WebAssemblyTargetMachine.cpp
18.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
//===- WebAssemblyTargetMachine.cpp - Define TargetMachine for WebAssembly -==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the WebAssembly-specific subclass of TargetMachine.
///
//===----------------------------------------------------------------------===//
#include "WebAssemblyTargetMachine.h"
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
#include "TargetInfo/WebAssemblyTargetInfo.h"
#include "WebAssembly.h"
#include "WebAssemblyMachineFunctionInfo.h"
#include "WebAssemblyTargetObjectFile.h"
#include "WebAssemblyTargetTransformInfo.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LowerAtomic.h"
#include "llvm/Transforms/Utils.h"
using namespace llvm;
#define DEBUG_TYPE "wasm"
// Emscripten's asm.js-style exception handling
static cl::opt<bool> EnableEmException(
"enable-emscripten-cxx-exceptions",
cl::desc("WebAssembly Emscripten-style exception handling"),
cl::init(false));
// Emscripten's asm.js-style setjmp/longjmp handling
static cl::opt<bool> EnableEmSjLj(
"enable-emscripten-sjlj",
cl::desc("WebAssembly Emscripten-style setjmp/longjmp handling"),
cl::init(false));
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeWebAssemblyTarget() {
// Register the target.
RegisterTargetMachine<WebAssemblyTargetMachine> X(
getTheWebAssemblyTarget32());
RegisterTargetMachine<WebAssemblyTargetMachine> Y(
getTheWebAssemblyTarget64());
// Register backend passes
auto &PR = *PassRegistry::getPassRegistry();
initializeWebAssemblyAddMissingPrototypesPass(PR);
initializeWebAssemblyLowerEmscriptenEHSjLjPass(PR);
initializeLowerGlobalDtorsPass(PR);
initializeFixFunctionBitcastsPass(PR);
initializeOptimizeReturnedPass(PR);
initializeWebAssemblyArgumentMovePass(PR);
initializeWebAssemblySetP2AlignOperandsPass(PR);
initializeWebAssemblyReplacePhysRegsPass(PR);
initializeWebAssemblyPrepareForLiveIntervalsPass(PR);
initializeWebAssemblyOptimizeLiveIntervalsPass(PR);
initializeWebAssemblyMemIntrinsicResultsPass(PR);
initializeWebAssemblyRegStackifyPass(PR);
initializeWebAssemblyRegColoringPass(PR);
initializeWebAssemblyFixIrreducibleControlFlowPass(PR);
initializeWebAssemblyLateEHPreparePass(PR);
initializeWebAssemblyExceptionInfoPass(PR);
initializeWebAssemblyCFGSortPass(PR);
initializeWebAssemblyCFGStackifyPass(PR);
initializeWebAssemblyExplicitLocalsPass(PR);
initializeWebAssemblyLowerBrUnlessPass(PR);
initializeWebAssemblyRegNumberingPass(PR);
initializeWebAssemblyPeepholePass(PR);
initializeWebAssemblyCallIndirectFixupPass(PR);
}
//===----------------------------------------------------------------------===//
// WebAssembly Lowering public interface.
//===----------------------------------------------------------------------===//
static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM,
const Triple &TT) {
if (!RM.hasValue()) {
// Default to static relocation model. This should always be more optimial
// than PIC since the static linker can determine all global addresses and
// assume direct function calls.
return Reloc::Static;
}
if (!TT.isOSEmscripten()) {
// Relocation modes other than static are currently implemented in a way
// that only works for Emscripten, so disable them if we aren't targeting
// Emscripten.
return Reloc::Static;
}
return *RM;
}
/// Create an WebAssembly architecture model.
///
WebAssemblyTargetMachine::WebAssemblyTargetMachine(
const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
const TargetOptions &Options, Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
: LLVMTargetMachine(T,
TT.isArch64Bit() ? "e-m:e-p:64:64-i64:64-n32:64-S128"
: "e-m:e-p:32:32-i64:64-n32:64-S128",
TT, CPU, FS, Options, getEffectiveRelocModel(RM, TT),
getEffectiveCodeModel(CM, CodeModel::Large), OL),
TLOF(new WebAssemblyTargetObjectFile()) {
// WebAssembly type-checks instructions, but a noreturn function with a return
// type that doesn't match the context will cause a check failure. So we lower
// LLVM 'unreachable' to ISD::TRAP and then lower that to WebAssembly's
// 'unreachable' instructions which is meant for that case.
this->Options.TrapUnreachable = true;
// WebAssembly treats each function as an independent unit. Force
// -ffunction-sections, effectively, so that we can emit them independently.
this->Options.FunctionSections = true;
this->Options.DataSections = true;
this->Options.UniqueSectionNames = true;
initAsmInfo();
// Note that we don't use setRequiresStructuredCFG(true). It disables
// optimizations than we're ok with, and want, such as critical edge
// splitting and tail merging.
}
WebAssemblyTargetMachine::~WebAssemblyTargetMachine() = default; // anchor.
const WebAssemblySubtarget *
WebAssemblyTargetMachine::getSubtargetImpl(std::string CPU,
std::string FS) const {
auto &I = SubtargetMap[CPU + FS];
if (!I) {
I = std::make_unique<WebAssemblySubtarget>(TargetTriple, CPU, FS, *this);
}
return I.get();
}
const WebAssemblySubtarget *
WebAssemblyTargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
? CPUAttr.getValueAsString().str()
: TargetCPU;
std::string FS = !FSAttr.hasAttribute(Attribute::None)
? FSAttr.getValueAsString().str()
: TargetFS;
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
return getSubtargetImpl(CPU, FS);
}
namespace {
class CoalesceFeaturesAndStripAtomics final : public ModulePass {
// Take the union of all features used in the module and use it for each
// function individually, since having multiple feature sets in one module
// currently does not make sense for WebAssembly. If atomics are not enabled,
// also strip atomic operations and thread local storage.
static char ID;
WebAssemblyTargetMachine *WasmTM;
public:
CoalesceFeaturesAndStripAtomics(WebAssemblyTargetMachine *WasmTM)
: ModulePass(ID), WasmTM(WasmTM) {}
bool runOnModule(Module &M) override {
FeatureBitset Features = coalesceFeatures(M);
std::string FeatureStr = getFeatureString(Features);
for (auto &F : M)
replaceFeatures(F, FeatureStr);
bool StrippedAtomics = false;
bool StrippedTLS = false;
if (!Features[WebAssembly::FeatureAtomics])
StrippedAtomics = stripAtomics(M);
if (!Features[WebAssembly::FeatureBulkMemory])
StrippedTLS = stripThreadLocals(M);
if (StrippedAtomics && !StrippedTLS)
stripThreadLocals(M);
else if (StrippedTLS && !StrippedAtomics)
stripAtomics(M);
recordFeatures(M, Features, StrippedAtomics || StrippedTLS);
// Conservatively assume we have made some change
return true;
}
private:
FeatureBitset coalesceFeatures(const Module &M) {
FeatureBitset Features =
WasmTM
->getSubtargetImpl(WasmTM->getTargetCPU(),
WasmTM->getTargetFeatureString())
->getFeatureBits();
for (auto &F : M)
Features |= WasmTM->getSubtargetImpl(F)->getFeatureBits();
return Features;
}
std::string getFeatureString(const FeatureBitset &Features) {
std::string Ret;
for (const SubtargetFeatureKV &KV : WebAssemblyFeatureKV) {
if (Features[KV.Value])
Ret += (StringRef("+") + KV.Key + ",").str();
}
return Ret;
}
void replaceFeatures(Function &F, const std::string &Features) {
F.removeFnAttr("target-features");
F.removeFnAttr("target-cpu");
F.addFnAttr("target-features", Features);
}
bool stripAtomics(Module &M) {
// Detect whether any atomics will be lowered, since there is no way to tell
// whether the LowerAtomic pass lowers e.g. stores.
bool Stripped = false;
for (auto &F : M) {
for (auto &B : F) {
for (auto &I : B) {
if (I.isAtomic()) {
Stripped = true;
goto done;
}
}
}
}
done:
if (!Stripped)
return false;
LowerAtomicPass Lowerer;
FunctionAnalysisManager FAM;
for (auto &F : M)
Lowerer.run(F, FAM);
return true;
}
bool stripThreadLocals(Module &M) {
bool Stripped = false;
for (auto &GV : M.globals()) {
if (GV.getThreadLocalMode() !=
GlobalValue::ThreadLocalMode::NotThreadLocal) {
Stripped = true;
GV.setThreadLocalMode(GlobalValue::ThreadLocalMode::NotThreadLocal);
}
}
return Stripped;
}
void recordFeatures(Module &M, const FeatureBitset &Features, bool Stripped) {
for (const SubtargetFeatureKV &KV : WebAssemblyFeatureKV) {
std::string MDKey = (StringRef("wasm-feature-") + KV.Key).str();
if (KV.Value == WebAssembly::FeatureAtomics && Stripped) {
// "atomics" is special: code compiled without atomics may have had its
// atomics lowered to nonatomic operations. In that case, atomics is
// disallowed to prevent unsafe linking with atomics-enabled objects.
assert(!Features[WebAssembly::FeatureAtomics] ||
!Features[WebAssembly::FeatureBulkMemory]);
M.addModuleFlag(Module::ModFlagBehavior::Error, MDKey,
wasm::WASM_FEATURE_PREFIX_DISALLOWED);
} else if (Features[KV.Value]) {
// Otherwise features are marked Used or not mentioned
M.addModuleFlag(Module::ModFlagBehavior::Error, MDKey,
wasm::WASM_FEATURE_PREFIX_USED);
}
}
}
};
char CoalesceFeaturesAndStripAtomics::ID = 0;
/// WebAssembly Code Generator Pass Configuration Options.
class WebAssemblyPassConfig final : public TargetPassConfig {
public:
WebAssemblyPassConfig(WebAssemblyTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
WebAssemblyTargetMachine &getWebAssemblyTargetMachine() const {
return getTM<WebAssemblyTargetMachine>();
}
FunctionPass *createTargetRegisterAllocator(bool) override;
void addIRPasses() override;
bool addInstSelector() override;
void addPostRegAlloc() override;
bool addGCPasses() override { return false; }
void addPreEmitPass() override;
// No reg alloc
bool addRegAssignmentFast() override { return false; }
// No reg alloc
bool addRegAssignmentOptimized() override { return false; }
};
} // end anonymous namespace
TargetTransformInfo
WebAssemblyTargetMachine::getTargetTransformInfo(const Function &F) {
return TargetTransformInfo(WebAssemblyTTIImpl(this, F));
}
TargetPassConfig *
WebAssemblyTargetMachine::createPassConfig(PassManagerBase &PM) {
return new WebAssemblyPassConfig(*this, PM);
}
FunctionPass *WebAssemblyPassConfig::createTargetRegisterAllocator(bool) {
return nullptr; // No reg alloc
}
//===----------------------------------------------------------------------===//
// The following functions are called from lib/CodeGen/Passes.cpp to modify
// the CodeGen pass sequence.
//===----------------------------------------------------------------------===//
void WebAssemblyPassConfig::addIRPasses() {
// Runs LowerAtomicPass if necessary
addPass(new CoalesceFeaturesAndStripAtomics(&getWebAssemblyTargetMachine()));
// This is a no-op if atomics are not used in the module
addPass(createAtomicExpandPass());
// Add signatures to prototype-less function declarations
addPass(createWebAssemblyAddMissingPrototypes());
// Lower .llvm.global_dtors into .llvm_global_ctors with __cxa_atexit calls.
addPass(createWebAssemblyLowerGlobalDtors());
// Fix function bitcasts, as WebAssembly requires caller and callee signatures
// to match.
addPass(createWebAssemblyFixFunctionBitcasts());
// Optimize "returned" function attributes.
if (getOptLevel() != CodeGenOpt::None)
addPass(createWebAssemblyOptimizeReturned());
// If exception handling is not enabled and setjmp/longjmp handling is
// enabled, we lower invokes into calls and delete unreachable landingpad
// blocks. Lowering invokes when there is no EH support is done in
// TargetPassConfig::addPassesToHandleExceptions, but this runs after this
// function and SjLj handling expects all invokes to be lowered before.
if (!EnableEmException &&
TM->Options.ExceptionModel == ExceptionHandling::None) {
addPass(createLowerInvokePass());
// The lower invoke pass may create unreachable code. Remove it in order not
// to process dead blocks in setjmp/longjmp handling.
addPass(createUnreachableBlockEliminationPass());
}
// Handle exceptions and setjmp/longjmp if enabled.
if (EnableEmException || EnableEmSjLj)
addPass(createWebAssemblyLowerEmscriptenEHSjLj(EnableEmException,
EnableEmSjLj));
// Expand indirectbr instructions to switches.
addPass(createIndirectBrExpandPass());
TargetPassConfig::addIRPasses();
}
bool WebAssemblyPassConfig::addInstSelector() {
(void)TargetPassConfig::addInstSelector();
addPass(
createWebAssemblyISelDag(getWebAssemblyTargetMachine(), getOptLevel()));
// Run the argument-move pass immediately after the ScheduleDAG scheduler
// so that we can fix up the ARGUMENT instructions before anything else
// sees them in the wrong place.
addPass(createWebAssemblyArgumentMove());
// Set the p2align operands. This information is present during ISel, however
// it's inconvenient to collect. Collect it now, and update the immediate
// operands.
addPass(createWebAssemblySetP2AlignOperands());
return false;
}
void WebAssemblyPassConfig::addPostRegAlloc() {
// TODO: The following CodeGen passes don't currently support code containing
// virtual registers. Consider removing their restrictions and re-enabling
// them.
// These functions all require the NoVRegs property.
disablePass(&MachineCopyPropagationID);
disablePass(&PostRAMachineSinkingID);
disablePass(&PostRASchedulerID);
disablePass(&FuncletLayoutID);
disablePass(&StackMapLivenessID);
disablePass(&LiveDebugValuesID);
disablePass(&PatchableFunctionID);
disablePass(&ShrinkWrapID);
// This pass hurts code size for wasm because it can generate irreducible
// control flow.
disablePass(&MachineBlockPlacementID);
TargetPassConfig::addPostRegAlloc();
}
void WebAssemblyPassConfig::addPreEmitPass() {
TargetPassConfig::addPreEmitPass();
// Rewrite pseudo call_indirect instructions as real instructions.
// This needs to run before register stackification, because we change the
// order of the arguments.
addPass(createWebAssemblyCallIndirectFixup());
// Eliminate multiple-entry loops.
addPass(createWebAssemblyFixIrreducibleControlFlow());
// Do various transformations for exception handling.
// Every CFG-changing optimizations should come before this.
addPass(createWebAssemblyLateEHPrepare());
// Now that we have a prologue and epilogue and all frame indices are
// rewritten, eliminate SP and FP. This allows them to be stackified,
// colored, and numbered with the rest of the registers.
addPass(createWebAssemblyReplacePhysRegs());
// Preparations and optimizations related to register stackification.
if (getOptLevel() != CodeGenOpt::None) {
// LiveIntervals isn't commonly run this late. Re-establish preconditions.
addPass(createWebAssemblyPrepareForLiveIntervals());
// Depend on LiveIntervals and perform some optimizations on it.
addPass(createWebAssemblyOptimizeLiveIntervals());
// Prepare memory intrinsic calls for register stackifying.
addPass(createWebAssemblyMemIntrinsicResults());
// Mark registers as representing wasm's value stack. This is a key
// code-compression technique in WebAssembly. We run this pass (and
// MemIntrinsicResults above) very late, so that it sees as much code as
// possible, including code emitted by PEI and expanded by late tail
// duplication.
addPass(createWebAssemblyRegStackify());
// Run the register coloring pass to reduce the total number of registers.
// This runs after stackification so that it doesn't consider registers
// that become stackified.
addPass(createWebAssemblyRegColoring());
}
// Sort the blocks of the CFG into topological order, a prerequisite for
// BLOCK and LOOP markers.
addPass(createWebAssemblyCFGSort());
// Insert BLOCK and LOOP markers.
addPass(createWebAssemblyCFGStackify());
// Insert explicit local.get and local.set operators.
addPass(createWebAssemblyExplicitLocals());
// Lower br_unless into br_if.
addPass(createWebAssemblyLowerBrUnless());
// Perform the very last peephole optimizations on the code.
if (getOptLevel() != CodeGenOpt::None)
addPass(createWebAssemblyPeephole());
// Create a mapping from LLVM CodeGen virtual registers to wasm registers.
addPass(createWebAssemblyRegNumbering());
}
yaml::MachineFunctionInfo *
WebAssemblyTargetMachine::createDefaultFuncInfoYAML() const {
return new yaml::WebAssemblyFunctionInfo();
}
yaml::MachineFunctionInfo *WebAssemblyTargetMachine::convertFuncInfoToYAML(
const MachineFunction &MF) const {
const auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
return new yaml::WebAssemblyFunctionInfo(*MFI);
}
bool WebAssemblyTargetMachine::parseMachineFunctionInfo(
const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
SMDiagnostic &Error, SMRange &SourceRange) const {
const auto &YamlMFI =
reinterpret_cast<const yaml::WebAssemblyFunctionInfo &>(MFI);
MachineFunction &MF = PFS.MF;
MF.getInfo<WebAssemblyFunctionInfo>()->initializeBaseYamlFields(YamlMFI);
return false;
}