X86BaseInfo.h 39.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains small standalone helper functions and enum definitions for
// the X86 target useful for the compiler back-end and the MC libraries.
// As such, it deliberately does not include references to LLVM core
// code gen types, passes, etc..
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H

#include "X86MCTargetDesc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"

namespace llvm {

namespace X86 {
  // Enums for memory operand decoding.  Each memory operand is represented with
  // a 5 operand sequence in the form:
  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
  // These enums help decode this.
  enum {
    AddrBaseReg = 0,
    AddrScaleAmt = 1,
    AddrIndexReg = 2,
    AddrDisp = 3,

    /// AddrSegmentReg - The operand # of the segment in the memory operand.
    AddrSegmentReg = 4,

    /// AddrNumOperands - Total number of operands in a memory reference.
    AddrNumOperands = 5
  };

  /// AVX512 static rounding constants.  These need to match the values in
  /// avx512fintrin.h.
  enum STATIC_ROUNDING {
    TO_NEAREST_INT = 0,
    TO_NEG_INF = 1,
    TO_POS_INF = 2,
    TO_ZERO = 3,
    CUR_DIRECTION = 4,
    NO_EXC = 8
  };

  /// The constants to describe instr prefixes if there are
  enum IPREFIXES {
    IP_NO_PREFIX = 0,
    IP_HAS_OP_SIZE = 1,
    IP_HAS_AD_SIZE = 2,
    IP_HAS_REPEAT_NE = 4,
    IP_HAS_REPEAT = 8,
    IP_HAS_LOCK = 16,
    IP_HAS_NOTRACK = 32,
    IP_USE_VEX3 = 64,
  };

  enum OperandType : unsigned {
    /// AVX512 embedded rounding control. This should only have values 0-3.
    OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
    OPERAND_COND_CODE,
  };

  // X86 specific condition code. These correspond to X86_*_COND in
  // X86InstrInfo.td. They must be kept in synch.
  enum CondCode {
    COND_O = 0,
    COND_NO = 1,
    COND_B = 2,
    COND_AE = 3,
    COND_E = 4,
    COND_NE = 5,
    COND_BE = 6,
    COND_A = 7,
    COND_S = 8,
    COND_NS = 9,
    COND_P = 10,
    COND_NP = 11,
    COND_L = 12,
    COND_GE = 13,
    COND_LE = 14,
    COND_G = 15,
    LAST_VALID_COND = COND_G,

    // Artificial condition codes. These are used by AnalyzeBranch
    // to indicate a block terminated with two conditional branches that together
    // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
    // which can't be represented on x86 with a single condition. These
    // are never used in MachineInstrs and are inverses of one another.
    COND_NE_OR_P,
    COND_E_AND_NP,

    COND_INVALID
  };

  // The classification for the first instruction in macro fusion.
  enum class FirstMacroFusionInstKind {
    // TEST
    Test,
    // CMP
    Cmp,
    // AND
    And,
    // ADD, SUB
    AddSub,
    // INC, DEC
    IncDec,
    // Not valid as a first macro fusion instruction
    Invalid
  };

  enum class SecondMacroFusionInstKind {
    // JA, JB and variants.
    AB,
    // JE, JL, JG and variants.
    ELG,
    // JS, JP, JO and variants
    SPO,
    // Not a fusible jump.
    Invalid,
  };

  /// \returns the type of the first instruction in macro-fusion.
  inline FirstMacroFusionInstKind
  classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
    switch (Opcode) {
    default:
      return FirstMacroFusionInstKind::Invalid;
    // TEST
    case X86::TEST16i16:
    case X86::TEST16mr:
    case X86::TEST16ri:
    case X86::TEST16rr:
    case X86::TEST32i32:
    case X86::TEST32mr:
    case X86::TEST32ri:
    case X86::TEST32rr:
    case X86::TEST64i32:
    case X86::TEST64mr:
    case X86::TEST64ri32:
    case X86::TEST64rr:
    case X86::TEST8i8:
    case X86::TEST8mr:
    case X86::TEST8ri:
    case X86::TEST8rr:
      return FirstMacroFusionInstKind::Test;
    case X86::AND16i16:
    case X86::AND16ri:
    case X86::AND16ri8:
    case X86::AND16rm:
    case X86::AND16rr:
    case X86::AND16rr_REV:
    case X86::AND32i32:
    case X86::AND32ri:
    case X86::AND32ri8:
    case X86::AND32rm:
    case X86::AND32rr:
    case X86::AND32rr_REV:
    case X86::AND64i32:
    case X86::AND64ri32:
    case X86::AND64ri8:
    case X86::AND64rm:
    case X86::AND64rr:
    case X86::AND64rr_REV:
    case X86::AND8i8:
    case X86::AND8ri:
    case X86::AND8ri8:
    case X86::AND8rm:
    case X86::AND8rr:
    case X86::AND8rr_REV:
      return FirstMacroFusionInstKind::And;
    // CMP
    case X86::CMP16i16:
    case X86::CMP16mr:
    case X86::CMP16ri:
    case X86::CMP16ri8:
    case X86::CMP16rm:
    case X86::CMP16rr:
    case X86::CMP16rr_REV:
    case X86::CMP32i32:
    case X86::CMP32mr:
    case X86::CMP32ri:
    case X86::CMP32ri8:
    case X86::CMP32rm:
    case X86::CMP32rr:
    case X86::CMP32rr_REV:
    case X86::CMP64i32:
    case X86::CMP64mr:
    case X86::CMP64ri32:
    case X86::CMP64ri8:
    case X86::CMP64rm:
    case X86::CMP64rr:
    case X86::CMP64rr_REV:
    case X86::CMP8i8:
    case X86::CMP8mr:
    case X86::CMP8ri:
    case X86::CMP8ri8:
    case X86::CMP8rm:
    case X86::CMP8rr:
    case X86::CMP8rr_REV:
      return FirstMacroFusionInstKind::Cmp;
    // ADD
    case X86::ADD16i16:
    case X86::ADD16ri:
    case X86::ADD16ri8:
    case X86::ADD16rm:
    case X86::ADD16rr:
    case X86::ADD16rr_REV:
    case X86::ADD32i32:
    case X86::ADD32ri:
    case X86::ADD32ri8:
    case X86::ADD32rm:
    case X86::ADD32rr:
    case X86::ADD32rr_REV:
    case X86::ADD64i32:
    case X86::ADD64ri32:
    case X86::ADD64ri8:
    case X86::ADD64rm:
    case X86::ADD64rr:
    case X86::ADD64rr_REV:
    case X86::ADD8i8:
    case X86::ADD8ri:
    case X86::ADD8ri8:
    case X86::ADD8rm:
    case X86::ADD8rr:
    case X86::ADD8rr_REV:
    // SUB
    case X86::SUB16i16:
    case X86::SUB16ri:
    case X86::SUB16ri8:
    case X86::SUB16rm:
    case X86::SUB16rr:
    case X86::SUB16rr_REV:
    case X86::SUB32i32:
    case X86::SUB32ri:
    case X86::SUB32ri8:
    case X86::SUB32rm:
    case X86::SUB32rr:
    case X86::SUB32rr_REV:
    case X86::SUB64i32:
    case X86::SUB64ri32:
    case X86::SUB64ri8:
    case X86::SUB64rm:
    case X86::SUB64rr:
    case X86::SUB64rr_REV:
    case X86::SUB8i8:
    case X86::SUB8ri:
    case X86::SUB8ri8:
    case X86::SUB8rm:
    case X86::SUB8rr:
    case X86::SUB8rr_REV:
      return FirstMacroFusionInstKind::AddSub;
    // INC
    case X86::INC16r:
    case X86::INC16r_alt:
    case X86::INC32r:
    case X86::INC32r_alt:
    case X86::INC64r:
    case X86::INC8r:
    // DEC
    case X86::DEC16r:
    case X86::DEC16r_alt:
    case X86::DEC32r:
    case X86::DEC32r_alt:
    case X86::DEC64r:
    case X86::DEC8r:
      return FirstMacroFusionInstKind::IncDec;
    }
  }

  /// \returns the type of the second instruction in macro-fusion.
  inline SecondMacroFusionInstKind
  classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
    if (CC == X86::COND_INVALID)
      return SecondMacroFusionInstKind::Invalid;

    switch (CC) {
    default:
      return SecondMacroFusionInstKind::Invalid;
    // JE,JZ
    case X86::COND_E:
    // JNE,JNZ
    case X86::COND_NE:
    // JL,JNGE
    case X86::COND_L:
    // JLE,JNG
    case X86::COND_LE:
    // JG,JNLE
    case X86::COND_G:
    // JGE,JNL
    case X86::COND_GE:
      return SecondMacroFusionInstKind::ELG;
    // JB,JC
    case X86::COND_B:
    // JNA,JBE
    case X86::COND_BE:
    // JA,JNBE
    case X86::COND_A:
    // JAE,JNC,JNB
    case X86::COND_AE:
      return SecondMacroFusionInstKind::AB;
    // JS
    case X86::COND_S:
    // JNS
    case X86::COND_NS:
    // JP,JPE
    case X86::COND_P:
    // JNP,JPO
    case X86::COND_NP:
    // JO
    case X86::COND_O:
    // JNO
    case X86::COND_NO:
      return SecondMacroFusionInstKind::SPO;
    }
  }

  /// \param FirstKind kind of the first instruction in macro fusion.
  /// \param SecondKind kind of the second instruction in macro fusion.
  ///
  /// \returns true if the two instruction can be macro fused.
  inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
                           SecondMacroFusionInstKind SecondKind) {
    switch (FirstKind) {
    case X86::FirstMacroFusionInstKind::Test:
    case X86::FirstMacroFusionInstKind::And:
      return true;
    case X86::FirstMacroFusionInstKind::Cmp:
    case X86::FirstMacroFusionInstKind::AddSub:
      return SecondKind == X86::SecondMacroFusionInstKind::AB ||
             SecondKind == X86::SecondMacroFusionInstKind::ELG;
    case X86::FirstMacroFusionInstKind::IncDec:
      return SecondKind == X86::SecondMacroFusionInstKind::ELG;
    case X86::FirstMacroFusionInstKind::Invalid:
      return false;
    }
    llvm_unreachable("unknown fusion type");
  }

  /// Defines the possible values of the branch boundary alignment mask.
  enum AlignBranchBoundaryKind : uint8_t {
    AlignBranchNone = 0,
    AlignBranchFused = 1U << 0,
    AlignBranchJcc = 1U << 1,
    AlignBranchJmp = 1U << 2,
    AlignBranchCall = 1U << 3,
    AlignBranchRet = 1U << 4,
    AlignBranchIndirect = 1U << 5
  };
} // end namespace X86;

/// X86II - This namespace holds all of the target specific flags that
/// instruction info tracks.
///
namespace X86II {
  /// Target Operand Flag enum.
  enum TOF {
    //===------------------------------------------------------------------===//
    // X86 Specific MachineOperand flags.

    MO_NO_FLAG,

    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
    /// relocation of:
    ///    SYMBOL_LABEL + [. - PICBASELABEL]
    MO_GOT_ABSOLUTE_ADDRESS,

    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
    /// immediate should get the value of the symbol minus the PIC base label:
    ///    SYMBOL_LABEL - PICBASELABEL
    MO_PIC_BASE_OFFSET,

    /// MO_GOT - On a symbol operand this indicates that the immediate is the
    /// offset to the GOT entry for the symbol name from the base of the GOT.
    ///
    /// See the X86-64 ELF ABI supplement for more details.
    ///    SYMBOL_LABEL @GOT
    MO_GOT,

    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
    /// the offset to the location of the symbol name from the base of the GOT.
    ///
    /// See the X86-64 ELF ABI supplement for more details.
    ///    SYMBOL_LABEL @GOTOFF
    MO_GOTOFF,

    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
    /// offset to the GOT entry for the symbol name from the current code
    /// location.
    ///
    /// See the X86-64 ELF ABI supplement for more details.
    ///    SYMBOL_LABEL @GOTPCREL
    MO_GOTPCREL,

    /// MO_PLT - On a symbol operand this indicates that the immediate is
    /// offset to the PLT entry of symbol name from the current code location.
    ///
    /// See the X86-64 ELF ABI supplement for more details.
    ///    SYMBOL_LABEL @PLT
    MO_PLT,

    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the TLS index structure that contains
    /// the module number and variable offset for the symbol. Used in the
    /// general dynamic TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @TLSGD
    MO_TLSGD,

    /// MO_TLSLD - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the TLS index for the module that
    /// contains the symbol. When this index is passed to a call to
    /// __tls_get_addr, the function will return the base address of the TLS
    /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @TLSLD
    MO_TLSLD,

    /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the TLS index for the module that
    /// contains the symbol. When this index is passed to a call to
    /// ___tls_get_addr, the function will return the base address of the TLS
    /// block for the symbol. Used in the IA32 local dynamic TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @TLSLDM
    MO_TLSLDM,

    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the thread-pointer offset for the
    /// symbol. Used in the x86-64 initial exec TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @GOTTPOFF
    MO_GOTTPOFF,

    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
    /// the absolute address of the GOT entry with the negative thread-pointer
    /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
    /// model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @INDNTPOFF
    MO_INDNTPOFF,

    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
    /// the thread-pointer offset for the symbol. Used in the x86-64 local
    /// exec TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @TPOFF
    MO_TPOFF,

    /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the TLS offset of the symbol. Used
    /// in the local dynamic TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @DTPOFF
    MO_DTPOFF,

    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
    /// the negative thread-pointer offset for the symbol. Used in the IA32
    /// local exec TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @NTPOFF
    MO_NTPOFF,

    /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the negative thread-pointer offset for
    /// the symbol. Used in the PIC IA32 initial exec TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @GOTNTPOFF
    MO_GOTNTPOFF,

    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
    /// reference is actually to the "__imp_FOO" symbol.  This is used for
    /// dllimport linkage on windows.
    MO_DLLIMPORT,

    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    MO_DARWIN_NONLAZY,

    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    MO_DARWIN_NONLAZY_PIC_BASE,

    /// MO_TLVP - On a symbol operand this indicates that the immediate is
    /// some TLS offset.
    ///
    /// This is the TLS offset for the Darwin TLS mechanism.
    MO_TLVP,

    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
    /// is some TLS offset from the picbase.
    ///
    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
    MO_TLVP_PIC_BASE,

    /// MO_SECREL - On a symbol operand this indicates that the immediate is
    /// the offset from beginning of section.
    ///
    /// This is the TLS offset for the COFF/Windows TLS mechanism.
    MO_SECREL,

    /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
    /// to be an absolute symbol in range [0,128), so we can use the @ABS8
    /// symbol modifier.
    MO_ABS8,

    /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
    /// reference is actually to the ".refptr.FOO" symbol.  This is used for
    /// stub symbols on windows.
    MO_COFFSTUB,
  };

  enum : uint64_t {
    //===------------------------------------------------------------------===//
    // Instruction encodings.  These are the standard/most common forms for X86
    // instructions.
    //

    // PseudoFrm - This represents an instruction that is a pseudo instruction
    // or one that has not been implemented yet.  It is illegal to code generate
    // it, but tolerated for intermediate implementation stages.
    Pseudo         = 0,

    /// Raw - This form is for instructions that don't have any operands, so
    /// they are just a fixed opcode value, like 'leave'.
    RawFrm         = 1,

    /// AddRegFrm - This form is used for instructions like 'push r32' that have
    /// their one register operand added to their opcode.
    AddRegFrm      = 2,

    /// RawFrmMemOffs - This form is for instructions that store an absolute
    /// memory offset as an immediate with a possible segment override.
    RawFrmMemOffs  = 3,

    /// RawFrmSrc - This form is for instructions that use the source index
    /// register SI/ESI/RSI with a possible segment override.
    RawFrmSrc      = 4,

    /// RawFrmDst - This form is for instructions that use the destination index
    /// register DI/EDI/RDI.
    RawFrmDst      = 5,

    /// RawFrmDstSrc - This form is for instructions that use the source index
    /// register SI/ESI/RSI with a possible segment override, and also the
    /// destination index register DI/EDI/RDI.
    RawFrmDstSrc   = 6,

    /// RawFrmImm8 - This is used for the ENTER instruction, which has two
    /// immediates, the first of which is a 16-bit immediate (specified by
    /// the imm encoding) and the second is a 8-bit fixed value.
    RawFrmImm8 = 7,

    /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
    /// immediates, the first of which is a 16 or 32-bit immediate (specified by
    /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
    /// manual, this operand is described as pntr16:32 and pntr16:16
    RawFrmImm16 = 8,

    /// AddCCFrm - This form is used for Jcc that encode the condition code
    /// in the lower 4 bits of the opcode.
    AddCCFrm = 9,

    /// MRM[0-7][rm] - These forms are used to represent instructions that use
    /// a Mod/RM byte, and use the middle field to hold extended opcode
    /// information.  In the intel manual these are represented as /0, /1, ...
    ///

    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
    /// to specify a destination, which in this case is memory.
    ///
    MRMDestMem     = 32,

    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
    /// to specify a source, which in this case is memory.
    ///
    MRMSrcMem      = 33,

    /// MRMSrcMem4VOp3 - This form is used for instructions that encode
    /// operand 3 with VEX.VVVV and load from memory.
    ///
    MRMSrcMem4VOp3 = 34,

    /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
    /// byte to specify the fourth source, which in this case is memory.
    ///
    MRMSrcMemOp4   = 35,

    /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
    /// byte to specify the operands and also encodes a condition code.
    ///
    MRMSrcMemCC    = 36,

    /// MRMXm - This form is used for instructions that use the Mod/RM byte
    /// to specify a memory source, but doesn't use the middle field. And has
    /// a condition code.
    ///
    MRMXmCC = 38,

    /// MRMXm - This form is used for instructions that use the Mod/RM byte
    /// to specify a memory source, but doesn't use the middle field.
    ///
    MRMXm = 39,

    // Next, instructions that operate on a memory r/m operand...
    MRM0m = 40,  MRM1m = 41,  MRM2m = 42,  MRM3m = 43, // Format /0 /1 /2 /3
    MRM4m = 44,  MRM5m = 45,  MRM6m = 46,  MRM7m = 47, // Format /4 /5 /6 /7

    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
    /// to specify a destination, which in this case is a register.
    ///
    MRMDestReg     = 48,

    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
    /// to specify a source, which in this case is a register.
    ///
    MRMSrcReg      = 49,

    /// MRMSrcReg4VOp3 - This form is used for instructions that encode
    /// operand 3 with VEX.VVVV and do not load from memory.
    ///
    MRMSrcReg4VOp3 = 50,

    /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
    /// byte to specify the fourth source, which in this case is a register.
    ///
    MRMSrcRegOp4   = 51,

    /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
    /// byte to specify the operands and also encodes a condition code
    ///
    MRMSrcRegCC    = 52,

    /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
    /// to specify a register source, but doesn't use the middle field. And has
    /// a condition code.
    ///
    MRMXrCC = 54,

    /// MRMXr - This form is used for instructions that use the Mod/RM byte
    /// to specify a register source, but doesn't use the middle field.
    ///
    MRMXr = 55,

    // Instructions that operate on a register r/m operand...
    MRM0r = 56,  MRM1r = 57,  MRM2r = 58,  MRM3r = 59, // Format /0 /1 /2 /3
    MRM4r = 60,  MRM5r = 61,  MRM6r = 62,  MRM7r = 63, // Format /4 /5 /6 /7

    /// MRM_XX - A mod/rm byte of exactly 0xXX.
    MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
    MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
    MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
    MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
    MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
    MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
    MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
    MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
    MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
    MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
    MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
    MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
    MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
    MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
    MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
    MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,

    FormMask       = 127,

    //===------------------------------------------------------------------===//
    // Actual flags...

    // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
    // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
    // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
    // prefix in 16-bit mode.
    OpSizeShift = 7,
    OpSizeMask = 0x3 << OpSizeShift,

    OpSizeFixed  = 0 << OpSizeShift,
    OpSize16     = 1 << OpSizeShift,
    OpSize32     = 2 << OpSizeShift,

    // AsSize - AdSizeX implies this instruction determines its need of 0x67
    // prefix from a normal ModRM memory operand. The other types indicate that
    // an operand is encoded with a specific width and a prefix is needed if
    // it differs from the current mode.
    AdSizeShift = OpSizeShift + 2,
    AdSizeMask  = 0x3 << AdSizeShift,

    AdSizeX  = 0 << AdSizeShift,
    AdSize16 = 1 << AdSizeShift,
    AdSize32 = 2 << AdSizeShift,
    AdSize64 = 3 << AdSizeShift,

    //===------------------------------------------------------------------===//
    // OpPrefix - There are several prefix bytes that are used as opcode
    // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
    // no prefix.
    //
    OpPrefixShift = AdSizeShift + 2,
    OpPrefixMask  = 0x3 << OpPrefixShift,

    // PD - Prefix code for packed double precision vector floating point
    // operations performed in the SSE registers.
    PD = 1 << OpPrefixShift,

    // XS, XD - These prefix codes are for single and double precision scalar
    // floating point operations performed in the SSE registers.
    XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,

    //===------------------------------------------------------------------===//
    // OpMap - This field determines which opcode map this instruction
    // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
    //
    OpMapShift = OpPrefixShift + 2,
    OpMapMask  = 0x7 << OpMapShift,

    // OB - OneByte - Set if this instruction has a one byte opcode.
    OB = 0 << OpMapShift,

    // TB - TwoByte - Set if this instruction has a two byte opcode, which
    // starts with a 0x0F byte before the real opcode.
    TB = 1 << OpMapShift,

    // T8, TA - Prefix after the 0x0F prefix.
    T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,

    // XOP8 - Prefix to include use of imm byte.
    XOP8 = 4 << OpMapShift,

    // XOP9 - Prefix to exclude use of imm byte.
    XOP9 = 5 << OpMapShift,

    // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
    XOPA = 6 << OpMapShift,

    /// ThreeDNow - This indicates that the instruction uses the
    /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
    /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
    /// storing a classifier in the imm8 field.  To simplify our implementation,
    /// we handle this by storeing the classifier in the opcode field and using
    /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
    ThreeDNow = 7 << OpMapShift,

    //===------------------------------------------------------------------===//
    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
    // They are used to specify GPRs and SSE registers, 64-bit operand size,
    // etc. We only cares about REX.W and REX.R bits and only the former is
    // statically determined.
    //
    REXShift    = OpMapShift + 3,
    REX_W       = 1 << REXShift,

    //===------------------------------------------------------------------===//
    // This three-bit field describes the size of an immediate operand.  Zero is
    // unused so that we can tell if we forgot to set a value.
    ImmShift = REXShift + 1,
    ImmMask    = 15 << ImmShift,
    Imm8       = 1 << ImmShift,
    Imm8PCRel  = 2 << ImmShift,
    Imm8Reg    = 3 << ImmShift,
    Imm16      = 4 << ImmShift,
    Imm16PCRel = 5 << ImmShift,
    Imm32      = 6 << ImmShift,
    Imm32PCRel = 7 << ImmShift,
    Imm32S     = 8 << ImmShift,
    Imm64      = 9 << ImmShift,

    //===------------------------------------------------------------------===//
    // FP Instruction Classification...  Zero is non-fp instruction.

    // FPTypeMask - Mask for all of the FP types...
    FPTypeShift = ImmShift + 4,
    FPTypeMask  = 7 << FPTypeShift,

    // NotFP - The default, set for instructions that do not use FP registers.
    NotFP      = 0 << FPTypeShift,

    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
    ZeroArgFP  = 1 << FPTypeShift,

    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
    OneArgFP   = 2 << FPTypeShift,

    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
    // result back to ST(0).  For example, fcos, fsqrt, etc.
    //
    OneArgFPRW = 3 << FPTypeShift,

    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
    // explicit argument, storing the result to either ST(0) or the implicit
    // argument.  For example: fadd, fsub, fmul, etc...
    TwoArgFP   = 4 << FPTypeShift,

    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
    CompareFP  = 5 << FPTypeShift,

    // CondMovFP - "2 operand" floating point conditional move instructions.
    CondMovFP  = 6 << FPTypeShift,

    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
    SpecialFP  = 7 << FPTypeShift,

    // Lock prefix
    LOCKShift = FPTypeShift + 3,
    LOCK = 1 << LOCKShift,

    // REP prefix
    REPShift = LOCKShift + 1,
    REP = 1 << REPShift,

    // Execution domain for SSE instructions.
    // 0 means normal, non-SSE instruction.
    SSEDomainShift = REPShift + 1,

    // Encoding
    EncodingShift = SSEDomainShift + 2,
    EncodingMask = 0x3 << EncodingShift,

    // VEX - encoding using 0xC4/0xC5
    VEX = 1 << EncodingShift,

    /// XOP - Opcode prefix used by XOP instructions.
    XOP = 2 << EncodingShift,

    // VEX_EVEX - Specifies that this instruction use EVEX form which provides
    // syntax support up to 32 512-bit register operands and up to 7 16-bit
    // mask operands as well as source operand data swizzling/memory operand
    // conversion, eviction hint, and rounding mode.
    EVEX = 3 << EncodingShift,

    // Opcode
    OpcodeShift   = EncodingShift + 2,

    /// VEX_W - Has a opcode specific functionality, but is used in the same
    /// way as REX_W is for regular SSE instructions.
    VEX_WShift  = OpcodeShift + 8,
    VEX_W       = 1ULL << VEX_WShift,

    /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
    /// address instructions in SSE are represented as 3 address ones in AVX
    /// and the additional register is encoded in VEX_VVVV prefix.
    VEX_4VShift = VEX_WShift + 1,
    VEX_4V      = 1ULL << VEX_4VShift,

    /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
    /// instruction uses 256-bit wide registers. This is usually auto detected
    /// if a VR256 register is used, but some AVX instructions also have this
    /// field marked when using a f256 memory references.
    VEX_LShift = VEX_4VShift + 1,
    VEX_L       = 1ULL << VEX_LShift,

    // EVEX_K - Set if this instruction requires masking
    EVEX_KShift = VEX_LShift + 1,
    EVEX_K      = 1ULL << EVEX_KShift,

    // EVEX_Z - Set if this instruction has EVEX.Z field set.
    EVEX_ZShift = EVEX_KShift + 1,
    EVEX_Z      = 1ULL << EVEX_ZShift,

    // EVEX_L2 - Set if this instruction has EVEX.L' field set.
    EVEX_L2Shift = EVEX_ZShift + 1,
    EVEX_L2     = 1ULL << EVEX_L2Shift,

    // EVEX_B - Set if this instruction has EVEX.B field set.
    EVEX_BShift = EVEX_L2Shift + 1,
    EVEX_B      = 1ULL << EVEX_BShift,

    // The scaling factor for the AVX512's 8-bit compressed displacement.
    CD8_Scale_Shift = EVEX_BShift + 1,
    CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,

    /// Explicitly specified rounding control
    EVEX_RCShift = CD8_Scale_Shift + 7,
    EVEX_RC = 1ULL << EVEX_RCShift,

    // NOTRACK prefix
    NoTrackShift = EVEX_RCShift + 1,
    NOTRACK = 1ULL << NoTrackShift
  };

  /// \returns the "base" X86 opcode for the specified machine
  /// instruction.
  inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
    return TSFlags >> X86II::OpcodeShift;
  }

  inline bool hasImm(uint64_t TSFlags) {
    return (TSFlags & X86II::ImmMask) != 0;
  }

  /// Decode the "size of immediate" field from the TSFlags field of the 
  /// specified instruction.
  inline unsigned getSizeOfImm(uint64_t TSFlags) {
    switch (TSFlags & X86II::ImmMask) {
    default: llvm_unreachable("Unknown immediate size");
    case X86II::Imm8:
    case X86II::Imm8PCRel:
    case X86II::Imm8Reg:    return 1;
    case X86II::Imm16:
    case X86II::Imm16PCRel: return 2;
    case X86II::Imm32:
    case X86II::Imm32S:
    case X86II::Imm32PCRel: return 4;
    case X86II::Imm64:      return 8;
    }
  }

  /// \returns true if the immediate of the specified instruction's TSFlags
  /// indicates that it is pc relative.
  inline bool isImmPCRel(uint64_t TSFlags) {
    switch (TSFlags & X86II::ImmMask) {
    default: llvm_unreachable("Unknown immediate size");
    case X86II::Imm8PCRel:
    case X86II::Imm16PCRel:
    case X86II::Imm32PCRel:
      return true;
    case X86II::Imm8:
    case X86II::Imm8Reg:
    case X86II::Imm16:
    case X86II::Imm32:
    case X86II::Imm32S:
    case X86II::Imm64:
      return false;
    }
  }

  /// \returns true if the immediate of the specified instruction's
  /// TSFlags indicates that it is signed.
  inline bool isImmSigned(uint64_t TSFlags) {
    switch (TSFlags & X86II::ImmMask) {
    default: llvm_unreachable("Unknown immediate signedness");
    case X86II::Imm32S:
      return true;
    case X86II::Imm8:
    case X86II::Imm8PCRel:
    case X86II::Imm8Reg:
    case X86II::Imm16:
    case X86II::Imm16PCRel:
    case X86II::Imm32:
    case X86II::Imm32PCRel:
    case X86II::Imm64:
      return false;
    }
  }

  /// Compute whether all of the def operands are repeated in the uses and
  /// therefore should be skipped.
  /// This determines the start of the unique operand list. We need to determine
  /// if all of the defs have a corresponding tied operand in the uses.
  /// Unfortunately, the tied operand information is encoded in the uses not
  /// the defs so we have to use some heuristics to find which operands to
  /// query.
  inline unsigned getOperandBias(const MCInstrDesc& Desc) {
    unsigned NumDefs = Desc.getNumDefs();
    unsigned NumOps = Desc.getNumOperands();
    switch (NumDefs) {
    default: llvm_unreachable("Unexpected number of defs");
    case 0:
      return 0;
    case 1:
      // Common two addr case.
      if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
        return 1;
      // Check for AVX-512 scatter which has a TIED_TO in the second to last
      // operand.
      if (NumOps == 8 &&
          Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
        return 1;
      return 0;
    case 2:
      // XCHG/XADD have two destinations and two sources.
      if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
          Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
        return 2;
      // Check for gather. AVX-512 has the second tied operand early. AVX2
      // has it as the last op.
      if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
          (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
           Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
        return 2;
      return 0;
    }
  }

  /// The function returns the MCInst operand # for the first field of the
  /// memory operand.  If the instruction doesn't have a
  /// memory operand, this returns -1.
  ///
  /// Note that this ignores tied operands.  If there is a tied register which
  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
  /// counted as one operand.
  ///
  inline int getMemoryOperandNo(uint64_t TSFlags) {
    bool HasVEX_4V = TSFlags & X86II::VEX_4V;
    bool HasEVEX_K = TSFlags & X86II::EVEX_K;

    switch (TSFlags & X86II::FormMask) {
    default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
    case X86II::Pseudo:
    case X86II::RawFrm:
    case X86II::AddRegFrm:
    case X86II::RawFrmImm8:
    case X86II::RawFrmImm16:
    case X86II::RawFrmMemOffs:
    case X86II::RawFrmSrc:
    case X86II::RawFrmDst:
    case X86II::RawFrmDstSrc:
    case X86II::AddCCFrm:
      return -1;
    case X86II::MRMDestMem:
      return 0;
    case X86II::MRMSrcMem:
      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
      // mask register.
      return 1 + HasVEX_4V + HasEVEX_K;
    case X86II::MRMSrcMem4VOp3:
      // Skip registers encoded in reg.
      return 1 + HasEVEX_K;
    case X86II::MRMSrcMemOp4:
      // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
      return 3;
    case X86II::MRMSrcMemCC:
      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
      // mask register.
      return 1;
    case X86II::MRMDestReg:
    case X86II::MRMSrcReg:
    case X86II::MRMSrcReg4VOp3:
    case X86II::MRMSrcRegOp4:
    case X86II::MRMSrcRegCC:
    case X86II::MRMXrCC:
    case X86II::MRMXr:
    case X86II::MRM0r: case X86II::MRM1r:
    case X86II::MRM2r: case X86II::MRM3r:
    case X86II::MRM4r: case X86II::MRM5r:
    case X86II::MRM6r: case X86II::MRM7r:
      return -1;
    case X86II::MRMXmCC:
    case X86II::MRMXm:
    case X86II::MRM0m: case X86II::MRM1m:
    case X86II::MRM2m: case X86II::MRM3m:
    case X86II::MRM4m: case X86II::MRM5m:
    case X86II::MRM6m: case X86II::MRM7m:
      // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
      return 0 + HasVEX_4V + HasEVEX_K;
    case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
    case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
    case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
    case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
    case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
    case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
    case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
    case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
    case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
    case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
    case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
    case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
    case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
    case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
    case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
    case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
    case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
    case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
    case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
    case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
    case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
    case X86II::MRM_FF:
      return -1;
    }
  }

  /// \returns true if the MachineOperand is a x86-64 extended (r8 or
  /// higher) register,  e.g. r8, xmm8, xmm13, etc.
  inline bool isX86_64ExtendedReg(unsigned RegNo) {
    if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
        (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
        (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
      return true;

    switch (RegNo) {
    default: break;
    case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
    case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
    case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
    case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
    case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
    case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
    case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
    case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
    case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
    case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
    case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
    case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
      return true;
    }
    return false;
  }

  /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
  /// registers, e.g. zmm21, etc.
  static inline bool is32ExtendedReg(unsigned RegNo) {
    return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
            (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
            (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
  }


  inline bool isX86_64NonExtLowByteReg(unsigned reg) {
    return (reg == X86::SPL || reg == X86::BPL ||
            reg == X86::SIL || reg == X86::DIL);
  }

  /// \returns true if this is a masked instruction.
  inline bool isKMasked(uint64_t TSFlags) {
    return (TSFlags & X86II::EVEX_K) != 0;
  }

  /// \returns true if this is a merge masked instruction.
  inline bool isKMergeMasked(uint64_t TSFlags) {
    return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
  }
}

} // end namespace llvm;

#endif