X86Disassembler.cpp 79.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler.
// It contains code to translate the data produced by the decoder into
//  MCInsts.
//
//
// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
// 64-bit X86 instruction sets.  The main decode sequence for an assembly
// instruction in this disassembler is:
//
// 1. Read the prefix bytes and determine the attributes of the instruction.
//    These attributes, recorded in enum attributeBits
//    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
//    provides a mapping from bitmasks to contexts, which are represented by
//    enum InstructionContext (ibid.).
//
// 2. Read the opcode, and determine what kind of opcode it is.  The
//    disassembler distinguishes four kinds of opcodes, which are enumerated in
//    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
//    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
//    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
//
// 3. Depending on the opcode type, look in one of four ClassDecision structures
//    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
//    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
//    a ModRMDecision (ibid.).
//
// 4. Some instructions, such as escape opcodes or extended opcodes, or even
//    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
//    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
//    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
//    ModR/M byte is required and how to interpret it.
//
// 5. After resolving the ModRMDecision, the disassembler has a unique ID
//    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
//    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
//    meanings of its operands.
//
// 6. For each operand, its encoding is an entry from OperandEncoding
//    (X86DisassemblerDecoderCommon.h) and its type is an entry from
//    OperandType (ibid.).  The encoding indicates how to read it from the
//    instruction; the type indicates how to interpret the value once it has
//    been read.  For example, a register operand could be stored in the R/M
//    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
//    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
//    register, for instance).  Given this information, the operands can be
//    extracted and interpreted.
//
// 7. As the last step, the disassembler translates the instruction information
//    and operands into a format understandable by the client - in this case, an
//    MCInst for use by the MC infrastructure.
//
// The disassembler is broken broadly into two parts: the table emitter that
// emits the instruction decode tables discussed above during compilation, and
// the disassembler itself.  The table emitter is documented in more detail in
// utils/TableGen/X86DisassemblerEmitter.h.
//
// X86Disassembler.cpp contains the code responsible for step 7, and for
//   invoking the decoder to execute steps 1-6.
// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
//   table emitter and the disassembler.
// X86DisassemblerDecoder.h contains the public interface of the decoder,
//   factored out into C for possible use by other projects.
// X86DisassemblerDecoder.c contains the source code of the decoder, which is
//   responsible for steps 1-6.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "TargetInfo/X86TargetInfo.h"
#include "X86DisassemblerDecoder.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;
using namespace llvm::X86Disassembler;

#define DEBUG_TYPE "x86-disassembler"

#define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);

// Specifies whether a ModR/M byte is needed and (if so) which
// instruction each possible value of the ModR/M byte corresponds to.  Once
// this information is known, we have narrowed down to a single instruction.
struct ModRMDecision {
  uint8_t modrm_type;
  uint16_t instructionIDs;
};

// Specifies which set of ModR/M->instruction tables to look at
// given a particular opcode.
struct OpcodeDecision {
  ModRMDecision modRMDecisions[256];
};

// Specifies which opcode->instruction tables to look at given
// a particular context (set of attributes).  Since there are many possible
// contexts, the decoder first uses CONTEXTS_SYM to determine which context
// applies given a specific set of attributes.  Hence there are only IC_max
// entries in this table, rather than 2^(ATTR_max).
struct ContextDecision {
  OpcodeDecision opcodeDecisions[IC_max];
};

#include "X86GenDisassemblerTables.inc"

static InstrUID decode(OpcodeType type, InstructionContext insnContext,
                       uint8_t opcode, uint8_t modRM) {
  const struct ModRMDecision *dec;

  switch (type) {
  case ONEBYTE:
    dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case TWOBYTE:
    dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case THREEBYTE_38:
    dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case THREEBYTE_3A:
    dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case XOP8_MAP:
    dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case XOP9_MAP:
    dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case XOPA_MAP:
    dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case THREEDNOW_MAP:
    dec =
        &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  }

  switch (dec->modrm_type) {
  default:
    llvm_unreachable("Corrupt table!  Unknown modrm_type");
    return 0;
  case MODRM_ONEENTRY:
    return modRMTable[dec->instructionIDs];
  case MODRM_SPLITRM:
    if (modFromModRM(modRM) == 0x3)
      return modRMTable[dec->instructionIDs + 1];
    return modRMTable[dec->instructionIDs];
  case MODRM_SPLITREG:
    if (modFromModRM(modRM) == 0x3)
      return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
    return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
  case MODRM_SPLITMISC:
    if (modFromModRM(modRM) == 0x3)
      return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
    return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
  case MODRM_FULL:
    return modRMTable[dec->instructionIDs + modRM];
  }
}

static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
  uint64_t offset = insn->readerCursor - insn->startLocation;
  if (offset >= insn->bytes.size())
    return true;
  byte = insn->bytes[offset];
  return false;
}

template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
  auto r = insn->bytes;
  uint64_t offset = insn->readerCursor - insn->startLocation;
  if (offset + sizeof(T) > r.size())
    return true;
  T ret = 0;
  for (unsigned i = 0; i < sizeof(T); ++i)
    ret |= (uint64_t)r[offset + i] << (i * 8);
  ptr = ret;
  insn->readerCursor += sizeof(T);
  return false;
}

static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
  return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
}

// Consumes all of an instruction's prefix bytes, and marks the
// instruction as having them.  Also sets the instruction's default operand,
// address, and other relevant data sizes to report operands correctly.
//
// insn must not be empty.
static int readPrefixes(struct InternalInstruction *insn) {
  bool isPrefix = true;
  uint8_t byte = 0;
  uint8_t nextByte;

  LLVM_DEBUG(dbgs() << "readPrefixes()");

  while (isPrefix) {
    // If we fail reading prefixes, just stop here and let the opcode reader
    // deal with it.
    if (consume(insn, byte))
      break;

    // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
    // break and let it be disassembled as a normal "instruction".
    if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
      break;

    if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
      // If the byte is 0xf2 or 0xf3, and any of the following conditions are
      // met:
      // - it is followed by a LOCK (0xf0) prefix
      // - it is followed by an xchg instruction
      // then it should be disassembled as a xacquire/xrelease not repne/rep.
      if (((nextByte == 0xf0) ||
           ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
        insn->xAcquireRelease = true;
        if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
          break;
      }
      // Also if the byte is 0xf3, and the following condition is met:
      // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
      //                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
      // then it should be disassembled as an xrelease not rep.
      if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
                           nextByte == 0xc6 || nextByte == 0xc7)) {
        insn->xAcquireRelease = true;
        break;
      }
      if (isREX(insn, nextByte)) {
        uint8_t nnextByte;
        // Go to REX prefix after the current one
        if (consume(insn, nnextByte))
          return -1;
        // We should be able to read next byte after REX prefix
        if (peek(insn, nnextByte))
          return -1;
        --insn->readerCursor;
      }
    }

    switch (byte) {
    case 0xf0: // LOCK
      insn->hasLockPrefix = true;
      break;
    case 0xf2: // REPNE/REPNZ
    case 0xf3: { // REP or REPE/REPZ
      uint8_t nextByte;
      if (peek(insn, nextByte))
        break;
      // TODO:
      //  1. There could be several 0x66
      //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
      //      it's not mandatory prefix
      //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
      //     0x0f exactly after it to be mandatory prefix
      if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
        // The last of 0xf2 /0xf3 is mandatory prefix
        insn->mandatoryPrefix = byte;
      insn->repeatPrefix = byte;
      break;
    }
    case 0x2e: // CS segment override -OR- Branch not taken
      insn->segmentOverride = SEG_OVERRIDE_CS;
      break;
    case 0x36: // SS segment override -OR- Branch taken
      insn->segmentOverride = SEG_OVERRIDE_SS;
      break;
    case 0x3e: // DS segment override
      insn->segmentOverride = SEG_OVERRIDE_DS;
      break;
    case 0x26: // ES segment override
      insn->segmentOverride = SEG_OVERRIDE_ES;
      break;
    case 0x64: // FS segment override
      insn->segmentOverride = SEG_OVERRIDE_FS;
      break;
    case 0x65: // GS segment override
      insn->segmentOverride = SEG_OVERRIDE_GS;
      break;
    case 0x66: { // Operand-size override {
      uint8_t nextByte;
      insn->hasOpSize = true;
      if (peek(insn, nextByte))
        break;
      // 0x66 can't overwrite existing mandatory prefix and should be ignored
      if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
        insn->mandatoryPrefix = byte;
      break;
    }
    case 0x67: // Address-size override
      insn->hasAdSize = true;
      break;
    default: // Not a prefix byte
      isPrefix = false;
      break;
    }

    if (isPrefix)
      LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
  }

  insn->vectorExtensionType = TYPE_NO_VEX_XOP;

  if (byte == 0x62) {
    uint8_t byte1, byte2;
    if (consume(insn, byte1)) {
      LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
      return -1;
    }

    if (peek(insn, byte2)) {
      LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
      return -1;
    }

    if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
        ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
      insn->vectorExtensionType = TYPE_EVEX;
    } else {
      --insn->readerCursor; // unconsume byte1
      --insn->readerCursor; // unconsume byte
    }

    if (insn->vectorExtensionType == TYPE_EVEX) {
      insn->vectorExtensionPrefix[0] = byte;
      insn->vectorExtensionPrefix[1] = byte1;
      if (consume(insn, insn->vectorExtensionPrefix[2])) {
        LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
        return -1;
      }
      if (consume(insn, insn->vectorExtensionPrefix[3])) {
        LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
        return -1;
      }

      // We simulate the REX prefix for simplicity's sake
      if (insn->mode == MODE_64BIT) {
        insn->rexPrefix = 0x40 |
                          (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
                          (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
                          (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
                          (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
      }

      LLVM_DEBUG(
          dbgs() << format(
              "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
              insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
              insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
    }
  } else if (byte == 0xc4) {
    uint8_t byte1;
    if (peek(insn, byte1)) {
      LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
      return -1;
    }

    if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
      insn->vectorExtensionType = TYPE_VEX_3B;
    else
      --insn->readerCursor;

    if (insn->vectorExtensionType == TYPE_VEX_3B) {
      insn->vectorExtensionPrefix[0] = byte;
      consume(insn, insn->vectorExtensionPrefix[1]);
      consume(insn, insn->vectorExtensionPrefix[2]);

      // We simulate the REX prefix for simplicity's sake

      if (insn->mode == MODE_64BIT)
        insn->rexPrefix = 0x40 |
                          (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
                          (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
                          (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
                          (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);

      LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
                                  insn->vectorExtensionPrefix[0],
                                  insn->vectorExtensionPrefix[1],
                                  insn->vectorExtensionPrefix[2]));
    }
  } else if (byte == 0xc5) {
    uint8_t byte1;
    if (peek(insn, byte1)) {
      LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
      return -1;
    }

    if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
      insn->vectorExtensionType = TYPE_VEX_2B;
    else
      --insn->readerCursor;

    if (insn->vectorExtensionType == TYPE_VEX_2B) {
      insn->vectorExtensionPrefix[0] = byte;
      consume(insn, insn->vectorExtensionPrefix[1]);

      if (insn->mode == MODE_64BIT)
        insn->rexPrefix =
            0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);

      switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
      default:
        break;
      case VEX_PREFIX_66:
        insn->hasOpSize = true;
        break;
      }

      LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
                                  insn->vectorExtensionPrefix[0],
                                  insn->vectorExtensionPrefix[1]));
    }
  } else if (byte == 0x8f) {
    uint8_t byte1;
    if (peek(insn, byte1)) {
      LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
      return -1;
    }

    if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
      insn->vectorExtensionType = TYPE_XOP;
    else
      --insn->readerCursor;

    if (insn->vectorExtensionType == TYPE_XOP) {
      insn->vectorExtensionPrefix[0] = byte;
      consume(insn, insn->vectorExtensionPrefix[1]);
      consume(insn, insn->vectorExtensionPrefix[2]);

      // We simulate the REX prefix for simplicity's sake

      if (insn->mode == MODE_64BIT)
        insn->rexPrefix = 0x40 |
                          (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
                          (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
                          (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
                          (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);

      switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
      default:
        break;
      case VEX_PREFIX_66:
        insn->hasOpSize = true;
        break;
      }

      LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
                                  insn->vectorExtensionPrefix[0],
                                  insn->vectorExtensionPrefix[1],
                                  insn->vectorExtensionPrefix[2]));
    }
  } else if (isREX(insn, byte)) {
    if (peek(insn, nextByte))
      return -1;
    insn->rexPrefix = byte;
    LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
  } else
    --insn->readerCursor;

  if (insn->mode == MODE_16BIT) {
    insn->registerSize = (insn->hasOpSize ? 4 : 2);
    insn->addressSize = (insn->hasAdSize ? 4 : 2);
    insn->displacementSize = (insn->hasAdSize ? 4 : 2);
    insn->immediateSize = (insn->hasOpSize ? 4 : 2);
  } else if (insn->mode == MODE_32BIT) {
    insn->registerSize = (insn->hasOpSize ? 2 : 4);
    insn->addressSize = (insn->hasAdSize ? 2 : 4);
    insn->displacementSize = (insn->hasAdSize ? 2 : 4);
    insn->immediateSize = (insn->hasOpSize ? 2 : 4);
  } else if (insn->mode == MODE_64BIT) {
    if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
      insn->registerSize = 8;
      insn->addressSize = (insn->hasAdSize ? 4 : 8);
      insn->displacementSize = 4;
      insn->immediateSize = 4;
    } else {
      insn->registerSize = (insn->hasOpSize ? 2 : 4);
      insn->addressSize = (insn->hasAdSize ? 4 : 8);
      insn->displacementSize = (insn->hasOpSize ? 2 : 4);
      insn->immediateSize = (insn->hasOpSize ? 2 : 4);
    }
  }

  return 0;
}

// Consumes the SIB byte to determine addressing information.
static int readSIB(struct InternalInstruction *insn) {
  SIBBase sibBaseBase = SIB_BASE_NONE;
  uint8_t index, base;

  LLVM_DEBUG(dbgs() << "readSIB()");
  switch (insn->addressSize) {
  case 2:
  default:
    llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
  case 4:
    insn->sibIndexBase = SIB_INDEX_EAX;
    sibBaseBase = SIB_BASE_EAX;
    break;
  case 8:
    insn->sibIndexBase = SIB_INDEX_RAX;
    sibBaseBase = SIB_BASE_RAX;
    break;
  }

  if (consume(insn, insn->sib))
    return -1;

  index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);

  if (index == 0x4) {
    insn->sibIndex = SIB_INDEX_NONE;
  } else {
    insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
  }

  insn->sibScale = 1 << scaleFromSIB(insn->sib);

  base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);

  switch (base) {
  case 0x5:
  case 0xd:
    switch (modFromModRM(insn->modRM)) {
    case 0x0:
      insn->eaDisplacement = EA_DISP_32;
      insn->sibBase = SIB_BASE_NONE;
      break;
    case 0x1:
      insn->eaDisplacement = EA_DISP_8;
      insn->sibBase = (SIBBase)(sibBaseBase + base);
      break;
    case 0x2:
      insn->eaDisplacement = EA_DISP_32;
      insn->sibBase = (SIBBase)(sibBaseBase + base);
      break;
    default:
      llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
    }
    break;
  default:
    insn->sibBase = (SIBBase)(sibBaseBase + base);
    break;
  }

  return 0;
}

static int readDisplacement(struct InternalInstruction *insn) {
  int8_t d8;
  int16_t d16;
  int32_t d32;
  LLVM_DEBUG(dbgs() << "readDisplacement()");

  insn->displacementOffset = insn->readerCursor - insn->startLocation;
  switch (insn->eaDisplacement) {
  case EA_DISP_NONE:
    break;
  case EA_DISP_8:
    if (consume(insn, d8))
      return -1;
    insn->displacement = d8;
    break;
  case EA_DISP_16:
    if (consume(insn, d16))
      return -1;
    insn->displacement = d16;
    break;
  case EA_DISP_32:
    if (consume(insn, d32))
      return -1;
    insn->displacement = d32;
    break;
  }

  return 0;
}

// Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
static int readModRM(struct InternalInstruction *insn) {
  uint8_t mod, rm, reg, evexrm;
  LLVM_DEBUG(dbgs() << "readModRM()");

  if (insn->consumedModRM)
    return 0;

  if (consume(insn, insn->modRM))
    return -1;
  insn->consumedModRM = true;

  mod = modFromModRM(insn->modRM);
  rm = rmFromModRM(insn->modRM);
  reg = regFromModRM(insn->modRM);

  // This goes by insn->registerSize to pick the correct register, which messes
  // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
  // fixupReg().
  switch (insn->registerSize) {
  case 2:
    insn->regBase = MODRM_REG_AX;
    insn->eaRegBase = EA_REG_AX;
    break;
  case 4:
    insn->regBase = MODRM_REG_EAX;
    insn->eaRegBase = EA_REG_EAX;
    break;
  case 8:
    insn->regBase = MODRM_REG_RAX;
    insn->eaRegBase = EA_REG_RAX;
    break;
  }

  reg |= rFromREX(insn->rexPrefix) << 3;
  rm |= bFromREX(insn->rexPrefix) << 3;

  evexrm = 0;
  if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
    reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
    evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
  }

  insn->reg = (Reg)(insn->regBase + reg);

  switch (insn->addressSize) {
  case 2: {
    EABase eaBaseBase = EA_BASE_BX_SI;

    switch (mod) {
    case 0x0:
      if (rm == 0x6) {
        insn->eaBase = EA_BASE_NONE;
        insn->eaDisplacement = EA_DISP_16;
        if (readDisplacement(insn))
          return -1;
      } else {
        insn->eaBase = (EABase)(eaBaseBase + rm);
        insn->eaDisplacement = EA_DISP_NONE;
      }
      break;
    case 0x1:
      insn->eaBase = (EABase)(eaBaseBase + rm);
      insn->eaDisplacement = EA_DISP_8;
      insn->displacementSize = 1;
      if (readDisplacement(insn))
        return -1;
      break;
    case 0x2:
      insn->eaBase = (EABase)(eaBaseBase + rm);
      insn->eaDisplacement = EA_DISP_16;
      if (readDisplacement(insn))
        return -1;
      break;
    case 0x3:
      insn->eaBase = (EABase)(insn->eaRegBase + rm);
      if (readDisplacement(insn))
        return -1;
      break;
    }
    break;
  }
  case 4:
  case 8: {
    EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);

    switch (mod) {
    case 0x0:
      insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
      // In determining whether RIP-relative mode is used (rm=5),
      // or whether a SIB byte is present (rm=4),
      // the extension bits (REX.b and EVEX.x) are ignored.
      switch (rm & 7) {
      case 0x4: // SIB byte is present
        insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
        if (readSIB(insn) || readDisplacement(insn))
          return -1;
        break;
      case 0x5: // RIP-relative
        insn->eaBase = EA_BASE_NONE;
        insn->eaDisplacement = EA_DISP_32;
        if (readDisplacement(insn))
          return -1;
        break;
      default:
        insn->eaBase = (EABase)(eaBaseBase + rm);
        break;
      }
      break;
    case 0x1:
      insn->displacementSize = 1;
      LLVM_FALLTHROUGH;
    case 0x2:
      insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
      switch (rm & 7) {
      case 0x4: // SIB byte is present
        insn->eaBase = EA_BASE_sib;
        if (readSIB(insn) || readDisplacement(insn))
          return -1;
        break;
      default:
        insn->eaBase = (EABase)(eaBaseBase + rm);
        if (readDisplacement(insn))
          return -1;
        break;
      }
      break;
    case 0x3:
      insn->eaDisplacement = EA_DISP_NONE;
      insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
      break;
    }
    break;
  }
  } // switch (insn->addressSize)

  return 0;
}

#define GENERIC_FIXUP_FUNC(name, base, prefix, mask)                           \
  static uint16_t name(struct InternalInstruction *insn, OperandType type,     \
                       uint8_t index, uint8_t *valid) {                        \
    *valid = 1;                                                                \
    switch (type) {                                                            \
    default:                                                                   \
      debug("Unhandled register type");                                        \
      *valid = 0;                                                              \
      return 0;                                                                \
    case TYPE_Rv:                                                              \
      return base + index;                                                     \
    case TYPE_R8:                                                              \
      index &= mask;                                                           \
      if (index > 0xf)                                                         \
        *valid = 0;                                                            \
      if (insn->rexPrefix && index >= 4 && index <= 7) {                       \
        return prefix##_SPL + (index - 4);                                     \
      } else {                                                                 \
        return prefix##_AL + index;                                            \
      }                                                                        \
    case TYPE_R16:                                                             \
      index &= mask;                                                           \
      if (index > 0xf)                                                         \
        *valid = 0;                                                            \
      return prefix##_AX + index;                                              \
    case TYPE_R32:                                                             \
      index &= mask;                                                           \
      if (index > 0xf)                                                         \
        *valid = 0;                                                            \
      return prefix##_EAX + index;                                             \
    case TYPE_R64:                                                             \
      index &= mask;                                                           \
      if (index > 0xf)                                                         \
        *valid = 0;                                                            \
      return prefix##_RAX + index;                                             \
    case TYPE_ZMM:                                                             \
      return prefix##_ZMM0 + index;                                            \
    case TYPE_YMM:                                                             \
      return prefix##_YMM0 + index;                                            \
    case TYPE_XMM:                                                             \
      return prefix##_XMM0 + index;                                            \
    case TYPE_VK:                                                              \
      index &= 0xf;                                                            \
      if (index > 7)                                                           \
        *valid = 0;                                                            \
      return prefix##_K0 + index;                                              \
    case TYPE_VK_PAIR:                                                         \
      if (index > 7)                                                           \
        *valid = 0;                                                            \
      return prefix##_K0_K1 + (index / 2);                                     \
    case TYPE_MM64:                                                            \
      return prefix##_MM0 + (index & 0x7);                                     \
    case TYPE_SEGMENTREG:                                                      \
      if ((index & 7) > 5)                                                     \
        *valid = 0;                                                            \
      return prefix##_ES + (index & 7);                                        \
    case TYPE_DEBUGREG:                                                        \
      return prefix##_DR0 + index;                                             \
    case TYPE_CONTROLREG:                                                      \
      return prefix##_CR0 + index;                                             \
    case TYPE_BNDR:                                                            \
      if (index > 3)                                                           \
        *valid = 0;                                                            \
      return prefix##_BND0 + index;                                            \
    case TYPE_MVSIBX:                                                          \
      return prefix##_XMM0 + index;                                            \
    case TYPE_MVSIBY:                                                          \
      return prefix##_YMM0 + index;                                            \
    case TYPE_MVSIBZ:                                                          \
      return prefix##_ZMM0 + index;                                            \
    }                                                                          \
  }

// Consult an operand type to determine the meaning of the reg or R/M field. If
// the operand is an XMM operand, for example, an operand would be XMM0 instead
// of AX, which readModRM() would otherwise misinterpret it as.
//
// @param insn  - The instruction containing the operand.
// @param type  - The operand type.
// @param index - The existing value of the field as reported by readModRM().
// @param valid - The address of a uint8_t.  The target is set to 1 if the
//                field is valid for the register class; 0 if not.
// @return      - The proper value.
GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)

// Consult an operand specifier to determine which of the fixup*Value functions
// to use in correcting readModRM()'ss interpretation.
//
// @param insn  - See fixup*Value().
// @param op    - The operand specifier.
// @return      - 0 if fixup was successful; -1 if the register returned was
//                invalid for its class.
static int fixupReg(struct InternalInstruction *insn,
                    const struct OperandSpecifier *op) {
  uint8_t valid;
  LLVM_DEBUG(dbgs() << "fixupReg()");

  switch ((OperandEncoding)op->encoding) {
  default:
    debug("Expected a REG or R/M encoding in fixupReg");
    return -1;
  case ENCODING_VVVV:
    insn->vvvv =
        (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
    if (!valid)
      return -1;
    break;
  case ENCODING_REG:
    insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
                                   insn->reg - insn->regBase, &valid);
    if (!valid)
      return -1;
    break;
  CASE_ENCODING_RM:
    if (insn->eaBase >= insn->eaRegBase) {
      insn->eaBase = (EABase)fixupRMValue(
          insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
      if (!valid)
        return -1;
    }
    break;
  }

  return 0;
}

// Read the opcode (except the ModR/M byte in the case of extended or escape
// opcodes).
static bool readOpcode(struct InternalInstruction *insn) {
  uint8_t current;
  LLVM_DEBUG(dbgs() << "readOpcode()");

  insn->opcodeType = ONEBYTE;
  if (insn->vectorExtensionType == TYPE_EVEX) {
    switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
    default:
      LLVM_DEBUG(
          dbgs() << format("Unhandled mm field for instruction (0x%hhx)",
                           mmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
      return true;
    case VEX_LOB_0F:
      insn->opcodeType = TWOBYTE;
      return consume(insn, insn->opcode);
    case VEX_LOB_0F38:
      insn->opcodeType = THREEBYTE_38;
      return consume(insn, insn->opcode);
    case VEX_LOB_0F3A:
      insn->opcodeType = THREEBYTE_3A;
      return consume(insn, insn->opcode);
    }
  } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
    switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
    default:
      LLVM_DEBUG(
          dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
                           mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
      return true;
    case VEX_LOB_0F:
      insn->opcodeType = TWOBYTE;
      return consume(insn, insn->opcode);
    case VEX_LOB_0F38:
      insn->opcodeType = THREEBYTE_38;
      return consume(insn, insn->opcode);
    case VEX_LOB_0F3A:
      insn->opcodeType = THREEBYTE_3A;
      return consume(insn, insn->opcode);
    }
  } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
    insn->opcodeType = TWOBYTE;
    return consume(insn, insn->opcode);
  } else if (insn->vectorExtensionType == TYPE_XOP) {
    switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
    default:
      LLVM_DEBUG(
          dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
                           mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
      return true;
    case XOP_MAP_SELECT_8:
      insn->opcodeType = XOP8_MAP;
      return consume(insn, insn->opcode);
    case XOP_MAP_SELECT_9:
      insn->opcodeType = XOP9_MAP;
      return consume(insn, insn->opcode);
    case XOP_MAP_SELECT_A:
      insn->opcodeType = XOPA_MAP;
      return consume(insn, insn->opcode);
    }
  }

  if (consume(insn, current))
    return true;

  if (current == 0x0f) {
    LLVM_DEBUG(
        dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
    if (consume(insn, current))
      return true;

    if (current == 0x38) {
      LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
                                  current));
      if (consume(insn, current))
        return true;

      insn->opcodeType = THREEBYTE_38;
    } else if (current == 0x3a) {
      LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
                                  current));
      if (consume(insn, current))
        return true;

      insn->opcodeType = THREEBYTE_3A;
    } else if (current == 0x0f) {
      LLVM_DEBUG(
          dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));

      // Consume operands before the opcode to comply with the 3DNow encoding
      if (readModRM(insn))
        return true;

      if (consume(insn, current))
        return true;

      insn->opcodeType = THREEDNOW_MAP;
    } else {
      LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
      insn->opcodeType = TWOBYTE;
    }
  } else if (insn->mandatoryPrefix)
    // The opcode with mandatory prefix must start with opcode escape.
    // If not it's legacy repeat prefix
    insn->mandatoryPrefix = 0;

  // At this point we have consumed the full opcode.
  // Anything we consume from here on must be unconsumed.
  insn->opcode = current;

  return false;
}

// Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
static bool is16BitEquivalent(const char *orig, const char *equiv) {
  for (int i = 0;; i++) {
    if (orig[i] == '\0' && equiv[i] == '\0')
      return true;
    if (orig[i] == '\0' || equiv[i] == '\0')
      return false;
    if (orig[i] != equiv[i]) {
      if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
        continue;
      if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
        continue;
      if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
        continue;
      return false;
    }
  }
}

// Determine whether this instruction is a 64-bit instruction.
static bool is64Bit(const char *name) {
  for (int i = 0;; ++i) {
    if (name[i] == '\0')
      return false;
    if (name[i] == '6' && name[i + 1] == '4')
      return true;
  }
}

// Determine the ID of an instruction, consuming the ModR/M byte as appropriate
// for extended and escape opcodes, and using a supplied attribute mask.
static int getInstructionIDWithAttrMask(uint16_t *instructionID,
                                        struct InternalInstruction *insn,
                                        uint16_t attrMask) {
  auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
  const ContextDecision *decision;
  switch (insn->opcodeType) {
  case ONEBYTE:
    decision = &ONEBYTE_SYM;
    break;
  case TWOBYTE:
    decision = &TWOBYTE_SYM;
    break;
  case THREEBYTE_38:
    decision = &THREEBYTE38_SYM;
    break;
  case THREEBYTE_3A:
    decision = &THREEBYTE3A_SYM;
    break;
  case XOP8_MAP:
    decision = &XOP8_MAP_SYM;
    break;
  case XOP9_MAP:
    decision = &XOP9_MAP_SYM;
    break;
  case XOPA_MAP:
    decision = &XOPA_MAP_SYM;
    break;
  case THREEDNOW_MAP:
    decision = &THREEDNOW_MAP_SYM;
    break;
  }

  if (decision->opcodeDecisions[insnCtx]
          .modRMDecisions[insn->opcode]
          .modrm_type != MODRM_ONEENTRY) {
    if (readModRM(insn))
      return -1;
    *instructionID =
        decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
  } else {
    *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
  }

  return 0;
}

// Determine the ID of an instruction, consuming the ModR/M byte as appropriate
// for extended and escape opcodes. Determines the attributes and context for
// the instruction before doing so.
static int getInstructionID(struct InternalInstruction *insn,
                            const MCInstrInfo *mii) {
  uint16_t attrMask;
  uint16_t instructionID;

  LLVM_DEBUG(dbgs() << "getID()");

  attrMask = ATTR_NONE;

  if (insn->mode == MODE_64BIT)
    attrMask |= ATTR_64BIT;

  if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
    attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;

    if (insn->vectorExtensionType == TYPE_EVEX) {
      switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
      case VEX_PREFIX_66:
        attrMask |= ATTR_OPSIZE;
        break;
      case VEX_PREFIX_F3:
        attrMask |= ATTR_XS;
        break;
      case VEX_PREFIX_F2:
        attrMask |= ATTR_XD;
        break;
      }

      if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
        attrMask |= ATTR_EVEXKZ;
      if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
        attrMask |= ATTR_EVEXB;
      if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
        attrMask |= ATTR_EVEXK;
      if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
        attrMask |= ATTR_VEXL;
      if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
        attrMask |= ATTR_EVEXL2;
    } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
      switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
      case VEX_PREFIX_66:
        attrMask |= ATTR_OPSIZE;
        break;
      case VEX_PREFIX_F3:
        attrMask |= ATTR_XS;
        break;
      case VEX_PREFIX_F2:
        attrMask |= ATTR_XD;
        break;
      }

      if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
        attrMask |= ATTR_VEXL;
    } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
      switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
      case VEX_PREFIX_66:
        attrMask |= ATTR_OPSIZE;
        break;
      case VEX_PREFIX_F3:
        attrMask |= ATTR_XS;
        break;
      case VEX_PREFIX_F2:
        attrMask |= ATTR_XD;
        break;
      }

      if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
        attrMask |= ATTR_VEXL;
    } else if (insn->vectorExtensionType == TYPE_XOP) {
      switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
      case VEX_PREFIX_66:
        attrMask |= ATTR_OPSIZE;
        break;
      case VEX_PREFIX_F3:
        attrMask |= ATTR_XS;
        break;
      case VEX_PREFIX_F2:
        attrMask |= ATTR_XD;
        break;
      }

      if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
        attrMask |= ATTR_VEXL;
    } else {
      return -1;
    }
  } else if (!insn->mandatoryPrefix) {
    // If we don't have mandatory prefix we should use legacy prefixes here
    if (insn->hasOpSize && (insn->mode != MODE_16BIT))
      attrMask |= ATTR_OPSIZE;
    if (insn->hasAdSize)
      attrMask |= ATTR_ADSIZE;
    if (insn->opcodeType == ONEBYTE) {
      if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
        // Special support for PAUSE
        attrMask |= ATTR_XS;
    } else {
      if (insn->repeatPrefix == 0xf2)
        attrMask |= ATTR_XD;
      else if (insn->repeatPrefix == 0xf3)
        attrMask |= ATTR_XS;
    }
  } else {
    switch (insn->mandatoryPrefix) {
    case 0xf2:
      attrMask |= ATTR_XD;
      break;
    case 0xf3:
      attrMask |= ATTR_XS;
      break;
    case 0x66:
      if (insn->mode != MODE_16BIT)
        attrMask |= ATTR_OPSIZE;
      break;
    case 0x67:
      attrMask |= ATTR_ADSIZE;
      break;
    }
  }

  if (insn->rexPrefix & 0x08) {
    attrMask |= ATTR_REXW;
    attrMask &= ~ATTR_ADSIZE;
  }

  if (insn->mode == MODE_16BIT) {
    // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
    // of the AdSize prefix is inverted w.r.t. 32-bit mode.
    if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
      attrMask ^= ATTR_ADSIZE;
    // If we're in 16-bit mode and this is one of the relative jumps and opsize
    // prefix isn't present, we need to force the opsize attribute since the
    // prefix is inverted relative to 32-bit mode.
    if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
        (insn->opcode == 0xE8 || insn->opcode == 0xE9))
      attrMask |= ATTR_OPSIZE;

    if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
        insn->opcode >= 0x80 && insn->opcode <= 0x8F)
      attrMask |= ATTR_OPSIZE;
  }


  if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
    return -1;

  // The following clauses compensate for limitations of the tables.

  if (insn->mode != MODE_64BIT &&
      insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
    // The tables can't distinquish between cases where the W-bit is used to
    // select register size and cases where its a required part of the opcode.
    if ((insn->vectorExtensionType == TYPE_EVEX &&
         wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
        (insn->vectorExtensionType == TYPE_VEX_3B &&
         wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
        (insn->vectorExtensionType == TYPE_XOP &&
         wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {

      uint16_t instructionIDWithREXW;
      if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
                                       attrMask | ATTR_REXW)) {
        insn->instructionID = instructionID;
        insn->spec = &INSTRUCTIONS_SYM[instructionID];
        return 0;
      }

      auto SpecName = mii->getName(instructionIDWithREXW);
      // If not a 64-bit instruction. Switch the opcode.
      if (!is64Bit(SpecName.data())) {
        insn->instructionID = instructionIDWithREXW;
        insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
        return 0;
      }
    }
  }

  // Absolute moves, umonitor, and movdir64b need special handling.
  // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
  //  inverted w.r.t.
  // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
  //  any position.
  if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
      (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
      (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
    // Make sure we observed the prefixes in any position.
    if (insn->hasAdSize)
      attrMask |= ATTR_ADSIZE;
    if (insn->hasOpSize)
      attrMask |= ATTR_OPSIZE;

    // In 16-bit, invert the attributes.
    if (insn->mode == MODE_16BIT) {
      attrMask ^= ATTR_ADSIZE;

      // The OpSize attribute is only valid with the absolute moves.
      if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
        attrMask ^= ATTR_OPSIZE;
    }

    if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
      return -1;

    insn->instructionID = instructionID;
    insn->spec = &INSTRUCTIONS_SYM[instructionID];
    return 0;
  }

  if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
      !(attrMask & ATTR_OPSIZE)) {
    // The instruction tables make no distinction between instructions that
    // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
    // particular spot (i.e., many MMX operations). In general we're
    // conservative, but in the specific case where OpSize is present but not in
    // the right place we check if there's a 16-bit operation.
    const struct InstructionSpecifier *spec;
    uint16_t instructionIDWithOpsize;
    llvm::StringRef specName, specWithOpSizeName;

    spec = &INSTRUCTIONS_SYM[instructionID];

    if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
                                     attrMask | ATTR_OPSIZE)) {
      // ModRM required with OpSize but not present. Give up and return the
      // version without OpSize set.
      insn->instructionID = instructionID;
      insn->spec = spec;
      return 0;
    }

    specName = mii->getName(instructionID);
    specWithOpSizeName = mii->getName(instructionIDWithOpsize);

    if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
        (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
      insn->instructionID = instructionIDWithOpsize;
      insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
    } else {
      insn->instructionID = instructionID;
      insn->spec = spec;
    }
    return 0;
  }

  if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
      insn->rexPrefix & 0x01) {
    // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
    // as XCHG %r8, %eax.
    const struct InstructionSpecifier *spec;
    uint16_t instructionIDWithNewOpcode;
    const struct InstructionSpecifier *specWithNewOpcode;

    spec = &INSTRUCTIONS_SYM[instructionID];

    // Borrow opcode from one of the other XCHGar opcodes
    insn->opcode = 0x91;

    if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
                                     attrMask)) {
      insn->opcode = 0x90;

      insn->instructionID = instructionID;
      insn->spec = spec;
      return 0;
    }

    specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];

    // Change back
    insn->opcode = 0x90;

    insn->instructionID = instructionIDWithNewOpcode;
    insn->spec = specWithNewOpcode;

    return 0;
  }

  insn->instructionID = instructionID;
  insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];

  return 0;
}

// Read an operand from the opcode field of an instruction and interprets it
// appropriately given the operand width. Handles AddRegFrm instructions.
//
// @param insn  - the instruction whose opcode field is to be read.
// @param size  - The width (in bytes) of the register being specified.
//                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
//                RAX.
// @return      - 0 on success; nonzero otherwise.
static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
  LLVM_DEBUG(dbgs() << "readOpcodeRegister()");

  if (size == 0)
    size = insn->registerSize;

  switch (size) {
  case 1:
    insn->opcodeRegister = (Reg)(
        MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
    if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
        insn->opcodeRegister < MODRM_REG_AL + 0x8) {
      insn->opcodeRegister =
          (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
    }

    break;
  case 2:
    insn->opcodeRegister = (Reg)(
        MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
    break;
  case 4:
    insn->opcodeRegister =
        (Reg)(MODRM_REG_EAX +
              ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
    break;
  case 8:
    insn->opcodeRegister =
        (Reg)(MODRM_REG_RAX +
              ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
    break;
  }

  return 0;
}

// Consume an immediate operand from an instruction, given the desired operand
// size.
//
// @param insn  - The instruction whose operand is to be read.
// @param size  - The width (in bytes) of the operand.
// @return      - 0 if the immediate was successfully consumed; nonzero
//                otherwise.
static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
  uint8_t imm8;
  uint16_t imm16;
  uint32_t imm32;
  uint64_t imm64;

  LLVM_DEBUG(dbgs() << "readImmediate()");

  assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");

  insn->immediateSize = size;
  insn->immediateOffset = insn->readerCursor - insn->startLocation;

  switch (size) {
  case 1:
    if (consume(insn, imm8))
      return -1;
    insn->immediates[insn->numImmediatesConsumed] = imm8;
    break;
  case 2:
    if (consume(insn, imm16))
      return -1;
    insn->immediates[insn->numImmediatesConsumed] = imm16;
    break;
  case 4:
    if (consume(insn, imm32))
      return -1;
    insn->immediates[insn->numImmediatesConsumed] = imm32;
    break;
  case 8:
    if (consume(insn, imm64))
      return -1;
    insn->immediates[insn->numImmediatesConsumed] = imm64;
    break;
  default:
    llvm_unreachable("invalid size");
  }

  insn->numImmediatesConsumed++;

  return 0;
}

// Consume vvvv from an instruction if it has a VEX prefix.
static int readVVVV(struct InternalInstruction *insn) {
  LLVM_DEBUG(dbgs() << "readVVVV()");

  int vvvv;
  if (insn->vectorExtensionType == TYPE_EVEX)
    vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
            vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
  else if (insn->vectorExtensionType == TYPE_VEX_3B)
    vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
  else if (insn->vectorExtensionType == TYPE_VEX_2B)
    vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
  else if (insn->vectorExtensionType == TYPE_XOP)
    vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
  else
    return -1;

  if (insn->mode != MODE_64BIT)
    vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.

  insn->vvvv = static_cast<Reg>(vvvv);
  return 0;
}

// Read an mask register from the opcode field of an instruction.
//
// @param insn    - The instruction whose opcode field is to be read.
// @return        - 0 on success; nonzero otherwise.
static int readMaskRegister(struct InternalInstruction *insn) {
  LLVM_DEBUG(dbgs() << "readMaskRegister()");

  if (insn->vectorExtensionType != TYPE_EVEX)
    return -1;

  insn->writemask =
      static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
  return 0;
}

// Consults the specifier for an instruction and consumes all
// operands for that instruction, interpreting them as it goes.
static int readOperands(struct InternalInstruction *insn) {
  int hasVVVV, needVVVV;
  int sawRegImm = 0;

  LLVM_DEBUG(dbgs() << "readOperands()");

  // If non-zero vvvv specified, make sure one of the operands uses it.
  hasVVVV = !readVVVV(insn);
  needVVVV = hasVVVV && (insn->vvvv != 0);

  for (const auto &Op : x86OperandSets[insn->spec->operands]) {
    switch (Op.encoding) {
    case ENCODING_NONE:
    case ENCODING_SI:
    case ENCODING_DI:
      break;
    CASE_ENCODING_VSIB:
      // VSIB can use the V2 bit so check only the other bits.
      if (needVVVV)
        needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
      if (readModRM(insn))
        return -1;

      // Reject if SIB wasn't used.
      if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
        return -1;

      // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
      if (insn->sibIndex == SIB_INDEX_NONE)
        insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);

      // If EVEX.v2 is set this is one of the 16-31 registers.
      if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
          v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
        insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);

      // Adjust the index register to the correct size.
      switch ((OperandType)Op.type) {
      default:
        debug("Unhandled VSIB index type");
        return -1;
      case TYPE_MVSIBX:
        insn->sibIndex =
            (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
        break;
      case TYPE_MVSIBY:
        insn->sibIndex =
            (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
        break;
      case TYPE_MVSIBZ:
        insn->sibIndex =
            (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
        break;
      }

      // Apply the AVX512 compressed displacement scaling factor.
      if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
        insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
      break;
    case ENCODING_REG:
    CASE_ENCODING_RM:
      if (readModRM(insn))
        return -1;
      if (fixupReg(insn, &Op))
        return -1;
      // Apply the AVX512 compressed displacement scaling factor.
      if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
        insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
      break;
    case ENCODING_IB:
      if (sawRegImm) {
        // Saw a register immediate so don't read again and instead split the
        // previous immediate. FIXME: This is a hack.
        insn->immediates[insn->numImmediatesConsumed] =
            insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
        ++insn->numImmediatesConsumed;
        break;
      }
      if (readImmediate(insn, 1))
        return -1;
      if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
        sawRegImm = 1;
      break;
    case ENCODING_IW:
      if (readImmediate(insn, 2))
        return -1;
      break;
    case ENCODING_ID:
      if (readImmediate(insn, 4))
        return -1;
      break;
    case ENCODING_IO:
      if (readImmediate(insn, 8))
        return -1;
      break;
    case ENCODING_Iv:
      if (readImmediate(insn, insn->immediateSize))
        return -1;
      break;
    case ENCODING_Ia:
      if (readImmediate(insn, insn->addressSize))
        return -1;
      break;
    case ENCODING_IRC:
      insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
                 lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
      break;
    case ENCODING_RB:
      if (readOpcodeRegister(insn, 1))
        return -1;
      break;
    case ENCODING_RW:
      if (readOpcodeRegister(insn, 2))
        return -1;
      break;
    case ENCODING_RD:
      if (readOpcodeRegister(insn, 4))
        return -1;
      break;
    case ENCODING_RO:
      if (readOpcodeRegister(insn, 8))
        return -1;
      break;
    case ENCODING_Rv:
      if (readOpcodeRegister(insn, 0))
        return -1;
      break;
    case ENCODING_CC:
      insn->immediates[1] = insn->opcode & 0xf;
      break;
    case ENCODING_FP:
      break;
    case ENCODING_VVVV:
      needVVVV = 0; // Mark that we have found a VVVV operand.
      if (!hasVVVV)
        return -1;
      if (insn->mode != MODE_64BIT)
        insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
      if (fixupReg(insn, &Op))
        return -1;
      break;
    case ENCODING_WRITEMASK:
      if (readMaskRegister(insn))
        return -1;
      break;
    case ENCODING_DUP:
      break;
    default:
      LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
      return -1;
    }
  }

  // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
  if (needVVVV)
    return -1;

  return 0;
}

namespace llvm {

// Fill-ins to make the compiler happy. These constants are never actually
// assigned; they are just filler to make an automatically-generated switch
// statement work.
namespace X86 {
  enum {
    BX_SI = 500,
    BX_DI = 501,
    BP_SI = 502,
    BP_DI = 503,
    sib   = 504,
    sib64 = 505
  };
}

}

static bool translateInstruction(MCInst &target,
                                InternalInstruction &source,
                                const MCDisassembler *Dis);

namespace {

/// Generic disassembler for all X86 platforms. All each platform class should
/// have to do is subclass the constructor, and provide a different
/// disassemblerMode value.
class X86GenericDisassembler : public MCDisassembler {
  std::unique_ptr<const MCInstrInfo> MII;
public:
  X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
                         std::unique_ptr<const MCInstrInfo> MII);
public:
  DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
                              ArrayRef<uint8_t> Bytes, uint64_t Address,
                              raw_ostream &cStream) const override;

private:
  DisassemblerMode              fMode;
};

}

X86GenericDisassembler::X86GenericDisassembler(
                                         const MCSubtargetInfo &STI,
                                         MCContext &Ctx,
                                         std::unique_ptr<const MCInstrInfo> MII)
  : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
  const FeatureBitset &FB = STI.getFeatureBits();
  if (FB[X86::Mode16Bit]) {
    fMode = MODE_16BIT;
    return;
  } else if (FB[X86::Mode32Bit]) {
    fMode = MODE_32BIT;
    return;
  } else if (FB[X86::Mode64Bit]) {
    fMode = MODE_64BIT;
    return;
  }

  llvm_unreachable("Invalid CPU mode");
}

MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
    MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
    raw_ostream &CStream) const {
  CommentStream = &CStream;

  InternalInstruction Insn;
  memset(&Insn, 0, sizeof(InternalInstruction));
  Insn.bytes = Bytes;
  Insn.startLocation = Address;
  Insn.readerCursor = Address;
  Insn.mode = fMode;

  if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
      getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
      readOperands(&Insn)) {
    Size = Insn.readerCursor - Address;
    return Fail;
  }

  Insn.operands = x86OperandSets[Insn.spec->operands];
  Insn.length = Insn.readerCursor - Insn.startLocation;
  Size = Insn.length;
  if (Size > 15)
    LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");

  bool Ret = translateInstruction(Instr, Insn, this);
  if (!Ret) {
    unsigned Flags = X86::IP_NO_PREFIX;
    if (Insn.hasAdSize)
      Flags |= X86::IP_HAS_AD_SIZE;
    if (!Insn.mandatoryPrefix) {
      if (Insn.hasOpSize)
        Flags |= X86::IP_HAS_OP_SIZE;
      if (Insn.repeatPrefix == 0xf2)
        Flags |= X86::IP_HAS_REPEAT_NE;
      else if (Insn.repeatPrefix == 0xf3 &&
               // It should not be 'pause' f3 90
               Insn.opcode != 0x90)
        Flags |= X86::IP_HAS_REPEAT;
      if (Insn.hasLockPrefix)
        Flags |= X86::IP_HAS_LOCK;
    }
    Instr.setFlags(Flags);
  }
  return (!Ret) ? Success : Fail;
}

//
// Private code that translates from struct InternalInstructions to MCInsts.
//

/// translateRegister - Translates an internal register to the appropriate LLVM
///   register, and appends it as an operand to an MCInst.
///
/// @param mcInst     - The MCInst to append to.
/// @param reg        - The Reg to append.
static void translateRegister(MCInst &mcInst, Reg reg) {
#define ENTRY(x) X86::x,
  static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
#undef ENTRY

  MCPhysReg llvmRegnum = llvmRegnums[reg];
  mcInst.addOperand(MCOperand::createReg(llvmRegnum));
}

/// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
/// immediate Value in the MCInst.
///
/// @param Value      - The immediate Value, has had any PC adjustment made by
///                     the caller.
/// @param isBranch   - If the instruction is a branch instruction
/// @param Address    - The starting address of the instruction
/// @param Offset     - The byte offset to this immediate in the instruction
/// @param Width      - The byte width of this immediate in the instruction
///
/// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
/// called then that function is called to get any symbolic information for the
/// immediate in the instruction using the Address, Offset and Width.  If that
/// returns non-zero then the symbolic information it returns is used to create
/// an MCExpr and that is added as an operand to the MCInst.  If getOpInfo()
/// returns zero and isBranch is true then a symbol look up for immediate Value
/// is done and if a symbol is found an MCExpr is created with that, else
/// an MCExpr with the immediate Value is created.  This function returns true
/// if it adds an operand to the MCInst and false otherwise.
static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
                                     uint64_t Address, uint64_t Offset,
                                     uint64_t Width, MCInst &MI,
                                     const MCDisassembler *Dis) {
  return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
                                       Offset, Width);
}

/// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
/// referenced by a load instruction with the base register that is the rip.
/// These can often be addresses in a literal pool.  The Address of the
/// instruction and its immediate Value are used to determine the address
/// being referenced in the literal pool entry.  The SymbolLookUp call back will
/// return a pointer to a literal 'C' string if the referenced address is an
/// address into a section with 'C' string literals.
static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
                                            const void *Decoder) {
  const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
  Dis->tryAddingPcLoadReferenceComment(Value, Address);
}

static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
  0,        // SEG_OVERRIDE_NONE
  X86::CS,
  X86::SS,
  X86::DS,
  X86::ES,
  X86::FS,
  X86::GS
};

/// translateSrcIndex   - Appends a source index operand to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param insn         - The internal instruction.
static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
  unsigned baseRegNo;

  if (insn.mode == MODE_64BIT)
    baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
  else if (insn.mode == MODE_32BIT)
    baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
  else {
    assert(insn.mode == MODE_16BIT);
    baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
  }
  MCOperand baseReg = MCOperand::createReg(baseRegNo);
  mcInst.addOperand(baseReg);

  MCOperand segmentReg;
  segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
  mcInst.addOperand(segmentReg);
  return false;
}

/// translateDstIndex   - Appends a destination index operand to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param insn         - The internal instruction.

static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
  unsigned baseRegNo;

  if (insn.mode == MODE_64BIT)
    baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
  else if (insn.mode == MODE_32BIT)
    baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
  else {
    assert(insn.mode == MODE_16BIT);
    baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
  }
  MCOperand baseReg = MCOperand::createReg(baseRegNo);
  mcInst.addOperand(baseReg);
  return false;
}

/// translateImmediate  - Appends an immediate operand to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param immediate    - The immediate value to append.
/// @param operand      - The operand, as stored in the descriptor table.
/// @param insn         - The internal instruction.
static void translateImmediate(MCInst &mcInst, uint64_t immediate,
                               const OperandSpecifier &operand,
                               InternalInstruction &insn,
                               const MCDisassembler *Dis) {
  // Sign-extend the immediate if necessary.

  OperandType type = (OperandType)operand.type;

  bool isBranch = false;
  uint64_t pcrel = 0;
  if (type == TYPE_REL) {
    isBranch = true;
    pcrel = insn.startLocation +
            insn.immediateOffset + insn.immediateSize;
    switch (operand.encoding) {
    default:
      break;
    case ENCODING_Iv:
      switch (insn.displacementSize) {
      default:
        break;
      case 1:
        if(immediate & 0x80)
          immediate |= ~(0xffull);
        break;
      case 2:
        if(immediate & 0x8000)
          immediate |= ~(0xffffull);
        break;
      case 4:
        if(immediate & 0x80000000)
          immediate |= ~(0xffffffffull);
        break;
      case 8:
        break;
      }
      break;
    case ENCODING_IB:
      if(immediate & 0x80)
        immediate |= ~(0xffull);
      break;
    case ENCODING_IW:
      if(immediate & 0x8000)
        immediate |= ~(0xffffull);
      break;
    case ENCODING_ID:
      if(immediate & 0x80000000)
        immediate |= ~(0xffffffffull);
      break;
    }
  }
  // By default sign-extend all X86 immediates based on their encoding.
  else if (type == TYPE_IMM) {
    switch (operand.encoding) {
    default:
      break;
    case ENCODING_IB:
      if(immediate & 0x80)
        immediate |= ~(0xffull);
      break;
    case ENCODING_IW:
      if(immediate & 0x8000)
        immediate |= ~(0xffffull);
      break;
    case ENCODING_ID:
      if(immediate & 0x80000000)
        immediate |= ~(0xffffffffull);
      break;
    case ENCODING_IO:
      break;
    }
  }

  switch (type) {
  case TYPE_XMM:
    mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
    return;
  case TYPE_YMM:
    mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
    return;
  case TYPE_ZMM:
    mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
    return;
  default:
    // operand is 64 bits wide.  Do nothing.
    break;
  }

  if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
                               insn.immediateOffset, insn.immediateSize,
                               mcInst, Dis))
    mcInst.addOperand(MCOperand::createImm(immediate));

  if (type == TYPE_MOFFS) {
    MCOperand segmentReg;
    segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
    mcInst.addOperand(segmentReg);
  }
}

/// translateRMRegister - Translates a register stored in the R/M field of the
///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
/// @param mcInst       - The MCInst to append to.
/// @param insn         - The internal instruction to extract the R/M field
///                       from.
/// @return             - 0 on success; -1 otherwise
static bool translateRMRegister(MCInst &mcInst,
                                InternalInstruction &insn) {
  if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
    debug("A R/M register operand may not have a SIB byte");
    return true;
  }

  switch (insn.eaBase) {
  default:
    debug("Unexpected EA base register");
    return true;
  case EA_BASE_NONE:
    debug("EA_BASE_NONE for ModR/M base");
    return true;
#define ENTRY(x) case EA_BASE_##x:
  ALL_EA_BASES
#undef ENTRY
    debug("A R/M register operand may not have a base; "
          "the operand must be a register.");
    return true;
#define ENTRY(x)                                                      \
  case EA_REG_##x:                                                    \
    mcInst.addOperand(MCOperand::createReg(X86::x)); break;
  ALL_REGS
#undef ENTRY
  }

  return false;
}

/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
///   fields of an internal instruction (and possibly its SIB byte) to a memory
///   operand in LLVM's format, and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param insn         - The instruction to extract Mod, R/M, and SIB fields
///                       from.
/// @return             - 0 on success; nonzero otherwise
static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
                              const MCDisassembler *Dis) {
  // Addresses in an MCInst are represented as five operands:
  //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
  //                                SIB base
  //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
  //                                scale amount
  //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
  //                                the index (which is multiplied by the
  //                                scale amount)
  //   4. displacement  (immediate) 0, or the displacement if there is one
  //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
  //                                if we have segment overrides

  MCOperand baseReg;
  MCOperand scaleAmount;
  MCOperand indexReg;
  MCOperand displacement;
  MCOperand segmentReg;
  uint64_t pcrel = 0;

  if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
    if (insn.sibBase != SIB_BASE_NONE) {
      switch (insn.sibBase) {
      default:
        debug("Unexpected sibBase");
        return true;
#define ENTRY(x)                                          \
      case SIB_BASE_##x:                                  \
        baseReg = MCOperand::createReg(X86::x); break;
      ALL_SIB_BASES
#undef ENTRY
      }
    } else {
      baseReg = MCOperand::createReg(X86::NoRegister);
    }

    if (insn.sibIndex != SIB_INDEX_NONE) {
      switch (insn.sibIndex) {
      default:
        debug("Unexpected sibIndex");
        return true;
#define ENTRY(x)                                          \
      case SIB_INDEX_##x:                                 \
        indexReg = MCOperand::createReg(X86::x); break;
      EA_BASES_32BIT
      EA_BASES_64BIT
      REGS_XMM
      REGS_YMM
      REGS_ZMM
#undef ENTRY
      }
    } else {
      // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
      // but no index is used and modrm alone should have been enough.
      // -No base register in 32-bit mode. In 64-bit mode this is used to
      //  avoid rip-relative addressing.
      // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
      //  base always requires a SIB byte.
      // -A scale other than 1 is used.
      if (insn.sibScale != 1 ||
          (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
          (insn.sibBase != SIB_BASE_NONE &&
           insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
           insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12)) {
        indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
                                                                X86::RIZ);
      } else
        indexReg = MCOperand::createReg(X86::NoRegister);
    }

    scaleAmount = MCOperand::createImm(insn.sibScale);
  } else {
    switch (insn.eaBase) {
    case EA_BASE_NONE:
      if (insn.eaDisplacement == EA_DISP_NONE) {
        debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
        return true;
      }
      if (insn.mode == MODE_64BIT){
        pcrel = insn.startLocation +
                insn.displacementOffset + insn.displacementSize;
        tryAddingPcLoadReferenceComment(insn.startLocation +
                                        insn.displacementOffset,
                                        insn.displacement + pcrel, Dis);
        // Section 2.2.1.6
        baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
                                                               X86::RIP);
      }
      else
        baseReg = MCOperand::createReg(X86::NoRegister);

      indexReg = MCOperand::createReg(X86::NoRegister);
      break;
    case EA_BASE_BX_SI:
      baseReg = MCOperand::createReg(X86::BX);
      indexReg = MCOperand::createReg(X86::SI);
      break;
    case EA_BASE_BX_DI:
      baseReg = MCOperand::createReg(X86::BX);
      indexReg = MCOperand::createReg(X86::DI);
      break;
    case EA_BASE_BP_SI:
      baseReg = MCOperand::createReg(X86::BP);
      indexReg = MCOperand::createReg(X86::SI);
      break;
    case EA_BASE_BP_DI:
      baseReg = MCOperand::createReg(X86::BP);
      indexReg = MCOperand::createReg(X86::DI);
      break;
    default:
      indexReg = MCOperand::createReg(X86::NoRegister);
      switch (insn.eaBase) {
      default:
        debug("Unexpected eaBase");
        return true;
        // Here, we will use the fill-ins defined above.  However,
        //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
        //   sib and sib64 were handled in the top-level if, so they're only
        //   placeholders to keep the compiler happy.
#define ENTRY(x)                                        \
      case EA_BASE_##x:                                 \
        baseReg = MCOperand::createReg(X86::x); break;
      ALL_EA_BASES
#undef ENTRY
#define ENTRY(x) case EA_REG_##x:
      ALL_REGS
#undef ENTRY
        debug("A R/M memory operand may not be a register; "
              "the base field must be a base.");
        return true;
      }
    }

    scaleAmount = MCOperand::createImm(1);
  }

  displacement = MCOperand::createImm(insn.displacement);

  segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);

  mcInst.addOperand(baseReg);
  mcInst.addOperand(scaleAmount);
  mcInst.addOperand(indexReg);
  if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
                               insn.startLocation, insn.displacementOffset,
                               insn.displacementSize, mcInst, Dis))
    mcInst.addOperand(displacement);
  mcInst.addOperand(segmentReg);
  return false;
}

/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
///   byte of an instruction to LLVM form, and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param operand      - The operand, as stored in the descriptor table.
/// @param insn         - The instruction to extract Mod, R/M, and SIB fields
///                       from.
/// @return             - 0 on success; nonzero otherwise
static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
                        InternalInstruction &insn, const MCDisassembler *Dis) {
  switch (operand.type) {
  default:
    debug("Unexpected type for a R/M operand");
    return true;
  case TYPE_R8:
  case TYPE_R16:
  case TYPE_R32:
  case TYPE_R64:
  case TYPE_Rv:
  case TYPE_MM64:
  case TYPE_XMM:
  case TYPE_YMM:
  case TYPE_ZMM:
  case TYPE_VK_PAIR:
  case TYPE_VK:
  case TYPE_DEBUGREG:
  case TYPE_CONTROLREG:
  case TYPE_BNDR:
    return translateRMRegister(mcInst, insn);
  case TYPE_M:
  case TYPE_MVSIBX:
  case TYPE_MVSIBY:
  case TYPE_MVSIBZ:
    return translateRMMemory(mcInst, insn, Dis);
  }
}

/// translateFPRegister - Translates a stack position on the FPU stack to its
///   LLVM form, and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param stackPos     - The stack position to translate.
static void translateFPRegister(MCInst &mcInst,
                                uint8_t stackPos) {
  mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
}

/// translateMaskRegister - Translates a 3-bit mask register number to
///   LLVM form, and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param maskRegNum   - Number of mask register from 0 to 7.
/// @return             - false on success; true otherwise.
static bool translateMaskRegister(MCInst &mcInst,
                                uint8_t maskRegNum) {
  if (maskRegNum >= 8) {
    debug("Invalid mask register number");
    return true;
  }

  mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
  return false;
}

/// translateOperand - Translates an operand stored in an internal instruction
///   to LLVM's format and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param operand      - The operand, as stored in the descriptor table.
/// @param insn         - The internal instruction.
/// @return             - false on success; true otherwise.
static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
                             InternalInstruction &insn,
                             const MCDisassembler *Dis) {
  switch (operand.encoding) {
  default:
    debug("Unhandled operand encoding during translation");
    return true;
  case ENCODING_REG:
    translateRegister(mcInst, insn.reg);
    return false;
  case ENCODING_WRITEMASK:
    return translateMaskRegister(mcInst, insn.writemask);
  CASE_ENCODING_RM:
  CASE_ENCODING_VSIB:
    return translateRM(mcInst, operand, insn, Dis);
  case ENCODING_IB:
  case ENCODING_IW:
  case ENCODING_ID:
  case ENCODING_IO:
  case ENCODING_Iv:
  case ENCODING_Ia:
    translateImmediate(mcInst,
                       insn.immediates[insn.numImmediatesTranslated++],
                       operand,
                       insn,
                       Dis);
    return false;
  case ENCODING_IRC:
    mcInst.addOperand(MCOperand::createImm(insn.RC));
    return false;
  case ENCODING_SI:
    return translateSrcIndex(mcInst, insn);
  case ENCODING_DI:
    return translateDstIndex(mcInst, insn);
  case ENCODING_RB:
  case ENCODING_RW:
  case ENCODING_RD:
  case ENCODING_RO:
  case ENCODING_Rv:
    translateRegister(mcInst, insn.opcodeRegister);
    return false;
  case ENCODING_CC:
    mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
    return false;
  case ENCODING_FP:
    translateFPRegister(mcInst, insn.modRM & 7);
    return false;
  case ENCODING_VVVV:
    translateRegister(mcInst, insn.vvvv);
    return false;
  case ENCODING_DUP:
    return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
                            insn, Dis);
  }
}

/// translateInstruction - Translates an internal instruction and all its
///   operands to an MCInst.
///
/// @param mcInst       - The MCInst to populate with the instruction's data.
/// @param insn         - The internal instruction.
/// @return             - false on success; true otherwise.
static bool translateInstruction(MCInst &mcInst,
                                InternalInstruction &insn,
                                const MCDisassembler *Dis) {
  if (!insn.spec) {
    debug("Instruction has no specification");
    return true;
  }

  mcInst.clear();
  mcInst.setOpcode(insn.instructionID);
  // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
  // prefix bytes should be disassembled as xrelease and xacquire then set the
  // opcode to those instead of the rep and repne opcodes.
  if (insn.xAcquireRelease) {
    if(mcInst.getOpcode() == X86::REP_PREFIX)
      mcInst.setOpcode(X86::XRELEASE_PREFIX);
    else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
      mcInst.setOpcode(X86::XACQUIRE_PREFIX);
  }

  insn.numImmediatesTranslated = 0;

  for (const auto &Op : insn.operands) {
    if (Op.encoding != ENCODING_NONE) {
      if (translateOperand(mcInst, Op, insn, Dis)) {
        return true;
      }
    }
  }

  return false;
}

static MCDisassembler *createX86Disassembler(const Target &T,
                                             const MCSubtargetInfo &STI,
                                             MCContext &Ctx) {
  std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
  return new X86GenericDisassembler(STI, Ctx, std::move(MII));
}

extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
  // Register the disassembler.
  TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
                                         createX86Disassembler);
  TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
                                         createX86Disassembler);
}