X86DomainReassignment.cpp 25.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
//===--- X86DomainReassignment.cpp - Selectively switch register classes---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass attempts to find instruction chains (closures) in one domain,
// and convert them to equivalent instructions in a different domain,
// if profitable.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Printable.h"
#include <bitset>

using namespace llvm;

#define DEBUG_TYPE "x86-domain-reassignment"

STATISTIC(NumClosuresConverted, "Number of closures converted by the pass");

static cl::opt<bool> DisableX86DomainReassignment(
    "disable-x86-domain-reassignment", cl::Hidden,
    cl::desc("X86: Disable Virtual Register Reassignment."), cl::init(false));

namespace {
enum RegDomain { NoDomain = -1, GPRDomain, MaskDomain, OtherDomain, NumDomains };

static bool isGPR(const TargetRegisterClass *RC) {
  return X86::GR64RegClass.hasSubClassEq(RC) ||
         X86::GR32RegClass.hasSubClassEq(RC) ||
         X86::GR16RegClass.hasSubClassEq(RC) ||
         X86::GR8RegClass.hasSubClassEq(RC);
}

static bool isMask(const TargetRegisterClass *RC,
                   const TargetRegisterInfo *TRI) {
  return X86::VK16RegClass.hasSubClassEq(RC);
}

static RegDomain getDomain(const TargetRegisterClass *RC,
                           const TargetRegisterInfo *TRI) {
  if (isGPR(RC))
    return GPRDomain;
  if (isMask(RC, TRI))
    return MaskDomain;
  return OtherDomain;
}

/// Return a register class equivalent to \p SrcRC, in \p Domain.
static const TargetRegisterClass *getDstRC(const TargetRegisterClass *SrcRC,
                                           RegDomain Domain) {
  assert(Domain == MaskDomain && "add domain");
  if (X86::GR8RegClass.hasSubClassEq(SrcRC))
    return &X86::VK8RegClass;
  if (X86::GR16RegClass.hasSubClassEq(SrcRC))
    return &X86::VK16RegClass;
  if (X86::GR32RegClass.hasSubClassEq(SrcRC))
    return &X86::VK32RegClass;
  if (X86::GR64RegClass.hasSubClassEq(SrcRC))
    return &X86::VK64RegClass;
  llvm_unreachable("add register class");
  return nullptr;
}

/// Abstract Instruction Converter class.
class InstrConverterBase {
protected:
  unsigned SrcOpcode;

public:
  InstrConverterBase(unsigned SrcOpcode) : SrcOpcode(SrcOpcode) {}

  virtual ~InstrConverterBase() {}

  /// \returns true if \p MI is legal to convert.
  virtual bool isLegal(const MachineInstr *MI,
                       const TargetInstrInfo *TII) const {
    assert(MI->getOpcode() == SrcOpcode &&
           "Wrong instruction passed to converter");
    return true;
  }

  /// Applies conversion to \p MI.
  ///
  /// \returns true if \p MI is no longer need, and can be deleted.
  virtual bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
                            MachineRegisterInfo *MRI) const = 0;

  /// \returns the cost increment incurred by converting \p MI.
  virtual double getExtraCost(const MachineInstr *MI,
                              MachineRegisterInfo *MRI) const = 0;
};

/// An Instruction Converter which ignores the given instruction.
/// For example, PHI instructions can be safely ignored since only the registers
/// need to change.
class InstrIgnore : public InstrConverterBase {
public:
  InstrIgnore(unsigned SrcOpcode) : InstrConverterBase(SrcOpcode) {}

  bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
                    MachineRegisterInfo *MRI) const override {
    assert(isLegal(MI, TII) && "Cannot convert instruction");
    return false;
  }

  double getExtraCost(const MachineInstr *MI,
                      MachineRegisterInfo *MRI) const override {
    return 0;
  }
};

/// An Instruction Converter which replaces an instruction with another.
class InstrReplacer : public InstrConverterBase {
public:
  /// Opcode of the destination instruction.
  unsigned DstOpcode;

  InstrReplacer(unsigned SrcOpcode, unsigned DstOpcode)
      : InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {}

  bool isLegal(const MachineInstr *MI,
               const TargetInstrInfo *TII) const override {
    if (!InstrConverterBase::isLegal(MI, TII))
      return false;
    // It's illegal to replace an instruction that implicitly defines a register
    // with an instruction that doesn't, unless that register dead.
    for (auto &MO : MI->implicit_operands())
      if (MO.isReg() && MO.isDef() && !MO.isDead() &&
          !TII->get(DstOpcode).hasImplicitDefOfPhysReg(MO.getReg()))
        return false;
    return true;
  }

  bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
                    MachineRegisterInfo *MRI) const override {
    assert(isLegal(MI, TII) && "Cannot convert instruction");
    MachineInstrBuilder Bld =
        BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(DstOpcode));
    // Transfer explicit operands from original instruction. Implicit operands
    // are handled by BuildMI.
    for (auto &Op : MI->explicit_operands())
      Bld.add(Op);
    return true;
  }

  double getExtraCost(const MachineInstr *MI,
                      MachineRegisterInfo *MRI) const override {
    // Assuming instructions have the same cost.
    return 0;
  }
};

/// An Instruction Converter which replaces an instruction with another, and
/// adds a COPY from the new instruction's destination to the old one's.
class InstrReplacerDstCOPY : public InstrConverterBase {
public:
  unsigned DstOpcode;

  InstrReplacerDstCOPY(unsigned SrcOpcode, unsigned DstOpcode)
      : InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {}

  bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
                    MachineRegisterInfo *MRI) const override {
    assert(isLegal(MI, TII) && "Cannot convert instruction");
    MachineBasicBlock *MBB = MI->getParent();
    auto &DL = MI->getDebugLoc();

    Register Reg = MRI->createVirtualRegister(
        TII->getRegClass(TII->get(DstOpcode), 0, MRI->getTargetRegisterInfo(),
                         *MBB->getParent()));
    MachineInstrBuilder Bld = BuildMI(*MBB, MI, DL, TII->get(DstOpcode), Reg);
    for (unsigned Idx = 1, End = MI->getNumOperands(); Idx < End; ++Idx)
      Bld.add(MI->getOperand(Idx));

    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::COPY))
        .add(MI->getOperand(0))
        .addReg(Reg);

    return true;
  }

  double getExtraCost(const MachineInstr *MI,
                      MachineRegisterInfo *MRI) const override {
    // Assuming instructions have the same cost, and that COPY is in the same
    // domain so it will be eliminated.
    return 0;
  }
};

/// An Instruction Converter for replacing COPY instructions.
class InstrCOPYReplacer : public InstrReplacer {
public:
  RegDomain DstDomain;

  InstrCOPYReplacer(unsigned SrcOpcode, RegDomain DstDomain, unsigned DstOpcode)
      : InstrReplacer(SrcOpcode, DstOpcode), DstDomain(DstDomain) {}

  bool isLegal(const MachineInstr *MI,
               const TargetInstrInfo *TII) const override {
    if (!InstrConverterBase::isLegal(MI, TII))
      return false;

    // Don't allow copies to/flow GR8/GR16 physical registers.
    // FIXME: Is there some better way to support this?
    Register DstReg = MI->getOperand(0).getReg();
    if (Register::isPhysicalRegister(DstReg) &&
        (X86::GR8RegClass.contains(DstReg) ||
         X86::GR16RegClass.contains(DstReg)))
      return false;
    Register SrcReg = MI->getOperand(1).getReg();
    if (Register::isPhysicalRegister(SrcReg) &&
        (X86::GR8RegClass.contains(SrcReg) ||
         X86::GR16RegClass.contains(SrcReg)))
      return false;

    return true;
  }

  double getExtraCost(const MachineInstr *MI,
                      MachineRegisterInfo *MRI) const override {
    assert(MI->getOpcode() == TargetOpcode::COPY && "Expected a COPY");

    for (auto &MO : MI->operands()) {
      // Physical registers will not be converted. Assume that converting the
      // COPY to the destination domain will eventually result in a actual
      // instruction.
      if (Register::isPhysicalRegister(MO.getReg()))
        return 1;

      RegDomain OpDomain = getDomain(MRI->getRegClass(MO.getReg()),
                                     MRI->getTargetRegisterInfo());
      // Converting a cross domain COPY to a same domain COPY should eliminate
      // an insturction
      if (OpDomain == DstDomain)
        return -1;
    }
    return 0;
  }
};

/// An Instruction Converter which replaces an instruction with a COPY.
class InstrReplaceWithCopy : public InstrConverterBase {
public:
  // Source instruction operand Index, to be used as the COPY source.
  unsigned SrcOpIdx;

  InstrReplaceWithCopy(unsigned SrcOpcode, unsigned SrcOpIdx)
      : InstrConverterBase(SrcOpcode), SrcOpIdx(SrcOpIdx) {}

  bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
                    MachineRegisterInfo *MRI) const override {
    assert(isLegal(MI, TII) && "Cannot convert instruction");
    BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
            TII->get(TargetOpcode::COPY))
        .add({MI->getOperand(0), MI->getOperand(SrcOpIdx)});
    return true;
  }

  double getExtraCost(const MachineInstr *MI,
                      MachineRegisterInfo *MRI) const override {
    return 0;
  }
};

// Key type to be used by the Instruction Converters map.
// A converter is identified by <destination domain, source opcode>
typedef std::pair<int, unsigned> InstrConverterBaseKeyTy;

typedef DenseMap<InstrConverterBaseKeyTy, InstrConverterBase *>
    InstrConverterBaseMap;

/// A closure is a set of virtual register representing all of the edges in
/// the closure, as well as all of the instructions connected by those edges.
///
/// A closure may encompass virtual registers in the same register bank that
/// have different widths. For example, it may contain 32-bit GPRs as well as
/// 64-bit GPRs.
///
/// A closure that computes an address (i.e. defines a virtual register that is
/// used in a memory operand) excludes the instructions that contain memory
/// operands using the address. Such an instruction will be included in a
/// different closure that manipulates the loaded or stored value.
class Closure {
private:
  /// Virtual registers in the closure.
  DenseSet<unsigned> Edges;

  /// Instructions in the closure.
  SmallVector<MachineInstr *, 8> Instrs;

  /// Domains which this closure can legally be reassigned to.
  std::bitset<NumDomains> LegalDstDomains;

  /// An ID to uniquely identify this closure, even when it gets
  /// moved around
  unsigned ID;

public:
  Closure(unsigned ID, std::initializer_list<RegDomain> LegalDstDomainList) : ID(ID) {
    for (RegDomain D : LegalDstDomainList)
      LegalDstDomains.set(D);
  }

  /// Mark this closure as illegal for reassignment to all domains.
  void setAllIllegal() { LegalDstDomains.reset(); }

  /// \returns true if this closure has domains which are legal to reassign to.
  bool hasLegalDstDomain() const { return LegalDstDomains.any(); }

  /// \returns true if is legal to reassign this closure to domain \p RD.
  bool isLegal(RegDomain RD) const { return LegalDstDomains[RD]; }

  /// Mark this closure as illegal for reassignment to domain \p RD.
  void setIllegal(RegDomain RD) { LegalDstDomains[RD] = false; }

  bool empty() const { return Edges.empty(); }

  bool insertEdge(unsigned Reg) {
    return Edges.insert(Reg).second;
  }

  using const_edge_iterator = DenseSet<unsigned>::const_iterator;
  iterator_range<const_edge_iterator> edges() const {
    return iterator_range<const_edge_iterator>(Edges.begin(), Edges.end());
  }

  void addInstruction(MachineInstr *I) {
    Instrs.push_back(I);
  }

  ArrayRef<MachineInstr *> instructions() const {
    return Instrs;
  }

  LLVM_DUMP_METHOD void dump(const MachineRegisterInfo *MRI) const {
    dbgs() << "Registers: ";
    bool First = true;
    for (unsigned Reg : Edges) {
      if (!First)
        dbgs() << ", ";
      First = false;
      dbgs() << printReg(Reg, MRI->getTargetRegisterInfo(), 0, MRI);
    }
    dbgs() << "\n" << "Instructions:";
    for (MachineInstr *MI : Instrs) {
      dbgs() << "\n  ";
      MI->print(dbgs());
    }
    dbgs() << "\n";
  }

  unsigned getID() const {
    return ID;
  }

};

class X86DomainReassignment : public MachineFunctionPass {
  const X86Subtarget *STI = nullptr;
  MachineRegisterInfo *MRI = nullptr;
  const X86InstrInfo *TII = nullptr;

  /// All edges that are included in some closure
  DenseSet<unsigned> EnclosedEdges;

  /// All instructions that are included in some closure.
  DenseMap<MachineInstr *, unsigned> EnclosedInstrs;

public:
  static char ID;

  X86DomainReassignment() : MachineFunctionPass(ID) { }

  bool runOnMachineFunction(MachineFunction &MF) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  StringRef getPassName() const override {
    return "X86 Domain Reassignment Pass";
  }

private:
  /// A map of available Instruction Converters.
  InstrConverterBaseMap Converters;

  /// Initialize Converters map.
  void initConverters();

  /// Starting from \Reg, expand the closure as much as possible.
  void buildClosure(Closure &, unsigned Reg);

  /// Enqueue \p Reg to be considered for addition to the closure.
  void visitRegister(Closure &, unsigned Reg, RegDomain &Domain,
                     SmallVectorImpl<unsigned> &Worklist);

  /// Reassign the closure to \p Domain.
  void reassign(const Closure &C, RegDomain Domain) const;

  /// Add \p MI to the closure.
  void encloseInstr(Closure &C, MachineInstr *MI);

  /// /returns true if it is profitable to reassign the closure to \p Domain.
  bool isReassignmentProfitable(const Closure &C, RegDomain Domain) const;

  /// Calculate the total cost of reassigning the closure to \p Domain.
  double calculateCost(const Closure &C, RegDomain Domain) const;
};

char X86DomainReassignment::ID = 0;

} // End anonymous namespace.

void X86DomainReassignment::visitRegister(Closure &C, unsigned Reg,
                                          RegDomain &Domain,
                                          SmallVectorImpl<unsigned> &Worklist) {
  if (EnclosedEdges.count(Reg))
    return;

  if (!Register::isVirtualRegister(Reg))
    return;

  if (!MRI->hasOneDef(Reg))
    return;

  RegDomain RD = getDomain(MRI->getRegClass(Reg), MRI->getTargetRegisterInfo());
  // First edge in closure sets the domain.
  if (Domain == NoDomain)
    Domain = RD;

  if (Domain != RD)
    return;

  Worklist.push_back(Reg);
}

void X86DomainReassignment::encloseInstr(Closure &C, MachineInstr *MI) {
  auto I = EnclosedInstrs.find(MI);
  if (I != EnclosedInstrs.end()) {
    if (I->second != C.getID())
      // Instruction already belongs to another closure, avoid conflicts between
      // closure and mark this closure as illegal.
      C.setAllIllegal();
    return;
  }

  EnclosedInstrs[MI] = C.getID();
  C.addInstruction(MI);

  // Mark closure as illegal for reassignment to domains, if there is no
  // converter for the instruction or if the converter cannot convert the
  // instruction.
  for (int i = 0; i != NumDomains; ++i) {
    if (C.isLegal((RegDomain)i)) {
      InstrConverterBase *IC = Converters.lookup({i, MI->getOpcode()});
      if (!IC || !IC->isLegal(MI, TII))
        C.setIllegal((RegDomain)i);
    }
  }
}

double X86DomainReassignment::calculateCost(const Closure &C,
                                            RegDomain DstDomain) const {
  assert(C.isLegal(DstDomain) && "Cannot calculate cost for illegal closure");

  double Cost = 0.0;
  for (auto *MI : C.instructions())
    Cost +=
        Converters.lookup({DstDomain, MI->getOpcode()})->getExtraCost(MI, MRI);
  return Cost;
}

bool X86DomainReassignment::isReassignmentProfitable(const Closure &C,
                                                     RegDomain Domain) const {
  return calculateCost(C, Domain) < 0.0;
}

void X86DomainReassignment::reassign(const Closure &C, RegDomain Domain) const {
  assert(C.isLegal(Domain) && "Cannot convert illegal closure");

  // Iterate all instructions in the closure, convert each one using the
  // appropriate converter.
  SmallVector<MachineInstr *, 8> ToErase;
  for (auto *MI : C.instructions())
    if (Converters.lookup({Domain, MI->getOpcode()})
            ->convertInstr(MI, TII, MRI))
      ToErase.push_back(MI);

  // Iterate all registers in the closure, replace them with registers in the
  // destination domain.
  for (unsigned Reg : C.edges()) {
    MRI->setRegClass(Reg, getDstRC(MRI->getRegClass(Reg), Domain));
    for (auto &MO : MRI->use_operands(Reg)) {
      if (MO.isReg())
        // Remove all subregister references as they are not valid in the
        // destination domain.
        MO.setSubReg(0);
    }
  }

  for (auto MI : ToErase)
    MI->eraseFromParent();
}

/// \returns true when \p Reg is used as part of an address calculation in \p
/// MI.
static bool usedAsAddr(const MachineInstr &MI, unsigned Reg,
                       const TargetInstrInfo *TII) {
  if (!MI.mayLoadOrStore())
    return false;

  const MCInstrDesc &Desc = TII->get(MI.getOpcode());
  int MemOpStart = X86II::getMemoryOperandNo(Desc.TSFlags);
  if (MemOpStart == -1)
    return false;

  MemOpStart += X86II::getOperandBias(Desc);
  for (unsigned MemOpIdx = MemOpStart,
                MemOpEnd = MemOpStart + X86::AddrNumOperands;
       MemOpIdx < MemOpEnd; ++MemOpIdx) {
    auto &Op = MI.getOperand(MemOpIdx);
    if (Op.isReg() && Op.getReg() == Reg)
      return true;
  }
  return false;
}

void X86DomainReassignment::buildClosure(Closure &C, unsigned Reg) {
  SmallVector<unsigned, 4> Worklist;
  RegDomain Domain = NoDomain;
  visitRegister(C, Reg, Domain, Worklist);
  while (!Worklist.empty()) {
    unsigned CurReg = Worklist.pop_back_val();

    // Register already in this closure.
    if (!C.insertEdge(CurReg))
      continue;
    EnclosedEdges.insert(Reg);

    MachineInstr *DefMI = MRI->getVRegDef(CurReg);
    encloseInstr(C, DefMI);

    // Add register used by the defining MI to the worklist.
    // Do not add registers which are used in address calculation, they will be
    // added to a different closure.
    int OpEnd = DefMI->getNumOperands();
    const MCInstrDesc &Desc = DefMI->getDesc();
    int MemOp = X86II::getMemoryOperandNo(Desc.TSFlags);
    if (MemOp != -1)
      MemOp += X86II::getOperandBias(Desc);
    for (int OpIdx = 0; OpIdx < OpEnd; ++OpIdx) {
      if (OpIdx == MemOp) {
        // skip address calculation.
        OpIdx += (X86::AddrNumOperands - 1);
        continue;
      }
      auto &Op = DefMI->getOperand(OpIdx);
      if (!Op.isReg() || !Op.isUse())
        continue;
      visitRegister(C, Op.getReg(), Domain, Worklist);
    }

    // Expand closure through register uses.
    for (auto &UseMI : MRI->use_nodbg_instructions(CurReg)) {
      // We would like to avoid converting closures which calculare addresses,
      // as this should remain in GPRs.
      if (usedAsAddr(UseMI, CurReg, TII)) {
        C.setAllIllegal();
        continue;
      }
      encloseInstr(C, &UseMI);

      for (auto &DefOp : UseMI.defs()) {
        if (!DefOp.isReg())
          continue;

        Register DefReg = DefOp.getReg();
        if (!Register::isVirtualRegister(DefReg)) {
          C.setAllIllegal();
          continue;
        }
        visitRegister(C, DefReg, Domain, Worklist);
      }
    }
  }
}

void X86DomainReassignment::initConverters() {
  Converters[{MaskDomain, TargetOpcode::PHI}] =
      new InstrIgnore(TargetOpcode::PHI);

  Converters[{MaskDomain, TargetOpcode::IMPLICIT_DEF}] =
      new InstrIgnore(TargetOpcode::IMPLICIT_DEF);

  Converters[{MaskDomain, TargetOpcode::INSERT_SUBREG}] =
      new InstrReplaceWithCopy(TargetOpcode::INSERT_SUBREG, 2);

  Converters[{MaskDomain, TargetOpcode::COPY}] =
      new InstrCOPYReplacer(TargetOpcode::COPY, MaskDomain, TargetOpcode::COPY);

  auto createReplacerDstCOPY = [&](unsigned From, unsigned To) {
    Converters[{MaskDomain, From}] = new InstrReplacerDstCOPY(From, To);
  };

  createReplacerDstCOPY(X86::MOVZX32rm16, X86::KMOVWkm);
  createReplacerDstCOPY(X86::MOVZX64rm16, X86::KMOVWkm);

  createReplacerDstCOPY(X86::MOVZX32rr16, X86::KMOVWkk);
  createReplacerDstCOPY(X86::MOVZX64rr16, X86::KMOVWkk);

  if (STI->hasDQI()) {
    createReplacerDstCOPY(X86::MOVZX16rm8, X86::KMOVBkm);
    createReplacerDstCOPY(X86::MOVZX32rm8, X86::KMOVBkm);
    createReplacerDstCOPY(X86::MOVZX64rm8, X86::KMOVBkm);

    createReplacerDstCOPY(X86::MOVZX16rr8, X86::KMOVBkk);
    createReplacerDstCOPY(X86::MOVZX32rr8, X86::KMOVBkk);
    createReplacerDstCOPY(X86::MOVZX64rr8, X86::KMOVBkk);
  }

  auto createReplacer = [&](unsigned From, unsigned To) {
    Converters[{MaskDomain, From}] = new InstrReplacer(From, To);
  };

  createReplacer(X86::MOV16rm, X86::KMOVWkm);
  createReplacer(X86::MOV16mr, X86::KMOVWmk);
  createReplacer(X86::MOV16rr, X86::KMOVWkk);
  createReplacer(X86::SHR16ri, X86::KSHIFTRWri);
  createReplacer(X86::SHL16ri, X86::KSHIFTLWri);
  createReplacer(X86::NOT16r, X86::KNOTWrr);
  createReplacer(X86::OR16rr, X86::KORWrr);
  createReplacer(X86::AND16rr, X86::KANDWrr);
  createReplacer(X86::XOR16rr, X86::KXORWrr);

  if (STI->hasBWI()) {
    createReplacer(X86::MOV32rm, X86::KMOVDkm);
    createReplacer(X86::MOV64rm, X86::KMOVQkm);

    createReplacer(X86::MOV32mr, X86::KMOVDmk);
    createReplacer(X86::MOV64mr, X86::KMOVQmk);

    createReplacer(X86::MOV32rr, X86::KMOVDkk);
    createReplacer(X86::MOV64rr, X86::KMOVQkk);

    createReplacer(X86::SHR32ri, X86::KSHIFTRDri);
    createReplacer(X86::SHR64ri, X86::KSHIFTRQri);

    createReplacer(X86::SHL32ri, X86::KSHIFTLDri);
    createReplacer(X86::SHL64ri, X86::KSHIFTLQri);

    createReplacer(X86::ADD32rr, X86::KADDDrr);
    createReplacer(X86::ADD64rr, X86::KADDQrr);

    createReplacer(X86::NOT32r, X86::KNOTDrr);
    createReplacer(X86::NOT64r, X86::KNOTQrr);

    createReplacer(X86::OR32rr, X86::KORDrr);
    createReplacer(X86::OR64rr, X86::KORQrr);

    createReplacer(X86::AND32rr, X86::KANDDrr);
    createReplacer(X86::AND64rr, X86::KANDQrr);

    createReplacer(X86::ANDN32rr, X86::KANDNDrr);
    createReplacer(X86::ANDN64rr, X86::KANDNQrr);

    createReplacer(X86::XOR32rr, X86::KXORDrr);
    createReplacer(X86::XOR64rr, X86::KXORQrr);

    // TODO: KTEST is not a replacement for TEST due to flag differences. Need
    // to prove only Z flag is used.
    //createReplacer(X86::TEST32rr, X86::KTESTDrr);
    //createReplacer(X86::TEST64rr, X86::KTESTQrr);
  }

  if (STI->hasDQI()) {
    createReplacer(X86::ADD8rr, X86::KADDBrr);
    createReplacer(X86::ADD16rr, X86::KADDWrr);

    createReplacer(X86::AND8rr, X86::KANDBrr);

    createReplacer(X86::MOV8rm, X86::KMOVBkm);
    createReplacer(X86::MOV8mr, X86::KMOVBmk);
    createReplacer(X86::MOV8rr, X86::KMOVBkk);

    createReplacer(X86::NOT8r, X86::KNOTBrr);

    createReplacer(X86::OR8rr, X86::KORBrr);

    createReplacer(X86::SHR8ri, X86::KSHIFTRBri);
    createReplacer(X86::SHL8ri, X86::KSHIFTLBri);

    // TODO: KTEST is not a replacement for TEST due to flag differences. Need
    // to prove only Z flag is used.
    //createReplacer(X86::TEST8rr, X86::KTESTBrr);
    //createReplacer(X86::TEST16rr, X86::KTESTWrr);

    createReplacer(X86::XOR8rr, X86::KXORBrr);
  }
}

bool X86DomainReassignment::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;
  if (DisableX86DomainReassignment)
    return false;

  LLVM_DEBUG(
      dbgs() << "***** Machine Function before Domain Reassignment *****\n");
  LLVM_DEBUG(MF.print(dbgs()));

  STI = &MF.getSubtarget<X86Subtarget>();
  // GPR->K is the only transformation currently supported, bail out early if no
  // AVX512.
  // TODO: We're also bailing of AVX512BW isn't supported since we use VK32 and
  // VK64 for GR32/GR64, but those aren't legal classes on KNL. If the register
  // coalescer doesn't clean it up and we generate a spill we will crash.
  if (!STI->hasAVX512() || !STI->hasBWI())
    return false;

  MRI = &MF.getRegInfo();
  assert(MRI->isSSA() && "Expected MIR to be in SSA form");

  TII = STI->getInstrInfo();
  initConverters();
  bool Changed = false;

  EnclosedEdges.clear();
  EnclosedInstrs.clear();

  std::vector<Closure> Closures;

  // Go over all virtual registers and calculate a closure.
  unsigned ClosureID = 0;
  for (unsigned Idx = 0; Idx < MRI->getNumVirtRegs(); ++Idx) {
    unsigned Reg = Register::index2VirtReg(Idx);

    // GPR only current source domain supported.
    if (!isGPR(MRI->getRegClass(Reg)))
      continue;

    // Register already in closure.
    if (EnclosedEdges.count(Reg))
      continue;

    // Calculate closure starting with Reg.
    Closure C(ClosureID++, {MaskDomain});
    buildClosure(C, Reg);

    // Collect all closures that can potentially be converted.
    if (!C.empty() && C.isLegal(MaskDomain))
      Closures.push_back(std::move(C));
  }

  for (Closure &C : Closures) {
    LLVM_DEBUG(C.dump(MRI));
    if (isReassignmentProfitable(C, MaskDomain)) {
      reassign(C, MaskDomain);
      ++NumClosuresConverted;
      Changed = true;
    }
  }

  DeleteContainerSeconds(Converters);

  LLVM_DEBUG(
      dbgs() << "***** Machine Function after Domain Reassignment *****\n");
  LLVM_DEBUG(MF.print(dbgs()));

  return Changed;
}

INITIALIZE_PASS(X86DomainReassignment, "x86-domain-reassignment",
                "X86 Domain Reassignment Pass", false, false)

/// Returns an instance of the Domain Reassignment pass.
FunctionPass *llvm::createX86DomainReassignmentPass() {
  return new X86DomainReassignment();
}