SystemZHazardRecognizer.cpp 14.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
//=-- SystemZHazardRecognizer.h - SystemZ Hazard Recognizer -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a hazard recognizer for the SystemZ scheduler.
//
// This class is used by the SystemZ scheduling strategy to maintain
// the state during scheduling, and provide cost functions for
// scheduling candidates. This includes:
//
// * Decoder grouping. A decoder group can maximally hold 3 uops, and
// instructions that always begin a new group should be scheduled when
// the current decoder group is empty.
// * Processor resources usage. It is beneficial to balance the use of
// resources.
//
// A goal is to consider all instructions, also those outside of any
// scheduling region. Such instructions are "advanced" past and include
// single instructions before a scheduling region, branches etc.
//
// A block that has only one predecessor continues scheduling with the state
// of it (which may be updated by emitting branches).
//
// ===---------------------------------------------------------------------===//

#include "SystemZHazardRecognizer.h"
#include "llvm/ADT/Statistic.h"

using namespace llvm;

#define DEBUG_TYPE "machine-scheduler"

// This is the limit of processor resource usage at which the
// scheduler should try to look for other instructions (not using the
// critical resource).
static cl::opt<int> ProcResCostLim("procres-cost-lim", cl::Hidden,
                                   cl::desc("The OOO window for processor "
                                            "resources during scheduling."),
                                   cl::init(8));

unsigned SystemZHazardRecognizer::
getNumDecoderSlots(SUnit *SU) const {
  const MCSchedClassDesc *SC = getSchedClass(SU);
  if (!SC->isValid())
    return 0; // IMPLICIT_DEF / KILL -- will not make impact in output.

  assert((SC->NumMicroOps != 2 || (SC->BeginGroup && !SC->EndGroup)) &&
         "Only cracked instruction can have 2 uops.");
  assert((SC->NumMicroOps < 3 || (SC->BeginGroup && SC->EndGroup)) &&
         "Expanded instructions always group alone.");
  assert((SC->NumMicroOps < 3 || (SC->NumMicroOps % 3 == 0)) &&
         "Expanded instructions fill the group(s).");

  return SC->NumMicroOps;
}

unsigned SystemZHazardRecognizer::getCurrCycleIdx(SUnit *SU) const {
  unsigned Idx = CurrGroupSize;
  if (GrpCount % 2)
    Idx += 3;

  if (SU != nullptr && !fitsIntoCurrentGroup(SU)) {
    if (Idx == 1 || Idx == 2)
      Idx = 3;
    else if (Idx == 4 || Idx == 5)
      Idx = 0;
  }

  return Idx;
}

ScheduleHazardRecognizer::HazardType SystemZHazardRecognizer::
getHazardType(SUnit *m, int Stalls) {
  return (fitsIntoCurrentGroup(m) ? NoHazard : Hazard);
}

void SystemZHazardRecognizer::Reset() {
  CurrGroupSize = 0;
  CurrGroupHas4RegOps = false;
  clearProcResCounters();
  GrpCount = 0;
  LastFPdOpCycleIdx = UINT_MAX;
  LastEmittedMI = nullptr;
  LLVM_DEBUG(CurGroupDbg = "";);
}

bool
SystemZHazardRecognizer::fitsIntoCurrentGroup(SUnit *SU) const {
  const MCSchedClassDesc *SC = getSchedClass(SU);
  if (!SC->isValid())
    return true;

  // A cracked instruction only fits into schedule if the current
  // group is empty.
  if (SC->BeginGroup)
    return (CurrGroupSize == 0);

  // An instruction with 4 register operands will not fit in last slot.
  assert ((CurrGroupSize < 2 || !CurrGroupHas4RegOps) &&
          "Current decoder group is already full!");
  if (CurrGroupSize == 2 && has4RegOps(SU->getInstr()))
    return false;

  // Since a full group is handled immediately in EmitInstruction(),
  // SU should fit into current group. NumSlots should be 1 or 0,
  // since it is not a cracked or expanded instruction.
  assert ((getNumDecoderSlots(SU) <= 1) && (CurrGroupSize < 3) &&
          "Expected normal instruction to fit in non-full group!");

  return true;
}

bool SystemZHazardRecognizer::has4RegOps(const MachineInstr *MI) const {
  const MachineFunction &MF = *MI->getParent()->getParent();
  const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
  const MCInstrDesc &MID = MI->getDesc();
  unsigned Count = 0;
  for (unsigned OpIdx = 0; OpIdx < MID.getNumOperands(); OpIdx++) {
    const TargetRegisterClass *RC = TII->getRegClass(MID, OpIdx, TRI, MF);
    if (RC == nullptr)
      continue;
    if (OpIdx >= MID.getNumDefs() &&
        MID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
      continue;
    Count++;
  }
  return Count >= 4;
}

void SystemZHazardRecognizer::nextGroup() {
  if (CurrGroupSize == 0)
    return;

  LLVM_DEBUG(dumpCurrGroup("Completed decode group"));
  LLVM_DEBUG(CurGroupDbg = "";);

  int NumGroups = ((CurrGroupSize > 3) ? (CurrGroupSize / 3) : 1);
  assert((CurrGroupSize <= 3 || CurrGroupSize % 3 == 0) &&
         "Current decoder group bad.");

  // Reset counter for next group.
  CurrGroupSize = 0;
  CurrGroupHas4RegOps = false;

  GrpCount += ((unsigned) NumGroups);

  // Decrease counters for execution units.
  for (unsigned i = 0; i < SchedModel->getNumProcResourceKinds(); ++i)
    ProcResourceCounters[i] = ((ProcResourceCounters[i] > NumGroups)
                                   ? (ProcResourceCounters[i] - NumGroups)
                                   : 0);

  // Clear CriticalResourceIdx if it is now below the threshold.
  if (CriticalResourceIdx != UINT_MAX &&
      (ProcResourceCounters[CriticalResourceIdx] <=
       ProcResCostLim))
    CriticalResourceIdx = UINT_MAX;

  LLVM_DEBUG(dumpState(););
}

#ifndef NDEBUG // Debug output
void SystemZHazardRecognizer::dumpSU(SUnit *SU, raw_ostream &OS) const {
  OS << "SU(" << SU->NodeNum << "):";
  OS << TII->getName(SU->getInstr()->getOpcode());

  const MCSchedClassDesc *SC = getSchedClass(SU);
  if (!SC->isValid())
    return;

  for (TargetSchedModel::ProcResIter
         PI = SchedModel->getWriteProcResBegin(SC),
         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
    const MCProcResourceDesc &PRD =
      *SchedModel->getProcResource(PI->ProcResourceIdx);
    std::string FU(PRD.Name);
    // trim e.g. Z13_FXaUnit -> FXa
    FU = FU.substr(FU.find("_") + 1);
    size_t Pos = FU.find("Unit");
    if (Pos != std::string::npos)
      FU.resize(Pos);
    if (FU == "LS") // LSUnit -> LSU
      FU = "LSU";
    OS << "/" << FU;

    if (PI->Cycles > 1)
      OS << "(" << PI->Cycles << "cyc)";
  }

  if (SC->NumMicroOps > 1)
    OS << "/" << SC->NumMicroOps << "uops";
  if (SC->BeginGroup && SC->EndGroup)
    OS << "/GroupsAlone";
  else if (SC->BeginGroup)
    OS << "/BeginsGroup";
  else if (SC->EndGroup)
    OS << "/EndsGroup";
  if (SU->isUnbuffered)
    OS << "/Unbuffered";
  if (has4RegOps(SU->getInstr()))
    OS << "/4RegOps";
}

void SystemZHazardRecognizer::dumpCurrGroup(std::string Msg) const {
  dbgs() << "++ " << Msg;
  dbgs() << ": ";

  if (CurGroupDbg.empty())
    dbgs() << " <empty>\n";
  else {
    dbgs() << "{ " << CurGroupDbg << " }";
    dbgs() << " (" << CurrGroupSize << " decoder slot"
           << (CurrGroupSize > 1 ? "s":"")
           << (CurrGroupHas4RegOps ? ", 4RegOps" : "")
           << ")\n";
  }
}

void SystemZHazardRecognizer::dumpProcResourceCounters() const {
  bool any = false;

  for (unsigned i = 0; i < SchedModel->getNumProcResourceKinds(); ++i)
    if (ProcResourceCounters[i] > 0) {
      any = true;
      break;
    }

  if (!any)
    return;

  dbgs() << "++ | Resource counters: ";
  for (unsigned i = 0; i < SchedModel->getNumProcResourceKinds(); ++i)
    if (ProcResourceCounters[i] > 0)
      dbgs() << SchedModel->getProcResource(i)->Name
             << ":" << ProcResourceCounters[i] << " ";
  dbgs() << "\n";

  if (CriticalResourceIdx != UINT_MAX)
    dbgs() << "++ | Critical resource: "
           << SchedModel->getProcResource(CriticalResourceIdx)->Name
           << "\n";
}

void SystemZHazardRecognizer::dumpState() const {
  dumpCurrGroup("| Current decoder group");
  dbgs() << "++ | Current cycle index: "
         << getCurrCycleIdx() << "\n";
  dumpProcResourceCounters();
  if (LastFPdOpCycleIdx != UINT_MAX)
    dbgs() << "++ | Last FPd cycle index: " << LastFPdOpCycleIdx << "\n";
}

#endif //NDEBUG

void SystemZHazardRecognizer::clearProcResCounters() {
  ProcResourceCounters.assign(SchedModel->getNumProcResourceKinds(), 0);
  CriticalResourceIdx = UINT_MAX;
}

static inline bool isBranchRetTrap(MachineInstr *MI) {
  return (MI->isBranch() || MI->isReturn() ||
          MI->getOpcode() == SystemZ::CondTrap);
}

// Update state with SU as the next scheduled unit.
void SystemZHazardRecognizer::
EmitInstruction(SUnit *SU) {
  const MCSchedClassDesc *SC = getSchedClass(SU);
  LLVM_DEBUG(dbgs() << "++ HazardRecognizer emitting "; dumpSU(SU, dbgs());
             dbgs() << "\n";);
  LLVM_DEBUG(dumpCurrGroup("Decode group before emission"););

  // If scheduling an SU that must begin a new decoder group, move on
  // to next group.
  if (!fitsIntoCurrentGroup(SU))
    nextGroup();

  LLVM_DEBUG(raw_string_ostream cgd(CurGroupDbg);
             if (CurGroupDbg.length()) cgd << ", "; dumpSU(SU, cgd););

  LastEmittedMI = SU->getInstr();

  // After returning from a call, we don't know much about the state.
  if (SU->isCall) {
    LLVM_DEBUG(dbgs() << "++ Clearing state after call.\n";);
    Reset();
    LastEmittedMI = SU->getInstr();
    return;
  }

  // Increase counter for execution unit(s).
  for (TargetSchedModel::ProcResIter
         PI = SchedModel->getWriteProcResBegin(SC),
         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
    // Don't handle FPd together with the other resources.
    if (SchedModel->getProcResource(PI->ProcResourceIdx)->BufferSize == 1)
      continue;
    int &CurrCounter =
      ProcResourceCounters[PI->ProcResourceIdx];
    CurrCounter += PI->Cycles;
    // Check if this is now the new critical resource.
    if ((CurrCounter > ProcResCostLim) &&
        (CriticalResourceIdx == UINT_MAX ||
         (PI->ProcResourceIdx != CriticalResourceIdx &&
          CurrCounter >
          ProcResourceCounters[CriticalResourceIdx]))) {
      LLVM_DEBUG(
          dbgs() << "++ New critical resource: "
                 << SchedModel->getProcResource(PI->ProcResourceIdx)->Name
                 << "\n";);
      CriticalResourceIdx = PI->ProcResourceIdx;
    }
  }

  // Make note of an instruction that uses a blocking resource (FPd).
  if (SU->isUnbuffered) {
    LastFPdOpCycleIdx = getCurrCycleIdx(SU);
    LLVM_DEBUG(dbgs() << "++ Last FPd cycle index: " << LastFPdOpCycleIdx
                      << "\n";);
  }

  // Insert SU into current group by increasing number of slots used
  // in current group.
  CurrGroupSize += getNumDecoderSlots(SU);
  CurrGroupHas4RegOps |= has4RegOps(SU->getInstr());
  unsigned GroupLim = (CurrGroupHas4RegOps ? 2 : 3);
  assert((CurrGroupSize <= GroupLim || CurrGroupSize == getNumDecoderSlots(SU))
         && "SU does not fit into decoder group!");

  // Check if current group is now full/ended. If so, move on to next
  // group to be ready to evaluate more candidates.
  if (CurrGroupSize >= GroupLim || SC->EndGroup)
    nextGroup();
}

int SystemZHazardRecognizer::groupingCost(SUnit *SU) const {
  const MCSchedClassDesc *SC = getSchedClass(SU);
  if (!SC->isValid())
    return 0;

  // If SU begins new group, it can either break a current group early
  // or fit naturally if current group is empty (negative cost).
  if (SC->BeginGroup) {
    if (CurrGroupSize)
      return 3 - CurrGroupSize;
    return -1;
  }

  // Similarly, a group-ending SU may either fit well (last in group), or
  // end the group prematurely.
  if (SC->EndGroup) {
    unsigned resultingGroupSize =
      (CurrGroupSize + getNumDecoderSlots(SU));
    if (resultingGroupSize < 3)
      return (3 - resultingGroupSize);
    return -1;
  }

  // An instruction with 4 register operands will not fit in last slot.
  if (CurrGroupSize == 2 && has4RegOps(SU->getInstr()))
    return 1;

  // Most instructions can be placed in any decoder slot.
  return 0;
}

bool SystemZHazardRecognizer::isFPdOpPreferred_distance(SUnit *SU) const {
  assert (SU->isUnbuffered);
  // If this is the first FPd op, it should be scheduled high.
  if (LastFPdOpCycleIdx == UINT_MAX)
    return true;
  // If this is not the first PFd op, it should go into the other side
  // of the processor to use the other FPd unit there. This should
  // generally happen if two FPd ops are placed with 2 other
  // instructions between them (modulo 6).
  unsigned SUCycleIdx = getCurrCycleIdx(SU);
  if (LastFPdOpCycleIdx > SUCycleIdx)
    return ((LastFPdOpCycleIdx - SUCycleIdx) == 3);
  return ((SUCycleIdx - LastFPdOpCycleIdx) == 3);
}

int SystemZHazardRecognizer::
resourcesCost(SUnit *SU) {
  int Cost = 0;

  const MCSchedClassDesc *SC = getSchedClass(SU);
  if (!SC->isValid())
    return 0;

  // For a FPd op, either return min or max value as indicated by the
  // distance to any prior FPd op.
  if (SU->isUnbuffered)
    Cost = (isFPdOpPreferred_distance(SU) ? INT_MIN : INT_MAX);
  // For other instructions, give a cost to the use of the critical resource.
  else if (CriticalResourceIdx != UINT_MAX) {
    for (TargetSchedModel::ProcResIter
           PI = SchedModel->getWriteProcResBegin(SC),
           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI)
      if (PI->ProcResourceIdx == CriticalResourceIdx)
        Cost = PI->Cycles;
  }

  return Cost;
}

void SystemZHazardRecognizer::emitInstruction(MachineInstr *MI,
                                              bool TakenBranch) {
  // Make a temporary SUnit.
  SUnit SU(MI, 0);

  // Set interesting flags.
  SU.isCall = MI->isCall();

  const MCSchedClassDesc *SC = SchedModel->resolveSchedClass(MI);
  for (const MCWriteProcResEntry &PRE :
         make_range(SchedModel->getWriteProcResBegin(SC),
                    SchedModel->getWriteProcResEnd(SC))) {
    switch (SchedModel->getProcResource(PRE.ProcResourceIdx)->BufferSize) {
    case 0:
      SU.hasReservedResource = true;
      break;
    case 1:
      SU.isUnbuffered = true;
      break;
    default:
      break;
    }
  }

  unsigned GroupSizeBeforeEmit = CurrGroupSize;
  EmitInstruction(&SU);

  if (!TakenBranch && isBranchRetTrap(MI)) {
    // NT Branch on second slot ends group.
    if (GroupSizeBeforeEmit == 1)
      nextGroup();
  }

  if (TakenBranch && CurrGroupSize > 0)
    nextGroup();

  assert ((!MI->isTerminator() || isBranchRetTrap(MI)) &&
          "Scheduler: unhandled terminator!");
}

void SystemZHazardRecognizer::
copyState(SystemZHazardRecognizer *Incoming) {
  // Current decoder group
  CurrGroupSize = Incoming->CurrGroupSize;
  LLVM_DEBUG(CurGroupDbg = Incoming->CurGroupDbg;);

  // Processor resources
  ProcResourceCounters = Incoming->ProcResourceCounters;
  CriticalResourceIdx = Incoming->CriticalResourceIdx;

  // FPd
  LastFPdOpCycleIdx = Incoming->LastFPdOpCycleIdx;
  GrpCount = Incoming->GrpCount;
}