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
//===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This describes the calling conventions for Mips architecture.
//===----------------------------------------------------------------------===//

/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A, string Invert = "">
    : CCIf<!strconcat(Invert,
                      "static_cast<const MipsSubtarget&>"
			"(State.getMachineFunction().getSubtarget()).",
                      F),
           A>;

// The inverse of CCIfSubtarget
class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">;

/// Match if the original argument (before lowering) was a float.
/// For example, this is true for i32's that were lowered from soft-float.
class CCIfOrigArgWasNotFloat<CCAction A>
    : CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)",
           A>;

/// Match if the original argument (before lowering) was a 128-bit float (i.e.
/// long double).
class CCIfOrigArgWasF128<CCAction A>
    : CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>;

/// Match if this specific argument is a vararg.
/// This is slightly different fro CCIfIsVarArg which matches if any argument is
/// a vararg.
class CCIfArgIsVarArg<CCAction A>
    : CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>;

/// Match if the return was a floating point vector.
class CCIfOrigArgWasNotVectorFloat<CCAction A>
    : CCIf<"!static_cast<MipsCCState *>(&State)"
                "->WasOriginalRetVectorFloat(ValNo)", A>;

/// Match if the special calling conv is the specified value.
class CCIfSpecialCallingConv<string CC, CCAction A>
    : CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == "
               "MipsCCState::" # CC, A>;

// For soft-float, f128 values are returned in A0_64 rather than V1_64.
def RetCC_F128SoftFloat : CallingConv<[
  CCAssignToReg<[V0_64, A0_64]>
]>;

// For hard-float, f128 values are returned as a pair of f64's rather than a
// pair of i64's.
def RetCC_F128HardFloat : CallingConv<[
  CCBitConvertToType<f64>,

  // Contrary to the ABI documentation, a struct containing a long double is
  // returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to
  // match the de facto ABI as implemented by GCC.
  CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>,

  CCAssignToReg<[D0_64, D2_64]>
]>;

// Handle F128 specially since we can't identify the original type during the
// tablegen-erated code.
def RetCC_F128 : CallingConv<[
  CCIfSubtarget<"useSoftFloat()",
      CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>,
  CCIfSubtargetNot<"useSoftFloat()",
      CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>>
]>;

//===----------------------------------------------------------------------===//
// Mips O32 Calling Convention
//===----------------------------------------------------------------------===//

def CC_MipsO32 : CallingConv<[
  // Promote i8/i16 arguments to i32.
  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,

  // Integer values get stored in stack slots that are 4 bytes in
  // size and 4-byte aligned.
  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,

  // Integer values get stored in stack slots that are 8 bytes in
  // size and 8-byte aligned.
  CCIfType<[f64], CCAssignToStack<8, 8>>
]>;

// Only the return rules are defined here for O32. The rules for argument
// passing are defined in MipsISelLowering.cpp.
def RetCC_MipsO32 : CallingConv<[
  // Promote i1/i8/i16 return values to i32.
  CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,

  // i32 are returned in registers V0, V1, A0, A1, unless the original return
  // type was a vector of floats.
  CCIfOrigArgWasNotVectorFloat<CCIfType<[i32],
                                        CCAssignToReg<[V0, V1, A0, A1]>>>,

  // f32 are returned in registers F0, F2
  CCIfType<[f32], CCAssignToReg<[F0, F2]>>,

  // f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or
  // in D0 and D1 in FP32bit mode.
  CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>,
  CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>>
]>;

def CC_MipsO32_FP32 : CustomCallingConv;
def CC_MipsO32_FP64 : CustomCallingConv;

def CC_MipsO32_FP : CallingConv<[
  CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>,
  CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>>
]>;

//===----------------------------------------------------------------------===//
// Mips N32/64 Calling Convention
//===----------------------------------------------------------------------===//

def CC_MipsN_SoftFloat : CallingConv<[
  CCAssignToRegWithShadow<[A0, A1, A2, A3,
                           T0, T1, T2, T3],
                          [D12_64, D13_64, D14_64, D15_64,
                           D16_64, D17_64, D18_64, D19_64]>,
  CCAssignToStack<4, 8>
]>;

def CC_MipsN : CallingConv<[
  CCIfType<[i8, i16, i32, i64],
      CCIfSubtargetNot<"isLittle()",
          CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,

  // All integers (except soft-float integers) are promoted to 64-bit.
  CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>,

  // The only i32's we have left are soft-float arguments.
  CCIfSubtarget<"useSoftFloat()", CCIfType<[i32],
                CCDelegateTo<CC_MipsN_SoftFloat>>>,

  // Integer arguments are passed in integer registers.
  CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64,
                                           T0_64, T1_64, T2_64, T3_64],
                                          [D12_64, D13_64, D14_64, D15_64,
                                           D16_64, D17_64, D18_64, D19_64]>>,

  // f32 arguments are passed in single precision FP registers.
  CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15,
                                           F16, F17, F18, F19],
                                          [A0_64, A1_64, A2_64, A3_64,
                                           T0_64, T1_64, T2_64, T3_64]>>,

  // f64 arguments are passed in double precision FP registers.
  CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64,
                                           D16_64, D17_64, D18_64, D19_64],
                                          [A0_64, A1_64, A2_64, A3_64,
                                           T0_64, T1_64, T2_64, T3_64]>>,

  // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
  CCIfType<[f32], CCAssignToStack<4, 8>>,
  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;

// N32/64 variable arguments.
// All arguments are passed in integer registers.
def CC_MipsN_VarArg : CallingConv<[
  CCIfType<[i8, i16, i32, i64],
      CCIfSubtargetNot<"isLittle()",
          CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,

  // All integers are promoted to 64-bit.
  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,

  CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,

  CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64,
                                      T0_64, T1_64, T2_64, T3_64]>>,

  // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
  CCIfType<[f32], CCAssignToStack<4, 8>>,
  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;

def RetCC_MipsN : CallingConv<[
  // f128 needs to be handled similarly to f32 and f64. However, f128 is not
  // legal and is lowered to i128 which is further lowered to a pair of i64's.
  // This presents us with a problem for the calling convention since hard-float
  // still needs to pass them in FPU registers, and soft-float needs to use $v0,
  // and $a0 instead of the usual $v0, and $v1. We therefore resort to a
  // pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on
  // whether the result was originally an f128 into the tablegen-erated code.
  //
  // f128 should only occur for the N64 ABI where long double is 128-bit. On
  // N32, long double is equivalent to double.
  CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>,

  // Aggregate returns are positioned at the lowest address in the slot for
  // both little and big-endian targets. When passing in registers, this
  // requires that big-endian targets shift the value into the upper bits.
  CCIfSubtarget<"isLittle()",
      CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>,
  CCIfSubtargetNot<"isLittle()",
      CCIfType<[i8, i16, i32, i64],
          CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,

  // i64 are returned in registers V0_64, V1_64
  CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>,

  // f32 are returned in registers F0, F2
  CCIfType<[f32], CCAssignToReg<[F0, F2]>>,

  // f64 are returned in registers D0, D2
  CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>>
]>;

//===----------------------------------------------------------------------===//
// Mips FastCC Calling Convention
//===----------------------------------------------------------------------===//
def CC_MipsO32_FastCC : CallingConv<[
  // f64 arguments are passed in double-precision floating pointer registers.
  CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()",
                                   CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6,
                                                  D7, D8, D9]>>>,
  CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()",
                                CCAssignToReg<[D0_64, D1_64, D2_64, D3_64,
                                               D4_64, D5_64, D6_64, D7_64,
                                               D8_64, D9_64, D10_64, D11_64,
                                               D12_64, D13_64, D14_64, D15_64,
                                               D16_64, D17_64, D18_64,
                                               D19_64]>>>>,
  CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()",
                                CCAssignToReg<[D0_64, D2_64, D4_64, D6_64,
                                               D8_64, D10_64, D12_64, D14_64,
                                               D16_64, D18_64]>>>>,

  // Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned.
  CCIfType<[f64], CCAssignToStack<8, 8>>
]>;

def CC_MipsN_FastCC : CallingConv<[
  // Integer arguments are passed in integer registers.
  CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64,
                                 T2_64, T3_64, T4_64, T5_64, T6_64, T7_64,
                                 T8_64, V1_64]>>,

  // f64 arguments are passed in double-precision floating pointer registers.
  CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64,
                                 D6_64, D7_64, D8_64, D9_64, D10_64, D11_64,
                                 D12_64, D13_64, D14_64, D15_64, D16_64, D17_64,
                                 D18_64, D19_64]>>,

  // Stack parameter slots for i64 and f64 are 64-bit doublewords and
  // 8-byte aligned.
  CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;

def CC_Mips_FastCC : CallingConv<[
  // Handles byval parameters.
  CCIfByVal<CCPassByVal<4, 4>>,

  // Promote i8/i16 arguments to i32.
  CCIfType<[i8, i16], CCPromoteToType<i32>>,

  // Integer arguments are passed in integer registers. All scratch registers,
  // except for AT, V0 and T9, are available to be used as argument registers.
  CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()",
      CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>,

  // In NaCl, T6, T7 and T8 are reserved and not available as argument
  // registers for fastcc.  T6 contains the mask for sandboxing control flow
  // (indirect jumps and calls).  T7 contains the mask for sandboxing memory
  // accesses (loads and stores).  T8 contains the thread pointer.
  CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()",
      CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>,

  // f32 arguments are passed in single-precision floating pointer registers.
  CCIfType<[f32], CCIfSubtarget<"useOddSPReg()",
      CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
                     F14, F15, F16, F17, F18, F19]>>>,

  // Don't use odd numbered single-precision registers for -mno-odd-spreg.
  CCIfType<[f32], CCIfSubtarget<"noOddSPReg()",
      CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>,

  // Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned.
  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,

  CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>,
  CCDelegateTo<CC_MipsN_FastCC>
]>;

//===----------------------------------------------------------------------===//
// Mips Calling Convention Dispatch
//===----------------------------------------------------------------------===//

def RetCC_Mips : CallingConv<[
  CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>,
  CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>,
  CCDelegateTo<RetCC_MipsO32>
]>;

def CC_Mips_ByVal : CallingConv<[
  CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>,
  CCIfByVal<CCPassByVal<8, 8>>
]>;

def CC_Mips16RetHelper : CallingConv<[
  CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,

  // Integer arguments are passed in integer registers.
  CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>
]>;

def CC_Mips_FixedArg : CallingConv<[
  // Mips16 needs special handling on some functions.
  CCIf<"State.getCallingConv() != CallingConv::Fast",
      CCIfSpecialCallingConv<"Mips16RetHelperConv",
           CCDelegateTo<CC_Mips16RetHelper>>>,

  CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,

  // f128 needs to be handled similarly to f32 and f64 on hard-float. However,
  // f128 is not legal and is lowered to i128 which is further lowered to a pair
  // of i64's.
  // This presents us with a problem for the calling convention since hard-float
  // still needs to pass them in FPU registers. We therefore resort to a
  // pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on
  // whether the argument was originally an f128 into the tablegen-erated code.
  //
  // f128 should only occur for the N64 ABI where long double is 128-bit. On
  // N32, long double is equivalent to double.
  CCIfType<[i64],
      CCIfSubtargetNot<"useSoftFloat()",
          CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>,

  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>,

  CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
  CCDelegateTo<CC_MipsN>
]>;

def CC_Mips_VarArg : CallingConv<[
  CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,

  CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
  CCDelegateTo<CC_MipsN_VarArg>
]>;

def CC_Mips : CallingConv<[
  CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>,
  CCDelegateTo<CC_Mips_FixedArg>
]>;

//===----------------------------------------------------------------------===//
// Callee-saved register lists.
//===----------------------------------------------------------------------===//

def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP,
                                               (sequence "S%u", 7, 0))>;

def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
                                        (sequence "S%u", 7, 0))> {
  let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2));
}

def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
                                   (sequence "S%u", 7, 0))>;

def CSR_O32_FP64 :
  CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP,
                       (sequence "S%u", 7, 0))>;

def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64,
                                   D30_64, RA_64, FP_64, GP_64,
                                   (sequence "S%u_64", 7, 0))>;

def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64,
                                   GP_64, (sequence "S%u_64", 7, 0))>;

def CSR_Mips16RetHelper :
  CalleeSavedRegs<(add V0, V1, FP,
                   (sequence "A%u", 3, 0), (sequence "S%u", 7, 0),
                   (sequence "D%u", 15, 10))>;

def CSR_Interrupt_32R6 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
                                              (sequence "S%u", 7, 0),
                                              (sequence "V%u", 1, 0),
                                              (sequence "T%u", 9, 0),
                                              RA, FP, GP, AT)>;

def CSR_Interrupt_32 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
                                            (sequence "S%u", 7, 0),
                                            (sequence "V%u", 1, 0),
                                            (sequence "T%u", 9, 0),
                                            RA, FP, GP, AT, LO0, HI0)>;

def CSR_Interrupt_64R6 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
                                              (sequence "V%u_64", 1, 0),
                                              (sequence "S%u_64", 7, 0),
                                              (sequence "T%u_64", 9, 0),
                                              RA_64, FP_64, GP_64, AT_64)>;

def CSR_Interrupt_64 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
                                            (sequence "S%u_64", 7, 0),
                                            (sequence "T%u_64", 9, 0),
                                            (sequence "V%u_64", 1, 0),
                                            RA_64, FP_64, GP_64, AT_64,
                                            LO0_64, HI0_64)>;