X86MCCodeEmitter.cpp 59.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86MCCodeEmitter class.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86FixupKinds.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>

using namespace llvm;

#define DEBUG_TYPE "mccodeemitter"

namespace {

class X86MCCodeEmitter : public MCCodeEmitter {
  const MCInstrInfo &MCII;
  MCContext &Ctx;

public:
  X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
      : MCII(mcii), Ctx(ctx) {}
  X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
  X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
  ~X86MCCodeEmitter() override = default;

  void emitPrefix(const MCInst &MI, raw_ostream &OS,
                  const MCSubtargetInfo &STI) const override;

  void encodeInstruction(const MCInst &MI, raw_ostream &OS,
                         SmallVectorImpl<MCFixup> &Fixups,
                         const MCSubtargetInfo &STI) const override;

private:
  unsigned getX86RegNum(const MCOperand &MO) const {
    return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
  }

  unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const {
    return Ctx.getRegisterInfo()->getEncodingValue(
        MI.getOperand(OpNum).getReg());
  }

  /// \param MI a single low-level machine instruction.
  /// \param OpNum the operand #.
  /// \returns true if the OpNumth operand of MI  require a bit to be set in
  /// REX prefix.
  bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const {
    return (getX86RegEncoding(MI, OpNum) >> 3) & 1;
  }

  void emitByte(uint8_t C, unsigned &CurByte, raw_ostream &OS) const {
    OS << (char)C;
    ++CurByte;
  }

  void emitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
                    raw_ostream &OS) const {
    // Output the constant in little endian byte order.
    for (unsigned i = 0; i != Size; ++i) {
      emitByte(Val & 255, CurByte, OS);
      Val >>= 8;
    }
  }

  void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize,
                     MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
                     SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const;

  static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
    return RM | (RegOpcode << 3) | (Mod << 6);
  }

  void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
                        unsigned &CurByte, raw_ostream &OS) const {
    emitByte(modRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)), CurByte, OS);
  }

  void emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
                   unsigned &CurByte, raw_ostream &OS) const {
    // SIB byte is in the same format as the modRMByte.
    emitByte(modRMByte(SS, Index, Base), CurByte, OS);
  }

  void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
                        uint64_t TSFlags, bool Rex, unsigned &CurByte,
                        raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
                        const MCSubtargetInfo &STI) const;

  void emitPrefixImpl(uint64_t TSFlags, unsigned &CurOp, unsigned &CurByte,
                  bool &Rex, const MCInst &MI, const MCInstrDesc &Desc,
                  const MCSubtargetInfo &STI, raw_ostream &OS) const;

  void emitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
                           const MCInst &MI, const MCInstrDesc &Desc,
                           raw_ostream &OS) const;

  void emitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
                                 const MCInst &MI, raw_ostream &OS) const;

  bool emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
                        const MCInst &MI, const MCInstrDesc &Desc,
                        const MCSubtargetInfo &STI, raw_ostream &OS) const;

  uint8_t determineREXPrefix(const MCInst &MI, uint64_t TSFlags, int MemOperand,
                             const MCInstrDesc &Desc) const;
};

} // end anonymous namespace

/// \returns true if this signed displacement fits in a 8-bit sign-extended
/// field.
static bool isDisp8(int Value) { return Value == (int8_t)Value; }

/// \returns true if this signed displacement fits in a 8-bit compressed
/// dispacement field.
static bool isCDisp8(uint64_t TSFlags, int Value, int &CValue) {
  assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
         "Compressed 8-bit displacement is only valid for EVEX inst.");

  unsigned CD8_Scale =
      (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
  if (CD8_Scale == 0) {
    CValue = Value;
    return isDisp8(Value);
  }

  unsigned Mask = CD8_Scale - 1;
  assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
  if (Value & Mask) // Unaligned offset
    return false;
  Value /= (int)CD8_Scale;
  bool Ret = (Value == (int8_t)Value);

  if (Ret)
    CValue = Value;
  return Ret;
}

/// \returns the appropriate fixup kind to use for an immediate in an
/// instruction with the specified TSFlags.
static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
  unsigned Size = X86II::getSizeOfImm(TSFlags);
  bool isPCRel = X86II::isImmPCRel(TSFlags);

  if (X86II::isImmSigned(TSFlags)) {
    switch (Size) {
    default:
      llvm_unreachable("Unsupported signed fixup size!");
    case 4:
      return MCFixupKind(X86::reloc_signed_4byte);
    }
  }
  return MCFixup::getKindForSize(Size, isPCRel);
}

/// \param Op operand # of the memory operand.
///
/// \returns true if the specified instruction has a 16-bit memory operand.
static bool is16BitMemOperand(const MCInst &MI, unsigned Op,
                              const MCSubtargetInfo &STI) {
  const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg);
  const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
  const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);

  if (STI.hasFeature(X86::Mode16Bit) && BaseReg.getReg() == 0 && Disp.isImm() &&
      Disp.getImm() < 0x10000)
    return true;
  if ((BaseReg.getReg() != 0 &&
       X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
      (IndexReg.getReg() != 0 &&
       X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
    return true;
  return false;
}

/// \param Op operand # of the memory operand.
///
/// \returns true if the specified instruction has a 32-bit memory operand.
static bool is32BitMemOperand(const MCInst &MI, unsigned Op) {
  const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg);
  const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);

  if ((BaseReg.getReg() != 0 &&
       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
      (IndexReg.getReg() != 0 &&
       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
    return true;
  if (BaseReg.getReg() == X86::EIP) {
    assert(IndexReg.getReg() == 0 && "Invalid eip-based address.");
    return true;
  }
  if (IndexReg.getReg() == X86::EIZ)
    return true;
  return false;
}

/// \param Op operand # of the memory operand.
///
/// \returns true if the specified instruction has a 64-bit memory operand.
#ifndef NDEBUG
static bool is64BitMemOperand(const MCInst &MI, unsigned Op) {
  const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg);
  const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);

  if ((BaseReg.getReg() != 0 &&
       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
      (IndexReg.getReg() != 0 &&
       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
    return true;
  return false;
}
#endif

enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff };

/// Check if this expression starts with  _GLOBAL_OFFSET_TABLE_ and if it is
/// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on
/// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a
/// binary expression.
static GlobalOffsetTableExprKind
startsWithGlobalOffsetTable(const MCExpr *Expr) {
  const MCExpr *RHS = nullptr;
  if (Expr->getKind() == MCExpr::Binary) {
    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
    Expr = BE->getLHS();
    RHS = BE->getRHS();
  }

  if (Expr->getKind() != MCExpr::SymbolRef)
    return GOT_None;

  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
  const MCSymbol &S = Ref->getSymbol();
  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
    return GOT_None;
  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
    return GOT_SymDiff;
  return GOT_Normal;
}

static bool hasSecRelSymbolRef(const MCExpr *Expr) {
  if (Expr->getKind() == MCExpr::SymbolRef) {
    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
  }
  return false;
}

static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) {
  unsigned Opcode = MI.getOpcode();
  const MCInstrDesc &Desc = MCII.get(Opcode);
  if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4) ||
      getImmFixupKind(Desc.TSFlags) != FK_PCRel_4)
    return false;

  unsigned CurOp = X86II::getOperandBias(Desc);
  const MCOperand &Op = MI.getOperand(CurOp);
  if (!Op.isExpr())
    return false;

  const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr());
  return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None;
}

void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc,
                                     unsigned Size, MCFixupKind FixupKind,
                                     unsigned &CurByte, raw_ostream &OS,
                                     SmallVectorImpl<MCFixup> &Fixups,
                                     int ImmOffset) const {
  const MCExpr *Expr = nullptr;
  if (DispOp.isImm()) {
    // If this is a simple integer displacement that doesn't require a
    // relocation, emit it now.
    if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 &&
        FixupKind != FK_PCRel_4) {
      emitConstant(DispOp.getImm() + ImmOffset, Size, CurByte, OS);
      return;
    }
    Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
  } else {
    Expr = DispOp.getExpr();
  }

  // If we have an immoffset, add it to the expression.
  if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 ||
       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
    GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr);
    if (Kind != GOT_None) {
      assert(ImmOffset == 0);

      if (Size == 8) {
        FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
      } else {
        assert(Size == 4);
        FixupKind = MCFixupKind(X86::reloc_global_offset_table);
      }

      if (Kind == GOT_Normal)
        ImmOffset = CurByte;
    } else if (Expr->getKind() == MCExpr::SymbolRef) {
      if (hasSecRelSymbolRef(Expr)) {
        FixupKind = MCFixupKind(FK_SecRel_4);
      }
    } else if (Expr->getKind() == MCExpr::Binary) {
      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr *>(Expr);
      if (hasSecRelSymbolRef(Bin->getLHS()) ||
          hasSecRelSymbolRef(Bin->getRHS())) {
        FixupKind = MCFixupKind(FK_SecRel_4);
      }
    }
  }

  // If the fixup is pc-relative, we need to bias the value to be relative to
  // the start of the field, not the end of the field.
  if (FixupKind == FK_PCRel_4 ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) ||
      FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) {
    ImmOffset -= 4;
    // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_:
    // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15
    // this needs to be a GOTPC32 relocation.
    if (startsWithGlobalOffsetTable(Expr) != GOT_None)
      FixupKind = MCFixupKind(X86::reloc_global_offset_table);
  }
  if (FixupKind == FK_PCRel_2)
    ImmOffset -= 2;
  if (FixupKind == FK_PCRel_1)
    ImmOffset -= 1;

  if (ImmOffset)
    Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
                                   Ctx);

  // Emit a symbolic constant as a fixup and 4 zeros.
  Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc));
  emitConstant(0, Size, CurByte, OS);
}

void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op,
                                        unsigned RegOpcodeField,
                                        uint64_t TSFlags, bool Rex,
                                        unsigned &CurByte, raw_ostream &OS,
                                        SmallVectorImpl<MCFixup> &Fixups,
                                        const MCSubtargetInfo &STI) const {
  const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);
  const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
  const MCOperand &Scale = MI.getOperand(Op + X86::AddrScaleAmt);
  const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
  unsigned BaseReg = Base.getReg();
  bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;

  // Handle %rip relative addressing.
  if (BaseReg == X86::RIP ||
      BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode
    assert(STI.hasFeature(X86::Mode64Bit) &&
           "Rip-relative addressing requires 64-bit mode");
    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
    emitByte(modRMByte(0, RegOpcodeField, 5), CurByte, OS);

    unsigned Opcode = MI.getOpcode();
    // movq loads are handled with a special relocation form which allows the
    // linker to eliminate some loads for GOT references which end up in the
    // same linkage unit.
    unsigned FixupKind = [=]() {
      switch (Opcode) {
      default:
        return X86::reloc_riprel_4byte;
      case X86::MOV64rm:
        assert(Rex);
        return X86::reloc_riprel_4byte_movq_load;
      case X86::CALL64m:
      case X86::JMP64m:
      case X86::TAILJMPm64:
      case X86::TEST64mr:
      case X86::ADC64rm:
      case X86::ADD64rm:
      case X86::AND64rm:
      case X86::CMP64rm:
      case X86::OR64rm:
      case X86::SBB64rm:
      case X86::SUB64rm:
      case X86::XOR64rm:
        return Rex ? X86::reloc_riprel_4byte_relax_rex
                   : X86::reloc_riprel_4byte_relax;
      }
    }();

    // rip-relative addressing is actually relative to the *next* instruction.
    // Since an immediate can follow the mod/rm byte for an instruction, this
    // means that we need to bias the displacement field of the instruction with
    // the size of the immediate field. If we have this case, add it into the
    // expression to emit.
    // Note: rip-relative addressing using immediate displacement values should
    // not be adjusted, assuming it was the user's intent.
    int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags)
                      ? X86II::getSizeOfImm(TSFlags)
                      : 0;

    emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS,
                  Fixups, -ImmSize);
    return;
  }

  unsigned BaseRegNo = BaseReg ? getX86RegNum(Base) : -1U;

  // 16-bit addressing forms of the ModR/M byte have a different encoding for
  // the R/M field and are far more limited in which registers can be used.
  if (is16BitMemOperand(MI, Op, STI)) {
    if (BaseReg) {
      // For 32-bit addressing, the row and column values in Table 2-2 are
      // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
      // some special cases. And getX86RegNum reflects that numbering.
      // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
      // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
      // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
      // while values 0-3 indicate the allowed combinations (base+index) of
      // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
      //
      // R16Table[] is a lookup from the normal RegNo, to the row values from
      // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
      static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5};
      unsigned RMfield = R16Table[BaseRegNo];

      assert(RMfield && "invalid 16-bit base register");

      if (IndexReg.getReg()) {
        unsigned IndexReg16 = R16Table[getX86RegNum(IndexReg)];

        assert(IndexReg16 && "invalid 16-bit index register");
        // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
        assert(((IndexReg16 ^ RMfield) & 2) &&
               "invalid 16-bit base/index register combination");
        assert(Scale.getImm() == 1 &&
               "invalid scale for 16-bit memory reference");

        // Allow base/index to appear in either order (although GAS doesn't).
        if (IndexReg16 & 2)
          RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
        else
          RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
      }

      if (Disp.isImm() && isDisp8(Disp.getImm())) {
        if (Disp.getImm() == 0 && RMfield != 6) {
          // There is no displacement; just the register.
          emitByte(modRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
          return;
        }
        // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
        emitByte(modRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
        emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
        return;
      }
      // This is the [REG]+disp16 case.
      emitByte(modRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
    } else {
      // There is no BaseReg; this is the plain [disp16] case.
      emitByte(modRMByte(0, RegOpcodeField, 6), CurByte, OS);
    }

    // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
    emitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
    return;
  }

  // Determine whether a SIB byte is needed.
  // If no BaseReg, issue a RIP relative instruction only if the MCE can
  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
  // 2-7) and absolute references.

  if ( // The SIB byte must be used if there is an index register.
      IndexReg.getReg() == 0 &&
      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
      // encode to an R/M value of 4, which indicates that a SIB byte is
      // present.
      BaseRegNo != N86::ESP &&
      // If there is no base register and we're in 64-bit mode, we need a SIB
      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
      (!STI.hasFeature(X86::Mode64Bit) || BaseReg != 0)) {

    if (BaseReg == 0) { // [disp32]     in X86-32 mode
      emitByte(modRMByte(0, RegOpcodeField, 5), CurByte, OS);
      emitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
      return;
    }

    // If the base is not EBP/ESP and there is no displacement, use simple
    // indirect register encoding, this handles addresses like [EAX].  The
    // encoding for [EBP] with no displacement means [disp32] so we handle it
    // by emitting a displacement of 0 below.
    if (BaseRegNo != N86::EBP) {
      if (Disp.isImm() && Disp.getImm() == 0) {
        emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
        return;
      }

      // If the displacement is @tlscall, treat it as a zero.
      if (Disp.isExpr()) {
        auto *Sym = dyn_cast<MCSymbolRefExpr>(Disp.getExpr());
        if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) {
          // This is exclusively used by call *a@tlscall(base). The relocation
          // (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning.
          Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc()));
          emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
          return;
        }
      }
    }

    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
    if (Disp.isImm()) {
      if (!HasEVEX && isDisp8(Disp.getImm())) {
        emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
        emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
        return;
      }
      // Try EVEX compressed 8-bit displacement first; if failed, fall back to
      // 32-bit displacement.
      int CDisp8 = 0;
      if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
        emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
        emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
                      CDisp8 - Disp.getImm());
        return;
      }
    }

    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
    emitByte(modRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
    unsigned Opcode = MI.getOpcode();
    unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
                                                : X86::reloc_signed_4byte;
    emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS,
                  Fixups);
    return;
  }

  // We need a SIB byte, so start by outputting the ModR/M byte first
  assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP &&
         "Cannot use ESP as index reg!");

  bool ForceDisp32 = false;
  bool ForceDisp8 = false;
  int CDisp8 = 0;
  int ImmOffset = 0;
  if (BaseReg == 0) {
    // If there is no base register, we emit the special case SIB byte with
    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
    emitByte(modRMByte(0, RegOpcodeField, 4), CurByte, OS);
    ForceDisp32 = true;
  } else if (!Disp.isImm()) {
    // Emit the normal disp32 encoding.
    emitByte(modRMByte(2, RegOpcodeField, 4), CurByte, OS);
    ForceDisp32 = true;
  } else if (Disp.getImm() == 0 &&
             // Base reg can't be anything that ends up with '5' as the base
             // reg, it is the magic [*] nomenclature that indicates no base.
             BaseRegNo != N86::EBP) {
    // Emit no displacement ModR/M byte
    emitByte(modRMByte(0, RegOpcodeField, 4), CurByte, OS);
  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
    // Emit the disp8 encoding.
    emitByte(modRMByte(1, RegOpcodeField, 4), CurByte, OS);
    ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
    // Emit the disp8 encoding.
    emitByte(modRMByte(1, RegOpcodeField, 4), CurByte, OS);
    ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
    ImmOffset = CDisp8 - Disp.getImm();
  } else {
    // Emit the normal disp32 encoding.
    emitByte(modRMByte(2, RegOpcodeField, 4), CurByte, OS);
  }

  // Calculate what the SS field value should be...
  static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3};
  unsigned SS = SSTable[Scale.getImm()];

  if (BaseReg == 0) {
    // Handle the SIB byte for the case where there is no base, see Intel
    // Manual 2A, table 2-7. The displacement has already been output.
    unsigned IndexRegNo;
    if (IndexReg.getReg())
      IndexRegNo = getX86RegNum(IndexReg);
    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
      IndexRegNo = 4;
    emitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
  } else {
    unsigned IndexRegNo;
    if (IndexReg.getReg())
      IndexRegNo = getX86RegNum(IndexReg);
    else
      IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
    emitSIBByte(SS, IndexRegNo, getX86RegNum(Base), CurByte, OS);
  }

  // Do we need to output a displacement?
  if (ForceDisp8)
    emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
                  ImmOffset);
  else if (ForceDisp32 || Disp.getImm() != 0)
    emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
                  CurByte, OS, Fixups);
}

void X86MCCodeEmitter::emitPrefixImpl(uint64_t TSFlags, unsigned &CurOp,
                                  unsigned &CurByte, bool &Rex,
                                  const MCInst &MI, const MCInstrDesc &Desc,
                                  const MCSubtargetInfo &STI,
                                  raw_ostream &OS) const {
  // Determine where the memory operand starts, if present.
  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
  if (MemoryOperand != -1)
    MemoryOperand += CurOp;

  // Emit segment override opcode prefix as needed.
  if (MemoryOperand >= 0)
    emitSegmentOverridePrefix(CurByte, MemoryOperand + X86::AddrSegmentReg, MI,
                              OS);

  // Emit the repeat opcode prefix as needed.
  unsigned Flags = MI.getFlags();
  if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT)
    emitByte(0xF3, CurByte, OS);
  if (Flags & X86::IP_HAS_REPEAT_NE)
    emitByte(0xF2, CurByte, OS);

  // Emit the address size opcode prefix as needed.
  bool need_address_override;
  uint64_t AdSize = TSFlags & X86II::AdSizeMask;
  if ((STI.hasFeature(X86::Mode16Bit) && AdSize == X86II::AdSize32) ||
      (STI.hasFeature(X86::Mode32Bit) && AdSize == X86II::AdSize16) ||
      (STI.hasFeature(X86::Mode64Bit) && AdSize == X86II::AdSize32)) {
    need_address_override = true;
  } else if (MemoryOperand < 0) {
    need_address_override = false;
  } else if (STI.hasFeature(X86::Mode64Bit)) {
    assert(!is16BitMemOperand(MI, MemoryOperand, STI));
    need_address_override = is32BitMemOperand(MI, MemoryOperand);
  } else if (STI.hasFeature(X86::Mode32Bit)) {
    assert(!is64BitMemOperand(MI, MemoryOperand));
    need_address_override = is16BitMemOperand(MI, MemoryOperand, STI);
  } else {
    assert(STI.hasFeature(X86::Mode16Bit));
    assert(!is64BitMemOperand(MI, MemoryOperand));
    need_address_override = !is16BitMemOperand(MI, MemoryOperand, STI);
  }

  if (need_address_override)
    emitByte(0x67, CurByte, OS);

  // Encoding type for this instruction.
  uint64_t Encoding = TSFlags & X86II::EncodingMask;
  if (Encoding == 0)
    Rex = emitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
  else
    emitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);

  uint64_t Form = TSFlags & X86II::FormMask;
  switch (Form) {
  default:
    break;
  case X86II::RawFrmDstSrc: {
    unsigned siReg = MI.getOperand(1).getReg();
    assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
            (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
            (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
           "SI and DI register sizes do not match");
    // Emit segment override opcode prefix as needed (not for %ds).
    if (MI.getOperand(2).getReg() != X86::DS)
      emitSegmentOverridePrefix(CurByte, 2, MI, OS);
    // Emit AdSize prefix as needed.
    if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::ESI) ||
        (STI.hasFeature(X86::Mode32Bit) && siReg == X86::SI))
      emitByte(0x67, CurByte, OS);
    CurOp += 3; // Consume operands.
    break;
  }
  case X86II::RawFrmSrc: {
    unsigned siReg = MI.getOperand(0).getReg();
    // Emit segment override opcode prefix as needed (not for %ds).
    if (MI.getOperand(1).getReg() != X86::DS)
      emitSegmentOverridePrefix(CurByte, 1, MI, OS);
    // Emit AdSize prefix as needed.
    if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::ESI) ||
        (STI.hasFeature(X86::Mode32Bit) && siReg == X86::SI))
      emitByte(0x67, CurByte, OS);
    CurOp += 2; // Consume operands.
    break;
  }
  case X86II::RawFrmDst: {
    unsigned siReg = MI.getOperand(0).getReg();
    // Emit AdSize prefix as needed.
    if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::EDI) ||
        (STI.hasFeature(X86::Mode32Bit) && siReg == X86::DI))
      emitByte(0x67, CurByte, OS);
    ++CurOp; // Consume operand.
    break;
  }
  case X86II::RawFrmMemOffs: {
    // Emit segment override opcode prefix as needed.
    emitSegmentOverridePrefix(CurByte, 1, MI, OS);
    break;
  }
  }
}

/// emitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
/// called VEX.
void X86MCCodeEmitter::emitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
                                           int MemOperand, const MCInst &MI,
                                           const MCInstrDesc &Desc,
                                           raw_ostream &OS) const {
  assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");

  uint64_t Encoding = TSFlags & X86II::EncodingMask;
  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;

  // VEX_R: opcode externsion equivalent to REX.R in
  // 1's complement (inverted) form
  //
  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
  //  0: Same as REX_R=1 (64 bit mode only)
  //
  uint8_t VEX_R = 0x1;
  uint8_t EVEX_R2 = 0x1;

  // VEX_X: equivalent to REX.X, only used when a
  // register is used for index in SIB Byte.
  //
  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
  //  0: Same as REX.X=1 (64-bit mode only)
  uint8_t VEX_X = 0x1;

  // VEX_B:
  //
  //  1: Same as REX_B=0 (ignored in 32-bit mode)
  //  0: Same as REX_B=1 (64 bit mode only)
  //
  uint8_t VEX_B = 0x1;

  // VEX_W: opcode specific (use like REX.W, or used for
  // opcode extension, or ignored, depending on the opcode byte)
  uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0;

  // VEX_5M (VEX m-mmmmm field):
  //
  //  0b00000: Reserved for future use
  //  0b00001: implied 0F leading opcode
  //  0b00010: implied 0F 38 leading opcode bytes
  //  0b00011: implied 0F 3A leading opcode bytes
  //  0b00100-0b11111: Reserved for future use
  //  0b01000: XOP map select - 08h instructions with imm byte
  //  0b01001: XOP map select - 09h instructions with no imm byte
  //  0b01010: XOP map select - 0Ah instructions with imm dword
  uint8_t VEX_5M;
  switch (TSFlags & X86II::OpMapMask) {
  default:
    llvm_unreachable("Invalid prefix!");
  case X86II::TB:
    VEX_5M = 0x1;
    break; // 0F
  case X86II::T8:
    VEX_5M = 0x2;
    break; // 0F 38
  case X86II::TA:
    VEX_5M = 0x3;
    break; // 0F 3A
  case X86II::XOP8:
    VEX_5M = 0x8;
    break;
  case X86II::XOP9:
    VEX_5M = 0x9;
    break;
  case X86II::XOPA:
    VEX_5M = 0xA;
    break;
  }

  // VEX_4V (VEX vvvv field): a register specifier
  // (in 1's complement form) or 1111 if unused.
  uint8_t VEX_4V = 0xf;
  uint8_t EVEX_V2 = 0x1;

  // EVEX_L2/VEX_L (Vector Length):
  //
  // L2 L
  //  0 0: scalar or 128-bit vector
  //  0 1: 256-bit vector
  //  1 0: 512-bit vector
  //
  uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0;
  uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0;

  // VEX_PP: opcode extension providing equivalent
  // functionality of a SIMD prefix
  //
  //  0b00: None
  //  0b01: 66
  //  0b10: F3
  //  0b11: F2
  //
  uint8_t VEX_PP = 0;
  switch (TSFlags & X86II::OpPrefixMask) {
  case X86II::PD:
    VEX_PP = 0x1;
    break; // 66
  case X86II::XS:
    VEX_PP = 0x2;
    break; // F3
  case X86II::XD:
    VEX_PP = 0x3;
    break; // F2
  }

  // EVEX_U
  uint8_t EVEX_U = 1; // Always '1' so far

  // EVEX_z
  uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0;

  // EVEX_b
  uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0;

  // EVEX_rc
  uint8_t EVEX_rc = 0;

  // EVEX_aaa
  uint8_t EVEX_aaa = 0;

  bool EncodeRC = false;

  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
  unsigned NumOps = Desc.getNumOperands();
  unsigned CurOp = X86II::getOperandBias(Desc);

  switch (TSFlags & X86II::FormMask) {
  default:
    llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
  case X86II::RawFrm:
    break;
  case X86II::MRMDestMem: {
    // MRMDestMem instructions forms:
    //  MemAddr, src1(ModR/M)
    //  MemAddr, src1(VEX_4V), src2(ModR/M)
    //  MemAddr, src1(ModR/M), imm8
    //
    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc =
        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;
    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;

    CurOp += X86::AddrNumOperands;

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;
    EVEX_R2 = ~(RegEnc >> 4) & 1;
    break;
  }
  case X86II::MRMSrcMem: {
    // MRMSrcMem instructions forms:
    //  src1(ModR/M), MemAddr
    //  src1(ModR/M), src2(VEX_4V), MemAddr
    //  src1(ModR/M), MemAddr, imm8
    //  src1(ModR/M), MemAddr, src2(Imm[7:4])
    //
    //  FMA4:
    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;
    EVEX_R2 = ~(RegEnc >> 4) & 1;

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc =
        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;
    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;

    break;
  }
  case X86II::MRMSrcMem4VOp3: {
    // Instruction format for 4VOp3:
    //   src1(ModR/M), MemAddr, src3(VEX_4V)
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;

    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc =
        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;

    VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf;
    break;
  }
  case X86II::MRMSrcMemOp4: {
    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;

    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_4V = ~VRegEnc & 0xf;

    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc =
        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;
    break;
  }
  case X86II::MRM0m:
  case X86II::MRM1m:
  case X86II::MRM2m:
  case X86II::MRM3m:
  case X86II::MRM4m:
  case X86II::MRM5m:
  case X86II::MRM6m:
  case X86II::MRM7m: {
    // MRM[0-9]m instructions forms:
    //  MemAddr
    //  src1(VEX_4V), MemAddr
    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
    VEX_B = ~(BaseRegEnc >> 3) & 1;
    unsigned IndexRegEnc =
        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
    VEX_X = ~(IndexRegEnc >> 3) & 1;
    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;

    break;
  }
  case X86II::MRMSrcReg: {
    // MRMSrcReg instructions forms:
    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
    //  dst(ModR/M), src1(ModR/M)
    //  dst(ModR/M), src1(ModR/M), imm8
    //
    //  FMA4:
    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;
    EVEX_R2 = ~(RegEnc >> 4) & 1;

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;
    VEX_X = ~(RegEnc >> 4) & 1;

    if (EVEX_b) {
      if (HasEVEX_RC) {
        unsigned RcOperand = NumOps - 1;
        assert(RcOperand >= CurOp);
        EVEX_rc = MI.getOperand(RcOperand).getImm();
        assert(EVEX_rc <= 3 && "Invalid rounding control!");
      }
      EncodeRC = true;
    }
    break;
  }
  case X86II::MRMSrcReg4VOp3: {
    // Instruction format for 4VOp3:
    //   src1(ModR/M), src2(ModR/M), src3(VEX_4V)
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;

    RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;

    VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf;
    break;
  }
  case X86II::MRMSrcRegOp4: {
    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;

    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_4V = ~VRegEnc & 0xf;

    // Skip second register source (encoded in Imm[7:4])
    ++CurOp;

    RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;
    VEX_X = ~(RegEnc >> 4) & 1;
    break;
  }
  case X86II::MRMDestReg: {
    // MRMDestReg instructions forms:
    //  dst(ModR/M), src(ModR/M)
    //  dst(ModR/M), src(ModR/M), imm8
    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;
    VEX_X = ~(RegEnc >> 4) & 1;

    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }

    RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_R = ~(RegEnc >> 3) & 1;
    EVEX_R2 = ~(RegEnc >> 4) & 1;
    if (EVEX_b)
      EncodeRC = true;
    break;
  }
  case X86II::MRM0r:
  case X86II::MRM1r:
  case X86II::MRM2r:
  case X86II::MRM3r:
  case X86II::MRM4r:
  case X86II::MRM5r:
  case X86II::MRM6r:
  case X86II::MRM7r: {
    // MRM0r-MRM7r instructions forms:
    //  dst(VEX_4V), src(ModR/M), imm8
    if (HasVEX_4V) {
      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
      VEX_4V = ~VRegEnc & 0xf;
      EVEX_V2 = ~(VRegEnc >> 4) & 1;
    }
    if (HasEVEX_K)
      EVEX_aaa = getX86RegEncoding(MI, CurOp++);

    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
    VEX_B = ~(RegEnc >> 3) & 1;
    VEX_X = ~(RegEnc >> 4) & 1;
    break;
  }
  }

  if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
    // VEX opcode prefix can have 2 or 3 bytes
    //
    //  3 bytes:
    //    +-----+ +--------------+ +-------------------+
    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
    //    +-----+ +--------------+ +-------------------+
    //  2 bytes:
    //    +-----+ +-------------------+
    //    | C5h | | R | vvvv | L | pp |
    //    +-----+ +-------------------+
    //
    //  XOP uses a similar prefix:
    //    +-----+ +--------------+ +-------------------+
    //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
    //    +-----+ +--------------+ +-------------------+
    uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);

    // Can we use the 2 byte VEX prefix?
    if (!(MI.getFlags() & X86::IP_USE_VEX3) && Encoding == X86II::VEX &&
        VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
      emitByte(0xC5, CurByte, OS);
      emitByte(LastByte | (VEX_R << 7), CurByte, OS);
      return;
    }

    // 3 byte VEX prefix
    emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
    emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
    emitByte(LastByte | (VEX_W << 7), CurByte, OS);
  } else {
    assert(Encoding == X86II::EVEX && "unknown encoding!");
    // EVEX opcode prefix can have 4 bytes
    //
    // +-----+ +--------------+ +-------------------+ +------------------------+
    // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
    // +-----+ +--------------+ +-------------------+ +------------------------+
    assert((VEX_5M & 0x3) == VEX_5M &&
           "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");

    emitByte(0x62, CurByte, OS);
    emitByte((VEX_R << 7) | (VEX_X << 6) | (VEX_B << 5) | (EVEX_R2 << 4) |
                 VEX_5M,
             CurByte, OS);
    emitByte((VEX_W << 7) | (VEX_4V << 3) | (EVEX_U << 2) | VEX_PP, CurByte,
             OS);
    if (EncodeRC)
      emitByte((EVEX_z << 7) | (EVEX_rc << 5) | (EVEX_b << 4) | (EVEX_V2 << 3) |
                   EVEX_aaa,
               CurByte, OS);
    else
      emitByte((EVEX_z << 7) | (EVEX_L2 << 6) | (VEX_L << 5) | (EVEX_b << 4) |
                   (EVEX_V2 << 3) | EVEX_aaa,
               CurByte, OS);
  }
}

/// Determine if the MCInst has to be encoded with a X86-64 REX prefix which
/// specifies 1) 64-bit instructions, 2) non-default operand size, and 3) use
/// of X86-64 extended registers.
uint8_t X86MCCodeEmitter::determineREXPrefix(const MCInst &MI, uint64_t TSFlags,
                                             int MemOperand,
                                             const MCInstrDesc &Desc) const {
  uint8_t REX = 0;
  bool UsesHighByteReg = false;

  if (TSFlags & X86II::REX_W)
    REX |= 1 << 3; // set REX.W

  if (MI.getNumOperands() == 0)
    return REX;

  unsigned NumOps = MI.getNumOperands();
  unsigned CurOp = X86II::getOperandBias(Desc);

  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
  for (unsigned i = CurOp; i != NumOps; ++i) {
    const MCOperand &MO = MI.getOperand(i);
    if (!MO.isReg())
      continue;
    unsigned Reg = MO.getReg();
    if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
      UsesHighByteReg = true;
    if (X86II::isX86_64NonExtLowByteReg(Reg))
      // FIXME: The caller of determineREXPrefix slaps this prefix onto anything
      // that returns non-zero.
      REX |= 0x40; // REX fixed encoding prefix
  }

  switch (TSFlags & X86II::FormMask) {
  case X86II::AddRegFrm:
    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
    break;
  case X86II::MRMSrcReg:
  case X86II::MRMSrcRegCC:
    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
    break;
  case X86II::MRMSrcMem:
  case X86II::MRMSrcMemCC:
    REX |= isREXExtendedReg(MI, CurOp++) << 2;                        // REX.R
    REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
    REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
    CurOp += X86::AddrNumOperands;
    break;
  case X86II::MRMDestReg:
    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
    break;
  case X86II::MRMDestMem:
    REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
    REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
    CurOp += X86::AddrNumOperands;
    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
    break;
  case X86II::MRMXmCC:
  case X86II::MRMXm:
  case X86II::MRM0m:
  case X86II::MRM1m:
  case X86II::MRM2m:
  case X86II::MRM3m:
  case X86II::MRM4m:
  case X86II::MRM5m:
  case X86II::MRM6m:
  case X86II::MRM7m:
    REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
    REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
    break;
  case X86II::MRMXrCC:
  case X86II::MRMXr:
  case X86II::MRM0r:
  case X86II::MRM1r:
  case X86II::MRM2r:
  case X86II::MRM3r:
  case X86II::MRM4r:
  case X86II::MRM5r:
  case X86II::MRM6r:
  case X86II::MRM7r:
    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
    break;
  }
  if (REX && UsesHighByteReg)
    report_fatal_error(
        "Cannot encode high byte register in REX-prefixed instruction");

  return REX;
}

/// Emit segment override opcode prefix as needed.
void X86MCCodeEmitter::emitSegmentOverridePrefix(unsigned &CurByte,
                                                 unsigned SegOperand,
                                                 const MCInst &MI,
                                                 raw_ostream &OS) const {
  // Check for explicit segment override on memory operand.
  switch (MI.getOperand(SegOperand).getReg()) {
  default:
    llvm_unreachable("Unknown segment register!");
  case 0:
    break;
  case X86::CS:
    emitByte(0x2E, CurByte, OS);
    break;
  case X86::SS:
    emitByte(0x36, CurByte, OS);
    break;
  case X86::DS:
    emitByte(0x3E, CurByte, OS);
    break;
  case X86::ES:
    emitByte(0x26, CurByte, OS);
    break;
  case X86::FS:
    emitByte(0x64, CurByte, OS);
    break;
  case X86::GS:
    emitByte(0x65, CurByte, OS);
    break;
  }
}

/// Emit all instruction prefixes prior to the opcode.
///
/// \param MemOperand the operand # of the start of a memory operand if present.
/// If not present, it is -1.
///
/// \returns true if a REX prefix was used.
bool X86MCCodeEmitter::emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
                                        int MemOperand, const MCInst &MI,
                                        const MCInstrDesc &Desc,
                                        const MCSubtargetInfo &STI,
                                        raw_ostream &OS) const {
  bool Ret = false;
  // Emit the operand size opcode prefix as needed.
  if ((TSFlags & X86II::OpSizeMask) ==
      (STI.hasFeature(X86::Mode16Bit) ? X86II::OpSize32 : X86II::OpSize16))
    emitByte(0x66, CurByte, OS);

  // Emit the LOCK opcode prefix.
  if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK)
    emitByte(0xF0, CurByte, OS);

  // Emit the NOTRACK opcode prefix.
  if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK)
    emitByte(0x3E, CurByte, OS);

  switch (TSFlags & X86II::OpPrefixMask) {
  case X86II::PD: // 66
    emitByte(0x66, CurByte, OS);
    break;
  case X86II::XS: // F3
    emitByte(0xF3, CurByte, OS);
    break;
  case X86II::XD: // F2
    emitByte(0xF2, CurByte, OS);
    break;
  }

  // Handle REX prefix.
  // FIXME: Can this come before F2 etc to simplify emission?
  if (STI.hasFeature(X86::Mode64Bit)) {
    if (uint8_t REX = determineREXPrefix(MI, TSFlags, MemOperand, Desc)) {
      emitByte(0x40 | REX, CurByte, OS);
      Ret = true;
    }
  } else {
    assert(!(TSFlags & X86II::REX_W) && "REX.W requires 64bit mode.");
  }

  // 0x0F escape code must be emitted just before the opcode.
  switch (TSFlags & X86II::OpMapMask) {
  case X86II::TB:        // Two-byte opcode map
  case X86II::T8:        // 0F 38
  case X86II::TA:        // 0F 3A
  case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller.
    emitByte(0x0F, CurByte, OS);
    break;
  }

  switch (TSFlags & X86II::OpMapMask) {
  case X86II::T8: // 0F 38
    emitByte(0x38, CurByte, OS);
    break;
  case X86II::TA: // 0F 3A
    emitByte(0x3A, CurByte, OS);
    break;
  }
  return Ret;
}

void X86MCCodeEmitter::emitPrefix(const MCInst &MI, raw_ostream &OS,
                                  const MCSubtargetInfo &STI) const {
  unsigned Opcode = MI.getOpcode();
  const MCInstrDesc &Desc = MCII.get(Opcode);
  uint64_t TSFlags = Desc.TSFlags;

  // Pseudo instructions don't get encoded.
  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
    return;

  unsigned CurOp = X86II::getOperandBias(Desc);

  // Keep track of the current byte being emitted.
  unsigned CurByte = 0;

  bool Rex = false;
  emitPrefixImpl(TSFlags, CurOp, CurByte, Rex, MI, Desc, STI, OS);
}

void X86MCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
                                         SmallVectorImpl<MCFixup> &Fixups,
                                         const MCSubtargetInfo &STI) const {
  unsigned Opcode = MI.getOpcode();
  const MCInstrDesc &Desc = MCII.get(Opcode);
  uint64_t TSFlags = Desc.TSFlags;

  // Pseudo instructions don't get encoded.
  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
    return;

  unsigned NumOps = Desc.getNumOperands();
  unsigned CurOp = X86II::getOperandBias(Desc);

  // Keep track of the current byte being emitted.
  unsigned CurByte = 0;

  bool Rex = false;
  emitPrefixImpl(TSFlags, CurOp, CurByte, Rex, MI, Desc, STI, OS);

  // It uses the VEX.VVVV field?
  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
  bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;

  // It uses the EVEX.aaa field?
  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;

  // Used if a register is encoded in 7:4 of immediate.
  unsigned I8RegNum = 0;

  uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);

  if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
    BaseOpcode = 0x0F; // Weird 3DNow! encoding.

  unsigned OpcodeOffset = 0;

  uint64_t Form = TSFlags & X86II::FormMask;
  switch (Form) {
  default:
    errs() << "FORM: " << Form << "\n";
    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
  case X86II::Pseudo:
    llvm_unreachable("Pseudo instruction shouldn't be emitted");
  case X86II::RawFrmDstSrc:
  case X86II::RawFrmSrc:
  case X86II::RawFrmDst:
    emitByte(BaseOpcode, CurByte, OS);
    break;
  case X86II::AddCCFrm: {
    // This will be added to the opcode in the fallthrough.
    OpcodeOffset = MI.getOperand(NumOps - 1).getImm();
    assert(OpcodeOffset < 16 && "Unexpected opcode offset!");
    --NumOps; // Drop the operand from the end.
    LLVM_FALLTHROUGH;
  case X86II::RawFrm:
    emitByte(BaseOpcode + OpcodeOffset, CurByte, OS);

    if (!STI.hasFeature(X86::Mode64Bit) || !isPCRel32Branch(MI, MCII))
      break;

    const MCOperand &Op = MI.getOperand(CurOp++);
    emitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags),
                  MCFixupKind(X86::reloc_branch_4byte_pcrel), CurByte, OS,
                  Fixups);
    break;
  }
  case X86II::RawFrmMemOffs:
    emitByte(BaseOpcode, CurByte, OS);
    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                  CurByte, OS, Fixups);
    ++CurOp; // skip segment operand
    break;
  case X86II::RawFrmImm8:
    emitByte(BaseOpcode, CurByte, OS);
    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                  CurByte, OS, Fixups);
    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
                  OS, Fixups);
    break;
  case X86II::RawFrmImm16:
    emitByte(BaseOpcode, CurByte, OS);
    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                  CurByte, OS, Fixups);
    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
                  OS, Fixups);
    break;

  case X86II::AddRegFrm:
    emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
    break;

  case X86II::MRMDestReg: {
    emitByte(BaseOpcode, CurByte, OS);
    unsigned SrcRegNum = CurOp + 1;

    if (HasEVEX_K) // Skip writemask
      ++SrcRegNum;

    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
      ++SrcRegNum;

    emitRegModRMByte(MI.getOperand(CurOp),
                     getX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
    CurOp = SrcRegNum + 1;
    break;
  }
  case X86II::MRMDestMem: {
    emitByte(BaseOpcode, CurByte, OS);
    unsigned SrcRegNum = CurOp + X86::AddrNumOperands;

    if (HasEVEX_K) // Skip writemask
      ++SrcRegNum;

    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
      ++SrcRegNum;

    emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
                     Rex, CurByte, OS, Fixups, STI);
    CurOp = SrcRegNum + 1;
    break;
  }
  case X86II::MRMSrcReg: {
    emitByte(BaseOpcode, CurByte, OS);
    unsigned SrcRegNum = CurOp + 1;

    if (HasEVEX_K) // Skip writemask
      ++SrcRegNum;

    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
      ++SrcRegNum;

    emitRegModRMByte(MI.getOperand(SrcRegNum),
                     getX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
    CurOp = SrcRegNum + 1;
    if (HasVEX_I8Reg)
      I8RegNum = getX86RegEncoding(MI, CurOp++);
    // do not count the rounding control operand
    if (HasEVEX_RC)
      --NumOps;
    break;
  }
  case X86II::MRMSrcReg4VOp3: {
    emitByte(BaseOpcode, CurByte, OS);
    unsigned SrcRegNum = CurOp + 1;

    emitRegModRMByte(MI.getOperand(SrcRegNum),
                     getX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
    CurOp = SrcRegNum + 1;
    ++CurOp; // Encoded in VEX.VVVV
    break;
  }
  case X86II::MRMSrcRegOp4: {
    emitByte(BaseOpcode, CurByte, OS);
    unsigned SrcRegNum = CurOp + 1;

    // Skip 1st src (which is encoded in VEX_VVVV)
    ++SrcRegNum;

    // Capture 2nd src (which is encoded in Imm[7:4])
    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
    I8RegNum = getX86RegEncoding(MI, SrcRegNum++);

    emitRegModRMByte(MI.getOperand(SrcRegNum),
                     getX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
    CurOp = SrcRegNum + 1;
    break;
  }
  case X86II::MRMSrcRegCC: {
    unsigned FirstOp = CurOp++;
    unsigned SecondOp = CurOp++;

    unsigned CC = MI.getOperand(CurOp++).getImm();
    emitByte(BaseOpcode + CC, CurByte, OS);

    emitRegModRMByte(MI.getOperand(SecondOp),
                     getX86RegNum(MI.getOperand(FirstOp)), CurByte, OS);
    break;
  }
  case X86II::MRMSrcMem: {
    unsigned FirstMemOp = CurOp + 1;

    if (HasEVEX_K) // Skip writemask
      ++FirstMemOp;

    if (HasVEX_4V)
      ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).

    emitByte(BaseOpcode, CurByte, OS);

    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
                     TSFlags, Rex, CurByte, OS, Fixups, STI);
    CurOp = FirstMemOp + X86::AddrNumOperands;
    if (HasVEX_I8Reg)
      I8RegNum = getX86RegEncoding(MI, CurOp++);
    break;
  }
  case X86II::MRMSrcMem4VOp3: {
    unsigned FirstMemOp = CurOp + 1;

    emitByte(BaseOpcode, CurByte, OS);

    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
                     TSFlags, Rex, CurByte, OS, Fixups, STI);
    CurOp = FirstMemOp + X86::AddrNumOperands;
    ++CurOp; // Encoded in VEX.VVVV.
    break;
  }
  case X86II::MRMSrcMemOp4: {
    unsigned FirstMemOp = CurOp + 1;

    ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).

    // Capture second register source (encoded in Imm[7:4])
    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
    I8RegNum = getX86RegEncoding(MI, FirstMemOp++);

    emitByte(BaseOpcode, CurByte, OS);

    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
                     TSFlags, Rex, CurByte, OS, Fixups, STI);
    CurOp = FirstMemOp + X86::AddrNumOperands;
    break;
  }
  case X86II::MRMSrcMemCC: {
    unsigned RegOp = CurOp++;
    unsigned FirstMemOp = CurOp;
    CurOp = FirstMemOp + X86::AddrNumOperands;

    unsigned CC = MI.getOperand(CurOp++).getImm();
    emitByte(BaseOpcode + CC, CurByte, OS);

    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(RegOp)),
                     TSFlags, Rex, CurByte, OS, Fixups, STI);
    break;
  }

  case X86II::MRMXrCC: {
    unsigned RegOp = CurOp++;

    unsigned CC = MI.getOperand(CurOp++).getImm();
    emitByte(BaseOpcode + CC, CurByte, OS);
    emitRegModRMByte(MI.getOperand(RegOp), 0, CurByte, OS);
    break;
  }

  case X86II::MRMXr:
  case X86II::MRM0r:
  case X86II::MRM1r:
  case X86II::MRM2r:
  case X86II::MRM3r:
  case X86II::MRM4r:
  case X86II::MRM5r:
  case X86II::MRM6r:
  case X86II::MRM7r:
    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
      ++CurOp;
    if (HasEVEX_K) // Skip writemask
      ++CurOp;
    emitByte(BaseOpcode, CurByte, OS);
    emitRegModRMByte(MI.getOperand(CurOp++),
                     (Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, CurByte,
                     OS);
    break;

  case X86II::MRMXmCC: {
    unsigned FirstMemOp = CurOp;
    CurOp = FirstMemOp + X86::AddrNumOperands;

    unsigned CC = MI.getOperand(CurOp++).getImm();
    emitByte(BaseOpcode + CC, CurByte, OS);

    emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, Rex, CurByte, OS, Fixups, STI);
    break;
  }

  case X86II::MRMXm:
  case X86II::MRM0m:
  case X86II::MRM1m:
  case X86II::MRM2m:
  case X86II::MRM3m:
  case X86II::MRM4m:
  case X86II::MRM5m:
  case X86II::MRM6m:
  case X86II::MRM7m:
    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
      ++CurOp;
    if (HasEVEX_K) // Skip writemask
      ++CurOp;
    emitByte(BaseOpcode, CurByte, OS);
    emitMemModRMByte(MI, CurOp,
                     (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
                     Rex, CurByte, OS, Fixups, STI);
    CurOp += X86::AddrNumOperands;
    break;

  case X86II::MRM_C0:
  case X86II::MRM_C1:
  case X86II::MRM_C2:
  case X86II::MRM_C3:
  case X86II::MRM_C4:
  case X86II::MRM_C5:
  case X86II::MRM_C6:
  case X86II::MRM_C7:
  case X86II::MRM_C8:
  case X86II::MRM_C9:
  case X86II::MRM_CA:
  case X86II::MRM_CB:
  case X86II::MRM_CC:
  case X86II::MRM_CD:
  case X86II::MRM_CE:
  case X86II::MRM_CF:
  case X86II::MRM_D0:
  case X86II::MRM_D1:
  case X86II::MRM_D2:
  case X86II::MRM_D3:
  case X86II::MRM_D4:
  case X86II::MRM_D5:
  case X86II::MRM_D6:
  case X86II::MRM_D7:
  case X86II::MRM_D8:
  case X86II::MRM_D9:
  case X86II::MRM_DA:
  case X86II::MRM_DB:
  case X86II::MRM_DC:
  case X86II::MRM_DD:
  case X86II::MRM_DE:
  case X86II::MRM_DF:
  case X86II::MRM_E0:
  case X86II::MRM_E1:
  case X86II::MRM_E2:
  case X86II::MRM_E3:
  case X86II::MRM_E4:
  case X86II::MRM_E5:
  case X86II::MRM_E6:
  case X86II::MRM_E7:
  case X86II::MRM_E8:
  case X86II::MRM_E9:
  case X86II::MRM_EA:
  case X86II::MRM_EB:
  case X86II::MRM_EC:
  case X86II::MRM_ED:
  case X86II::MRM_EE:
  case X86II::MRM_EF:
  case X86II::MRM_F0:
  case X86II::MRM_F1:
  case X86II::MRM_F2:
  case X86II::MRM_F3:
  case X86II::MRM_F4:
  case X86II::MRM_F5:
  case X86II::MRM_F6:
  case X86II::MRM_F7:
  case X86II::MRM_F8:
  case X86II::MRM_F9:
  case X86II::MRM_FA:
  case X86II::MRM_FB:
  case X86II::MRM_FC:
  case X86II::MRM_FD:
  case X86II::MRM_FE:
  case X86II::MRM_FF:
    emitByte(BaseOpcode, CurByte, OS);
    emitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
    break;
  }

  if (HasVEX_I8Reg) {
    // The last source register of a 4 operand instruction in AVX is encoded
    // in bits[7:4] of a immediate byte.
    assert(I8RegNum < 16 && "Register encoding out of range");
    I8RegNum <<= 4;
    if (CurOp != NumOps) {
      unsigned Val = MI.getOperand(CurOp++).getImm();
      assert(Val < 16 && "Immediate operand value out of range");
      I8RegNum |= Val;
    }
    emitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
                  CurByte, OS, Fixups);
  } else {
    // If there is a remaining operand, it must be a trailing immediate. Emit it
    // according to the right size for the instruction. Some instructions
    // (SSE4a extrq and insertq) have two trailing immediates.
    while (CurOp != NumOps && NumOps - CurOp <= 2) {
      emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
                    X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
                    CurByte, OS, Fixups);
    }
  }

  if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
    emitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);

#ifndef NDEBUG
  // FIXME: Verify.
  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
    errs() << "Cannot encode all operands of: ";
    MI.dump();
    errs() << '\n';
    abort();
  }
#endif
}

MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
                                            const MCRegisterInfo &MRI,
                                            MCContext &Ctx) {
  return new X86MCCodeEmitter(MCII, Ctx);
}