MipsDelaySlotFiller.cpp 32.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
//===- MipsDelaySlotFiller.cpp - Mips Delay Slot Filler -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Simple pass to fill delay slots with useful instructions.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/MipsMCNaCl.h"
#include "Mips.h"
#include "MipsInstrInfo.h"
#include "MipsRegisterInfo.h"
#include "MipsSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "mips-delay-slot-filler"

STATISTIC(FilledSlots, "Number of delay slots filled");
STATISTIC(UsefulSlots, "Number of delay slots filled with instructions that"
                       " are not NOP.");

static cl::opt<bool> DisableDelaySlotFiller(
  "disable-mips-delay-filler",
  cl::init(false),
  cl::desc("Fill all delay slots with NOPs."),
  cl::Hidden);

static cl::opt<bool> DisableForwardSearch(
  "disable-mips-df-forward-search",
  cl::init(true),
  cl::desc("Disallow MIPS delay filler to search forward."),
  cl::Hidden);

static cl::opt<bool> DisableSuccBBSearch(
  "disable-mips-df-succbb-search",
  cl::init(true),
  cl::desc("Disallow MIPS delay filler to search successor basic blocks."),
  cl::Hidden);

static cl::opt<bool> DisableBackwardSearch(
  "disable-mips-df-backward-search",
  cl::init(false),
  cl::desc("Disallow MIPS delay filler to search backward."),
  cl::Hidden);

enum CompactBranchPolicy {
  CB_Never,   ///< The policy 'never' may in some circumstances or for some
              ///< ISAs not be absolutely adhered to.
  CB_Optimal, ///< Optimal is the default and will produce compact branches
              ///< when delay slots cannot be filled.
  CB_Always   ///< 'always' may in some circumstances may not be
              ///< absolutely adhered to there may not be a corresponding
              ///< compact form of a branch.
};

static cl::opt<CompactBranchPolicy> MipsCompactBranchPolicy(
    "mips-compact-branches", cl::Optional, cl::init(CB_Optimal),
    cl::desc("MIPS Specific: Compact branch policy."),
    cl::values(clEnumValN(CB_Never, "never",
                          "Do not use compact branches if possible."),
               clEnumValN(CB_Optimal, "optimal",
                          "Use compact branches where appropiate (default)."),
               clEnumValN(CB_Always, "always",
                          "Always use compact branches if possible.")));

namespace {

  using Iter = MachineBasicBlock::iterator;
  using ReverseIter = MachineBasicBlock::reverse_iterator;
  using BB2BrMap = SmallDenseMap<MachineBasicBlock *, MachineInstr *, 2>;

  class RegDefsUses {
  public:
    RegDefsUses(const TargetRegisterInfo &TRI);

    void init(const MachineInstr &MI);

    /// This function sets all caller-saved registers in Defs.
    void setCallerSaved(const MachineInstr &MI);

    /// This function sets all unallocatable registers in Defs.
    void setUnallocatableRegs(const MachineFunction &MF);

    /// Set bits in Uses corresponding to MBB's live-out registers except for
    /// the registers that are live-in to SuccBB.
    void addLiveOut(const MachineBasicBlock &MBB,
                    const MachineBasicBlock &SuccBB);

    bool update(const MachineInstr &MI, unsigned Begin, unsigned End);

  private:
    bool checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses, unsigned Reg,
                          bool IsDef) const;

    /// Returns true if Reg or its alias is in RegSet.
    bool isRegInSet(const BitVector &RegSet, unsigned Reg) const;

    const TargetRegisterInfo &TRI;
    BitVector Defs, Uses;
  };

  /// Base class for inspecting loads and stores.
  class InspectMemInstr {
  public:
    InspectMemInstr(bool ForbidMemInstr_) : ForbidMemInstr(ForbidMemInstr_) {}
    virtual ~InspectMemInstr() = default;

    /// Return true if MI cannot be moved to delay slot.
    bool hasHazard(const MachineInstr &MI);

  protected:
    /// Flags indicating whether loads or stores have been seen.
    bool OrigSeenLoad = false;
    bool OrigSeenStore = false;
    bool SeenLoad = false;
    bool SeenStore = false;

    /// Memory instructions are not allowed to move to delay slot if this flag
    /// is true.
    bool ForbidMemInstr;

  private:
    virtual bool hasHazard_(const MachineInstr &MI) = 0;
  };

  /// This subclass rejects any memory instructions.
  class NoMemInstr : public InspectMemInstr {
  public:
    NoMemInstr() : InspectMemInstr(true) {}

  private:
    bool hasHazard_(const MachineInstr &MI) override { return true; }
  };

  /// This subclass accepts loads from stacks and constant loads.
  class LoadFromStackOrConst : public InspectMemInstr {
  public:
    LoadFromStackOrConst() : InspectMemInstr(false) {}

  private:
    bool hasHazard_(const MachineInstr &MI) override;
  };

  /// This subclass uses memory dependence information to determine whether a
  /// memory instruction can be moved to a delay slot.
  class MemDefsUses : public InspectMemInstr {
  public:
    MemDefsUses(const DataLayout &DL, const MachineFrameInfo *MFI);

  private:
    using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>;

    bool hasHazard_(const MachineInstr &MI) override;

    /// Update Defs and Uses. Return true if there exist dependences that
    /// disqualify the delay slot candidate between V and values in Uses and
    /// Defs.
    bool updateDefsUses(ValueType V, bool MayStore);

    /// Get the list of underlying objects of MI's memory operand.
    bool getUnderlyingObjects(const MachineInstr &MI,
                              SmallVectorImpl<ValueType> &Objects) const;

    const MachineFrameInfo *MFI;
    SmallPtrSet<ValueType, 4> Uses, Defs;
    const DataLayout &DL;

    /// Flags indicating whether loads or stores with no underlying objects have
    /// been seen.
    bool SeenNoObjLoad = false;
    bool SeenNoObjStore = false;
  };

  class MipsDelaySlotFiller : public MachineFunctionPass {
  public:
    MipsDelaySlotFiller() : MachineFunctionPass(ID) {
      initializeMipsDelaySlotFillerPass(*PassRegistry::getPassRegistry());
    }

    StringRef getPassName() const override { return "Mips Delay Slot Filler"; }

    bool runOnMachineFunction(MachineFunction &F) override {
      TM = &F.getTarget();
      bool Changed = false;
      for (MachineFunction::iterator FI = F.begin(), FE = F.end();
           FI != FE; ++FI)
        Changed |= runOnMachineBasicBlock(*FI);

      // This pass invalidates liveness information when it reorders
      // instructions to fill delay slot. Without this, -verify-machineinstrs
      // will fail.
      if (Changed)
        F.getRegInfo().invalidateLiveness();

      return Changed;
    }

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineBranchProbabilityInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    static char ID;

  private:
    bool runOnMachineBasicBlock(MachineBasicBlock &MBB);

    Iter replaceWithCompactBranch(MachineBasicBlock &MBB, Iter Branch,
                                  const DebugLoc &DL);

    /// This function checks if it is valid to move Candidate to the delay slot
    /// and returns true if it isn't. It also updates memory and register
    /// dependence information.
    bool delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU,
                        InspectMemInstr &IM) const;

    /// This function searches range [Begin, End) for an instruction that can be
    /// moved to the delay slot. Returns true on success.
    template<typename IterTy>
    bool searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
                     RegDefsUses &RegDU, InspectMemInstr &IM, Iter Slot,
                     IterTy &Filler) const;

    /// This function searches in the backward direction for an instruction that
    /// can be moved to the delay slot. Returns true on success.
    bool searchBackward(MachineBasicBlock &MBB, MachineInstr &Slot) const;

    /// This function searches MBB in the forward direction for an instruction
    /// that can be moved to the delay slot. Returns true on success.
    bool searchForward(MachineBasicBlock &MBB, Iter Slot) const;

    /// This function searches one of MBB's successor blocks for an instruction
    /// that can be moved to the delay slot and inserts clones of the
    /// instruction into the successor's predecessor blocks.
    bool searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const;

    /// Pick a successor block of MBB. Return NULL if MBB doesn't have a
    /// successor block that is not a landing pad.
    MachineBasicBlock *selectSuccBB(MachineBasicBlock &B) const;

    /// This function analyzes MBB and returns an instruction with an unoccupied
    /// slot that branches to Dst.
    std::pair<MipsInstrInfo::BranchType, MachineInstr *>
    getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const;

    /// Examine Pred and see if it is possible to insert an instruction into
    /// one of its branches delay slot or its end.
    bool examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ,
                     RegDefsUses &RegDU, bool &HasMultipleSuccs,
                     BB2BrMap &BrMap) const;

    bool terminateSearch(const MachineInstr &Candidate) const;

    const TargetMachine *TM = nullptr;
  };

} // end anonymous namespace

char MipsDelaySlotFiller::ID = 0;

static bool hasUnoccupiedSlot(const MachineInstr *MI) {
  return MI->hasDelaySlot() && !MI->isBundledWithSucc();
}

INITIALIZE_PASS(MipsDelaySlotFiller, DEBUG_TYPE,
                "Fill delay slot for MIPS", false, false)

/// This function inserts clones of Filler into predecessor blocks.
static void insertDelayFiller(Iter Filler, const BB2BrMap &BrMap) {
  MachineFunction *MF = Filler->getParent()->getParent();

  for (BB2BrMap::const_iterator I = BrMap.begin(); I != BrMap.end(); ++I) {
    if (I->second) {
      MIBundleBuilder(I->second).append(MF->CloneMachineInstr(&*Filler));
      ++UsefulSlots;
    } else {
      I->first->insert(I->first->end(), MF->CloneMachineInstr(&*Filler));
    }
  }
}

/// This function adds registers Filler defines to MBB's live-in register list.
static void addLiveInRegs(Iter Filler, MachineBasicBlock &MBB) {
  for (unsigned I = 0, E = Filler->getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = Filler->getOperand(I);
    unsigned R;

    if (!MO.isReg() || !MO.isDef() || !(R = MO.getReg()))
      continue;

#ifndef NDEBUG
    const MachineFunction &MF = *MBB.getParent();
    assert(MF.getSubtarget().getRegisterInfo()->getAllocatableSet(MF).test(R) &&
           "Shouldn't move an instruction with unallocatable registers across "
           "basic block boundaries.");
#endif

    if (!MBB.isLiveIn(R))
      MBB.addLiveIn(R);
  }
}

RegDefsUses::RegDefsUses(const TargetRegisterInfo &TRI)
    : TRI(TRI), Defs(TRI.getNumRegs(), false), Uses(TRI.getNumRegs(), false) {}

void RegDefsUses::init(const MachineInstr &MI) {
  // Add all register operands which are explicit and non-variadic.
  update(MI, 0, MI.getDesc().getNumOperands());

  // If MI is a call, add RA to Defs to prevent users of RA from going into
  // delay slot.
  if (MI.isCall())
    Defs.set(Mips::RA);

  // Add all implicit register operands of branch instructions except
  // register AT.
  if (MI.isBranch()) {
    update(MI, MI.getDesc().getNumOperands(), MI.getNumOperands());
    Defs.reset(Mips::AT);
  }
}

void RegDefsUses::setCallerSaved(const MachineInstr &MI) {
  assert(MI.isCall());

  // Add RA/RA_64 to Defs to prevent users of RA/RA_64 from going into
  // the delay slot. The reason is that RA/RA_64 must not be changed
  // in the delay slot so that the callee can return to the caller.
  if (MI.definesRegister(Mips::RA) || MI.definesRegister(Mips::RA_64)) {
    Defs.set(Mips::RA);
    Defs.set(Mips::RA_64);
  }

  // If MI is a call, add all caller-saved registers to Defs.
  BitVector CallerSavedRegs(TRI.getNumRegs(), true);

  CallerSavedRegs.reset(Mips::ZERO);
  CallerSavedRegs.reset(Mips::ZERO_64);

  for (const MCPhysReg *R = TRI.getCalleeSavedRegs(MI.getParent()->getParent());
       *R; ++R)
    for (MCRegAliasIterator AI(*R, &TRI, true); AI.isValid(); ++AI)
      CallerSavedRegs.reset(*AI);

  Defs |= CallerSavedRegs;
}

void RegDefsUses::setUnallocatableRegs(const MachineFunction &MF) {
  BitVector AllocSet = TRI.getAllocatableSet(MF);

  for (unsigned R : AllocSet.set_bits())
    for (MCRegAliasIterator AI(R, &TRI, false); AI.isValid(); ++AI)
      AllocSet.set(*AI);

  AllocSet.set(Mips::ZERO);
  AllocSet.set(Mips::ZERO_64);

  Defs |= AllocSet.flip();
}

void RegDefsUses::addLiveOut(const MachineBasicBlock &MBB,
                             const MachineBasicBlock &SuccBB) {
  for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
       SE = MBB.succ_end(); SI != SE; ++SI)
    if (*SI != &SuccBB)
      for (const auto &LI : (*SI)->liveins())
        Uses.set(LI.PhysReg);
}

bool RegDefsUses::update(const MachineInstr &MI, unsigned Begin, unsigned End) {
  BitVector NewDefs(TRI.getNumRegs()), NewUses(TRI.getNumRegs());
  bool HasHazard = false;

  for (unsigned I = Begin; I != End; ++I) {
    const MachineOperand &MO = MI.getOperand(I);

    if (MO.isReg() && MO.getReg()) {
      if (checkRegDefsUses(NewDefs, NewUses, MO.getReg(), MO.isDef())) {
        LLVM_DEBUG(dbgs() << DEBUG_TYPE ": found register hazard for operand "
                          << I << ": ";
                   MO.dump());
        HasHazard = true;
      }
    }
  }

  Defs |= NewDefs;
  Uses |= NewUses;

  return HasHazard;
}

bool RegDefsUses::checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses,
                                   unsigned Reg, bool IsDef) const {
  if (IsDef) {
    NewDefs.set(Reg);
    // check whether Reg has already been defined or used.
    return (isRegInSet(Defs, Reg) || isRegInSet(Uses, Reg));
  }

  NewUses.set(Reg);
  // check whether Reg has already been defined.
  return isRegInSet(Defs, Reg);
}

bool RegDefsUses::isRegInSet(const BitVector &RegSet, unsigned Reg) const {
  // Check Reg and all aliased Registers.
  for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
    if (RegSet.test(*AI))
      return true;
  return false;
}

bool InspectMemInstr::hasHazard(const MachineInstr &MI) {
  if (!MI.mayStore() && !MI.mayLoad())
    return false;

  if (ForbidMemInstr)
    return true;

  OrigSeenLoad = SeenLoad;
  OrigSeenStore = SeenStore;
  SeenLoad |= MI.mayLoad();
  SeenStore |= MI.mayStore();

  // If MI is an ordered or volatile memory reference, disallow moving
  // subsequent loads and stores to delay slot.
  if (MI.hasOrderedMemoryRef() && (OrigSeenLoad || OrigSeenStore)) {
    ForbidMemInstr = true;
    return true;
  }

  return hasHazard_(MI);
}

bool LoadFromStackOrConst::hasHazard_(const MachineInstr &MI) {
  if (MI.mayStore())
    return true;

  if (!MI.hasOneMemOperand() || !(*MI.memoperands_begin())->getPseudoValue())
    return true;

  if (const PseudoSourceValue *PSV =
      (*MI.memoperands_begin())->getPseudoValue()) {
    if (isa<FixedStackPseudoSourceValue>(PSV))
      return false;
    return !PSV->isConstant(nullptr) && !PSV->isStack();
  }

  return true;
}

MemDefsUses::MemDefsUses(const DataLayout &DL, const MachineFrameInfo *MFI_)
    : InspectMemInstr(false), MFI(MFI_), DL(DL) {}

bool MemDefsUses::hasHazard_(const MachineInstr &MI) {
  bool HasHazard = false;

  // Check underlying object list.
  SmallVector<ValueType, 4> Objs;
  if (getUnderlyingObjects(MI, Objs)) {
    for (ValueType VT : Objs)
      HasHazard |= updateDefsUses(VT, MI.mayStore());
    return HasHazard;
  }

  // No underlying objects found.
  HasHazard = MI.mayStore() && (OrigSeenLoad || OrigSeenStore);
  HasHazard |= MI.mayLoad() || OrigSeenStore;

  SeenNoObjLoad |= MI.mayLoad();
  SeenNoObjStore |= MI.mayStore();

  return HasHazard;
}

bool MemDefsUses::updateDefsUses(ValueType V, bool MayStore) {
  if (MayStore)
    return !Defs.insert(V).second || Uses.count(V) || SeenNoObjStore ||
           SeenNoObjLoad;

  Uses.insert(V);
  return Defs.count(V) || SeenNoObjStore;
}

bool MemDefsUses::
getUnderlyingObjects(const MachineInstr &MI,
                     SmallVectorImpl<ValueType> &Objects) const {
  if (!MI.hasOneMemOperand())
    return false;

  auto & MMO = **MI.memoperands_begin();

  if (const PseudoSourceValue *PSV = MMO.getPseudoValue()) {
    if (!PSV->isAliased(MFI))
      return false;
    Objects.push_back(PSV);
    return true;
  }

  if (const Value *V = MMO.getValue()) {
    SmallVector<const Value *, 4> Objs;
    GetUnderlyingObjects(V, Objs, DL);

    for (const Value *UValue : Objs) {
      if (!isIdentifiedObject(V))
        return false;

      Objects.push_back(UValue);
    }
    return true;
  }

  return false;
}

// Replace Branch with the compact branch instruction.
Iter MipsDelaySlotFiller::replaceWithCompactBranch(MachineBasicBlock &MBB,
                                                   Iter Branch,
                                                   const DebugLoc &DL) {
  const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>();
  const MipsInstrInfo *TII = STI.getInstrInfo();

  unsigned NewOpcode = TII->getEquivalentCompactForm(Branch);
  Branch = TII->genInstrWithNewOpc(NewOpcode, Branch);

  std::next(Branch)->eraseFromParent();
  return Branch;
}

// For given opcode returns opcode of corresponding instruction with short
// delay slot.
// For the pseudo TAILCALL*_MM instructions return the short delay slot
// form. Unfortunately, TAILCALL<->b16 is denied as b16 has a limited range
// that is too short to make use of for tail calls.
static int getEquivalentCallShort(int Opcode) {
  switch (Opcode) {
  case Mips::BGEZAL:
    return Mips::BGEZALS_MM;
  case Mips::BLTZAL:
    return Mips::BLTZALS_MM;
  case Mips::JAL:
  case Mips::JAL_MM:
    return Mips::JALS_MM;
  case Mips::JALR:
    return Mips::JALRS_MM;
  case Mips::JALR16_MM:
    return Mips::JALRS16_MM;
  case Mips::TAILCALL_MM:
    llvm_unreachable("Attempting to shorten the TAILCALL_MM pseudo!");
  case Mips::TAILCALLREG:
    return Mips::JR16_MM;
  default:
    llvm_unreachable("Unexpected call instruction for microMIPS.");
  }
}

/// runOnMachineBasicBlock - Fill in delay slots for the given basic block.
/// We assume there is only one delay slot per delayed instruction.
bool MipsDelaySlotFiller::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
  bool Changed = false;
  const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>();
  bool InMicroMipsMode = STI.inMicroMipsMode();
  const MipsInstrInfo *TII = STI.getInstrInfo();

  for (Iter I = MBB.begin(); I != MBB.end(); ++I) {
    if (!hasUnoccupiedSlot(&*I))
      continue;

    // Delay slot filling is disabled at -O0, or in microMIPS32R6.
    if (!DisableDelaySlotFiller && (TM->getOptLevel() != CodeGenOpt::None) &&
        !(InMicroMipsMode && STI.hasMips32r6())) {

      bool Filled = false;

      if (MipsCompactBranchPolicy.getValue() != CB_Always ||
           !TII->getEquivalentCompactForm(I)) {
        if (searchBackward(MBB, *I)) {
          LLVM_DEBUG(dbgs() << DEBUG_TYPE ": found instruction for delay slot"
                                          " in backwards search.\n");
          Filled = true;
        } else if (I->isTerminator()) {
          if (searchSuccBBs(MBB, I)) {
            Filled = true;
            LLVM_DEBUG(dbgs() << DEBUG_TYPE ": found instruction for delay slot"
                                            " in successor BB search.\n");
          }
        } else if (searchForward(MBB, I)) {
          LLVM_DEBUG(dbgs() << DEBUG_TYPE ": found instruction for delay slot"
                                          " in forwards search.\n");
          Filled = true;
        }
      }

      if (Filled) {
        // Get instruction with delay slot.
        MachineBasicBlock::instr_iterator DSI = I.getInstrIterator();

        if (InMicroMipsMode && TII->getInstSizeInBytes(*std::next(DSI)) == 2 &&
            DSI->isCall()) {
          // If instruction in delay slot is 16b change opcode to
          // corresponding instruction with short delay slot.

          // TODO: Implement an instruction mapping table of 16bit opcodes to
          // 32bit opcodes so that an instruction can be expanded. This would
          // save 16 bits as a TAILCALL_MM pseudo requires a fullsized nop.
          // TODO: Permit b16 when branching backwards to the same function
          // if it is in range.
          DSI->setDesc(TII->get(getEquivalentCallShort(DSI->getOpcode())));
        }
        ++FilledSlots;
        Changed = true;
        continue;
      }
    }

    // For microMIPS if instruction is BEQ or BNE with one ZERO register, then
    // instead of adding NOP replace this instruction with the corresponding
    // compact branch instruction, i.e. BEQZC or BNEZC. Additionally
    // PseudoReturn and PseudoIndirectBranch are expanded to JR_MM, so they can
    // be replaced with JRC16_MM.

    // For MIPSR6 attempt to produce the corresponding compact (no delay slot)
    // form of the CTI. For indirect jumps this will not require inserting a
    // NOP and for branches will hopefully avoid requiring a NOP.
    if ((InMicroMipsMode ||
         (STI.hasMips32r6() && MipsCompactBranchPolicy != CB_Never)) &&
        TII->getEquivalentCompactForm(I)) {
      I = replaceWithCompactBranch(MBB, I, I->getDebugLoc());
      Changed = true;
      continue;
    }

    // Bundle the NOP to the instruction with the delay slot.
    LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": could not fill delay slot for ";
               I->dump());
    BuildMI(MBB, std::next(I), I->getDebugLoc(), TII->get(Mips::NOP));
    MIBundleBuilder(MBB, I, std::next(I, 2));
    ++FilledSlots;
    Changed = true;
  }

  return Changed;
}

template <typename IterTy>
bool MipsDelaySlotFiller::searchRange(MachineBasicBlock &MBB, IterTy Begin,
                                      IterTy End, RegDefsUses &RegDU,
                                      InspectMemInstr &IM, Iter Slot,
                                      IterTy &Filler) const {
  for (IterTy I = Begin; I != End;) {
    IterTy CurrI = I;
    ++I;
    LLVM_DEBUG(dbgs() << DEBUG_TYPE ": checking instruction: "; CurrI->dump());
    // skip debug value
    if (CurrI->isDebugInstr()) {
      LLVM_DEBUG(dbgs() << DEBUG_TYPE ": ignoring debug instruction: ";
                 CurrI->dump());
      continue;
    }

    if (CurrI->isBundle()) {
      LLVM_DEBUG(dbgs() << DEBUG_TYPE ": ignoring BUNDLE instruction: ";
                 CurrI->dump());
      // However, we still need to update the register def-use information.
      RegDU.update(*CurrI, 0, CurrI->getNumOperands());
      continue;
    }

    if (terminateSearch(*CurrI)) {
      LLVM_DEBUG(dbgs() << DEBUG_TYPE ": should terminate search: ";
                 CurrI->dump());
      break;
    }

    assert((!CurrI->isCall() && !CurrI->isReturn() && !CurrI->isBranch()) &&
           "Cannot put calls, returns or branches in delay slot.");

    if (CurrI->isKill()) {
      CurrI->eraseFromParent();
      continue;
    }

    if (delayHasHazard(*CurrI, RegDU, IM))
      continue;

    const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>();
    if (STI.isTargetNaCl()) {
      // In NaCl, instructions that must be masked are forbidden in delay slots.
      // We only check for loads, stores and SP changes.  Calls, returns and
      // branches are not checked because non-NaCl targets never put them in
      // delay slots.
      unsigned AddrIdx;
      if ((isBasePlusOffsetMemoryAccess(CurrI->getOpcode(), &AddrIdx) &&
           baseRegNeedsLoadStoreMask(CurrI->getOperand(AddrIdx).getReg())) ||
          CurrI->modifiesRegister(Mips::SP, STI.getRegisterInfo()))
        continue;
    }

    bool InMicroMipsMode = STI.inMicroMipsMode();
    const MipsInstrInfo *TII = STI.getInstrInfo();
    unsigned Opcode = (*Slot).getOpcode();
    // This is complicated by the tail call optimization. For non-PIC code
    // there is only a 32bit sized unconditional branch which can be assumed
    // to be able to reach the target. b16 only has a range of +/- 1 KB.
    // It's entirely possible that the target function is reachable with b16
    // but we don't have enough information to make that decision.
     if (InMicroMipsMode && TII->getInstSizeInBytes(*CurrI) == 2 &&
        (Opcode == Mips::JR || Opcode == Mips::PseudoIndirectBranch ||
         Opcode == Mips::PseudoIndirectBranch_MM ||
         Opcode == Mips::PseudoReturn || Opcode == Mips::TAILCALL))
      continue;
     // Instructions LWP/SWP and MOVEP should not be in a delay slot as that
     // results in unpredictable behaviour
     if (InMicroMipsMode && (Opcode == Mips::LWP_MM || Opcode == Mips::SWP_MM ||
                             Opcode == Mips::MOVEP_MM))
       continue;

    Filler = CurrI;
    LLVM_DEBUG(dbgs() << DEBUG_TYPE ": found instruction for delay slot: ";
               CurrI->dump());

    return true;
  }

  return false;
}

bool MipsDelaySlotFiller::searchBackward(MachineBasicBlock &MBB,
                                         MachineInstr &Slot) const {
  if (DisableBackwardSearch)
    return false;

  auto *Fn = MBB.getParent();
  RegDefsUses RegDU(*Fn->getSubtarget().getRegisterInfo());
  MemDefsUses MemDU(Fn->getDataLayout(), &Fn->getFrameInfo());
  ReverseIter Filler;

  RegDU.init(Slot);

  MachineBasicBlock::iterator SlotI = Slot;
  if (!searchRange(MBB, ++SlotI.getReverse(), MBB.rend(), RegDU, MemDU, Slot,
                   Filler)) {
    LLVM_DEBUG(dbgs() << DEBUG_TYPE ": could not find instruction for delay "
                                    "slot using backwards search.\n");
    return false;
  }

  MBB.splice(std::next(SlotI), &MBB, Filler.getReverse());
  MIBundleBuilder(MBB, SlotI, std::next(SlotI, 2));
  ++UsefulSlots;
  return true;
}

bool MipsDelaySlotFiller::searchForward(MachineBasicBlock &MBB,
                                        Iter Slot) const {
  // Can handle only calls.
  if (DisableForwardSearch || !Slot->isCall())
    return false;

  RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo());
  NoMemInstr NM;
  Iter Filler;

  RegDU.setCallerSaved(*Slot);

  if (!searchRange(MBB, std::next(Slot), MBB.end(), RegDU, NM, Slot, Filler)) {
    LLVM_DEBUG(dbgs() << DEBUG_TYPE ": could not find instruction for delay "
                                    "slot using forwards search.\n");
    return false;
  }

  MBB.splice(std::next(Slot), &MBB, Filler);
  MIBundleBuilder(MBB, Slot, std::next(Slot, 2));
  ++UsefulSlots;
  return true;
}

bool MipsDelaySlotFiller::searchSuccBBs(MachineBasicBlock &MBB,
                                        Iter Slot) const {
  if (DisableSuccBBSearch)
    return false;

  MachineBasicBlock *SuccBB = selectSuccBB(MBB);

  if (!SuccBB)
    return false;

  RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo());
  bool HasMultipleSuccs = false;
  BB2BrMap BrMap;
  std::unique_ptr<InspectMemInstr> IM;
  Iter Filler;
  auto *Fn = MBB.getParent();

  // Iterate over SuccBB's predecessor list.
  for (MachineBasicBlock::pred_iterator PI = SuccBB->pred_begin(),
       PE = SuccBB->pred_end(); PI != PE; ++PI)
    if (!examinePred(**PI, *SuccBB, RegDU, HasMultipleSuccs, BrMap))
      return false;

  // Do not allow moving instructions which have unallocatable register operands
  // across basic block boundaries.
  RegDU.setUnallocatableRegs(*Fn);

  // Only allow moving loads from stack or constants if any of the SuccBB's
  // predecessors have multiple successors.
  if (HasMultipleSuccs) {
    IM.reset(new LoadFromStackOrConst());
  } else {
    const MachineFrameInfo &MFI = Fn->getFrameInfo();
    IM.reset(new MemDefsUses(Fn->getDataLayout(), &MFI));
  }

  if (!searchRange(MBB, SuccBB->begin(), SuccBB->end(), RegDU, *IM, Slot,
                   Filler))
    return false;

  insertDelayFiller(Filler, BrMap);
  addLiveInRegs(Filler, *SuccBB);
  Filler->eraseFromParent();

  return true;
}

MachineBasicBlock *
MipsDelaySlotFiller::selectSuccBB(MachineBasicBlock &B) const {
  if (B.succ_empty())
    return nullptr;

  // Select the successor with the larget edge weight.
  auto &Prob = getAnalysis<MachineBranchProbabilityInfo>();
  MachineBasicBlock *S = *std::max_element(
      B.succ_begin(), B.succ_end(),
      [&](const MachineBasicBlock *Dst0, const MachineBasicBlock *Dst1) {
        return Prob.getEdgeProbability(&B, Dst0) <
               Prob.getEdgeProbability(&B, Dst1);
      });
  return S->isEHPad() ? nullptr : S;
}

std::pair<MipsInstrInfo::BranchType, MachineInstr *>
MipsDelaySlotFiller::getBranch(MachineBasicBlock &MBB,
                               const MachineBasicBlock &Dst) const {
  const MipsInstrInfo *TII =
      MBB.getParent()->getSubtarget<MipsSubtarget>().getInstrInfo();
  MachineBasicBlock *TrueBB = nullptr, *FalseBB = nullptr;
  SmallVector<MachineInstr*, 2> BranchInstrs;
  SmallVector<MachineOperand, 2> Cond;

  MipsInstrInfo::BranchType R =
      TII->analyzeBranch(MBB, TrueBB, FalseBB, Cond, false, BranchInstrs);

  if ((R == MipsInstrInfo::BT_None) || (R == MipsInstrInfo::BT_NoBranch))
    return std::make_pair(R, nullptr);

  if (R != MipsInstrInfo::BT_CondUncond) {
    if (!hasUnoccupiedSlot(BranchInstrs[0]))
      return std::make_pair(MipsInstrInfo::BT_None, nullptr);

    assert(((R != MipsInstrInfo::BT_Uncond) || (TrueBB == &Dst)));

    return std::make_pair(R, BranchInstrs[0]);
  }

  assert((TrueBB == &Dst) || (FalseBB == &Dst));

  // Examine the conditional branch. See if its slot is occupied.
  if (hasUnoccupiedSlot(BranchInstrs[0]))
    return std::make_pair(MipsInstrInfo::BT_Cond, BranchInstrs[0]);

  // If that fails, try the unconditional branch.
  if (hasUnoccupiedSlot(BranchInstrs[1]) && (FalseBB == &Dst))
    return std::make_pair(MipsInstrInfo::BT_Uncond, BranchInstrs[1]);

  return std::make_pair(MipsInstrInfo::BT_None, nullptr);
}

bool MipsDelaySlotFiller::examinePred(MachineBasicBlock &Pred,
                                      const MachineBasicBlock &Succ,
                                      RegDefsUses &RegDU,
                                      bool &HasMultipleSuccs,
                                      BB2BrMap &BrMap) const {
  std::pair<MipsInstrInfo::BranchType, MachineInstr *> P =
      getBranch(Pred, Succ);

  // Return if either getBranch wasn't able to analyze the branches or there
  // were no branches with unoccupied slots.
  if (P.first == MipsInstrInfo::BT_None)
    return false;

  if ((P.first != MipsInstrInfo::BT_Uncond) &&
      (P.first != MipsInstrInfo::BT_NoBranch)) {
    HasMultipleSuccs = true;
    RegDU.addLiveOut(Pred, Succ);
  }

  BrMap[&Pred] = P.second;
  return true;
}

bool MipsDelaySlotFiller::delayHasHazard(const MachineInstr &Candidate,
                                         RegDefsUses &RegDU,
                                         InspectMemInstr &IM) const {
  assert(!Candidate.isKill() &&
         "KILL instructions should have been eliminated at this point.");

  bool HasHazard = Candidate.isImplicitDef();

  HasHazard |= IM.hasHazard(Candidate);
  HasHazard |= RegDU.update(Candidate, 0, Candidate.getNumOperands());

  return HasHazard;
}

bool MipsDelaySlotFiller::terminateSearch(const MachineInstr &Candidate) const {
  return (Candidate.isTerminator() || Candidate.isCall() ||
          Candidate.isPosition() || Candidate.isInlineAsm() ||
          Candidate.hasUnmodeledSideEffects());
}

/// createMipsDelaySlotFillerPass - Returns a pass that fills in delay
/// slots in Mips MachineFunctions
FunctionPass *llvm::createMipsDelaySlotFillerPass() {
  return new MipsDelaySlotFiller();
}