X86DomainReassignment.cpp
25.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
//===--- X86DomainReassignment.cpp - Selectively switch register classes---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass attempts to find instruction chains (closures) in one domain,
// and convert them to equivalent instructions in a different domain,
// if profitable.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Printable.h"
#include <bitset>
using namespace llvm;
#define DEBUG_TYPE "x86-domain-reassignment"
STATISTIC(NumClosuresConverted, "Number of closures converted by the pass");
static cl::opt<bool> DisableX86DomainReassignment(
"disable-x86-domain-reassignment", cl::Hidden,
cl::desc("X86: Disable Virtual Register Reassignment."), cl::init(false));
namespace {
enum RegDomain { NoDomain = -1, GPRDomain, MaskDomain, OtherDomain, NumDomains };
static bool isGPR(const TargetRegisterClass *RC) {
return X86::GR64RegClass.hasSubClassEq(RC) ||
X86::GR32RegClass.hasSubClassEq(RC) ||
X86::GR16RegClass.hasSubClassEq(RC) ||
X86::GR8RegClass.hasSubClassEq(RC);
}
static bool isMask(const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) {
return X86::VK16RegClass.hasSubClassEq(RC);
}
static RegDomain getDomain(const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) {
if (isGPR(RC))
return GPRDomain;
if (isMask(RC, TRI))
return MaskDomain;
return OtherDomain;
}
/// Return a register class equivalent to \p SrcRC, in \p Domain.
static const TargetRegisterClass *getDstRC(const TargetRegisterClass *SrcRC,
RegDomain Domain) {
assert(Domain == MaskDomain && "add domain");
if (X86::GR8RegClass.hasSubClassEq(SrcRC))
return &X86::VK8RegClass;
if (X86::GR16RegClass.hasSubClassEq(SrcRC))
return &X86::VK16RegClass;
if (X86::GR32RegClass.hasSubClassEq(SrcRC))
return &X86::VK32RegClass;
if (X86::GR64RegClass.hasSubClassEq(SrcRC))
return &X86::VK64RegClass;
llvm_unreachable("add register class");
return nullptr;
}
/// Abstract Instruction Converter class.
class InstrConverterBase {
protected:
unsigned SrcOpcode;
public:
InstrConverterBase(unsigned SrcOpcode) : SrcOpcode(SrcOpcode) {}
virtual ~InstrConverterBase() {}
/// \returns true if \p MI is legal to convert.
virtual bool isLegal(const MachineInstr *MI,
const TargetInstrInfo *TII) const {
assert(MI->getOpcode() == SrcOpcode &&
"Wrong instruction passed to converter");
return true;
}
/// Applies conversion to \p MI.
///
/// \returns true if \p MI is no longer need, and can be deleted.
virtual bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
MachineRegisterInfo *MRI) const = 0;
/// \returns the cost increment incurred by converting \p MI.
virtual double getExtraCost(const MachineInstr *MI,
MachineRegisterInfo *MRI) const = 0;
};
/// An Instruction Converter which ignores the given instruction.
/// For example, PHI instructions can be safely ignored since only the registers
/// need to change.
class InstrIgnore : public InstrConverterBase {
public:
InstrIgnore(unsigned SrcOpcode) : InstrConverterBase(SrcOpcode) {}
bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
MachineRegisterInfo *MRI) const override {
assert(isLegal(MI, TII) && "Cannot convert instruction");
return false;
}
double getExtraCost(const MachineInstr *MI,
MachineRegisterInfo *MRI) const override {
return 0;
}
};
/// An Instruction Converter which replaces an instruction with another.
class InstrReplacer : public InstrConverterBase {
public:
/// Opcode of the destination instruction.
unsigned DstOpcode;
InstrReplacer(unsigned SrcOpcode, unsigned DstOpcode)
: InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {}
bool isLegal(const MachineInstr *MI,
const TargetInstrInfo *TII) const override {
if (!InstrConverterBase::isLegal(MI, TII))
return false;
// It's illegal to replace an instruction that implicitly defines a register
// with an instruction that doesn't, unless that register dead.
for (auto &MO : MI->implicit_operands())
if (MO.isReg() && MO.isDef() && !MO.isDead() &&
!TII->get(DstOpcode).hasImplicitDefOfPhysReg(MO.getReg()))
return false;
return true;
}
bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
MachineRegisterInfo *MRI) const override {
assert(isLegal(MI, TII) && "Cannot convert instruction");
MachineInstrBuilder Bld =
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(DstOpcode));
// Transfer explicit operands from original instruction. Implicit operands
// are handled by BuildMI.
for (auto &Op : MI->explicit_operands())
Bld.add(Op);
return true;
}
double getExtraCost(const MachineInstr *MI,
MachineRegisterInfo *MRI) const override {
// Assuming instructions have the same cost.
return 0;
}
};
/// An Instruction Converter which replaces an instruction with another, and
/// adds a COPY from the new instruction's destination to the old one's.
class InstrReplacerDstCOPY : public InstrConverterBase {
public:
unsigned DstOpcode;
InstrReplacerDstCOPY(unsigned SrcOpcode, unsigned DstOpcode)
: InstrConverterBase(SrcOpcode), DstOpcode(DstOpcode) {}
bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
MachineRegisterInfo *MRI) const override {
assert(isLegal(MI, TII) && "Cannot convert instruction");
MachineBasicBlock *MBB = MI->getParent();
auto &DL = MI->getDebugLoc();
Register Reg = MRI->createVirtualRegister(
TII->getRegClass(TII->get(DstOpcode), 0, MRI->getTargetRegisterInfo(),
*MBB->getParent()));
MachineInstrBuilder Bld = BuildMI(*MBB, MI, DL, TII->get(DstOpcode), Reg);
for (unsigned Idx = 1, End = MI->getNumOperands(); Idx < End; ++Idx)
Bld.add(MI->getOperand(Idx));
BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::COPY))
.add(MI->getOperand(0))
.addReg(Reg);
return true;
}
double getExtraCost(const MachineInstr *MI,
MachineRegisterInfo *MRI) const override {
// Assuming instructions have the same cost, and that COPY is in the same
// domain so it will be eliminated.
return 0;
}
};
/// An Instruction Converter for replacing COPY instructions.
class InstrCOPYReplacer : public InstrReplacer {
public:
RegDomain DstDomain;
InstrCOPYReplacer(unsigned SrcOpcode, RegDomain DstDomain, unsigned DstOpcode)
: InstrReplacer(SrcOpcode, DstOpcode), DstDomain(DstDomain) {}
bool isLegal(const MachineInstr *MI,
const TargetInstrInfo *TII) const override {
if (!InstrConverterBase::isLegal(MI, TII))
return false;
// Don't allow copies to/flow GR8/GR16 physical registers.
// FIXME: Is there some better way to support this?
Register DstReg = MI->getOperand(0).getReg();
if (Register::isPhysicalRegister(DstReg) &&
(X86::GR8RegClass.contains(DstReg) ||
X86::GR16RegClass.contains(DstReg)))
return false;
Register SrcReg = MI->getOperand(1).getReg();
if (Register::isPhysicalRegister(SrcReg) &&
(X86::GR8RegClass.contains(SrcReg) ||
X86::GR16RegClass.contains(SrcReg)))
return false;
return true;
}
double getExtraCost(const MachineInstr *MI,
MachineRegisterInfo *MRI) const override {
assert(MI->getOpcode() == TargetOpcode::COPY && "Expected a COPY");
for (auto &MO : MI->operands()) {
// Physical registers will not be converted. Assume that converting the
// COPY to the destination domain will eventually result in a actual
// instruction.
if (Register::isPhysicalRegister(MO.getReg()))
return 1;
RegDomain OpDomain = getDomain(MRI->getRegClass(MO.getReg()),
MRI->getTargetRegisterInfo());
// Converting a cross domain COPY to a same domain COPY should eliminate
// an insturction
if (OpDomain == DstDomain)
return -1;
}
return 0;
}
};
/// An Instruction Converter which replaces an instruction with a COPY.
class InstrReplaceWithCopy : public InstrConverterBase {
public:
// Source instruction operand Index, to be used as the COPY source.
unsigned SrcOpIdx;
InstrReplaceWithCopy(unsigned SrcOpcode, unsigned SrcOpIdx)
: InstrConverterBase(SrcOpcode), SrcOpIdx(SrcOpIdx) {}
bool convertInstr(MachineInstr *MI, const TargetInstrInfo *TII,
MachineRegisterInfo *MRI) const override {
assert(isLegal(MI, TII) && "Cannot convert instruction");
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
TII->get(TargetOpcode::COPY))
.add({MI->getOperand(0), MI->getOperand(SrcOpIdx)});
return true;
}
double getExtraCost(const MachineInstr *MI,
MachineRegisterInfo *MRI) const override {
return 0;
}
};
// Key type to be used by the Instruction Converters map.
// A converter is identified by <destination domain, source opcode>
typedef std::pair<int, unsigned> InstrConverterBaseKeyTy;
typedef DenseMap<InstrConverterBaseKeyTy, InstrConverterBase *>
InstrConverterBaseMap;
/// A closure is a set of virtual register representing all of the edges in
/// the closure, as well as all of the instructions connected by those edges.
///
/// A closure may encompass virtual registers in the same register bank that
/// have different widths. For example, it may contain 32-bit GPRs as well as
/// 64-bit GPRs.
///
/// A closure that computes an address (i.e. defines a virtual register that is
/// used in a memory operand) excludes the instructions that contain memory
/// operands using the address. Such an instruction will be included in a
/// different closure that manipulates the loaded or stored value.
class Closure {
private:
/// Virtual registers in the closure.
DenseSet<unsigned> Edges;
/// Instructions in the closure.
SmallVector<MachineInstr *, 8> Instrs;
/// Domains which this closure can legally be reassigned to.
std::bitset<NumDomains> LegalDstDomains;
/// An ID to uniquely identify this closure, even when it gets
/// moved around
unsigned ID;
public:
Closure(unsigned ID, std::initializer_list<RegDomain> LegalDstDomainList) : ID(ID) {
for (RegDomain D : LegalDstDomainList)
LegalDstDomains.set(D);
}
/// Mark this closure as illegal for reassignment to all domains.
void setAllIllegal() { LegalDstDomains.reset(); }
/// \returns true if this closure has domains which are legal to reassign to.
bool hasLegalDstDomain() const { return LegalDstDomains.any(); }
/// \returns true if is legal to reassign this closure to domain \p RD.
bool isLegal(RegDomain RD) const { return LegalDstDomains[RD]; }
/// Mark this closure as illegal for reassignment to domain \p RD.
void setIllegal(RegDomain RD) { LegalDstDomains[RD] = false; }
bool empty() const { return Edges.empty(); }
bool insertEdge(unsigned Reg) {
return Edges.insert(Reg).second;
}
using const_edge_iterator = DenseSet<unsigned>::const_iterator;
iterator_range<const_edge_iterator> edges() const {
return iterator_range<const_edge_iterator>(Edges.begin(), Edges.end());
}
void addInstruction(MachineInstr *I) {
Instrs.push_back(I);
}
ArrayRef<MachineInstr *> instructions() const {
return Instrs;
}
LLVM_DUMP_METHOD void dump(const MachineRegisterInfo *MRI) const {
dbgs() << "Registers: ";
bool First = true;
for (unsigned Reg : Edges) {
if (!First)
dbgs() << ", ";
First = false;
dbgs() << printReg(Reg, MRI->getTargetRegisterInfo(), 0, MRI);
}
dbgs() << "\n" << "Instructions:";
for (MachineInstr *MI : Instrs) {
dbgs() << "\n ";
MI->print(dbgs());
}
dbgs() << "\n";
}
unsigned getID() const {
return ID;
}
};
class X86DomainReassignment : public MachineFunctionPass {
const X86Subtarget *STI = nullptr;
MachineRegisterInfo *MRI = nullptr;
const X86InstrInfo *TII = nullptr;
/// All edges that are included in some closure
DenseSet<unsigned> EnclosedEdges;
/// All instructions that are included in some closure.
DenseMap<MachineInstr *, unsigned> EnclosedInstrs;
public:
static char ID;
X86DomainReassignment() : MachineFunctionPass(ID) { }
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
StringRef getPassName() const override {
return "X86 Domain Reassignment Pass";
}
private:
/// A map of available Instruction Converters.
InstrConverterBaseMap Converters;
/// Initialize Converters map.
void initConverters();
/// Starting from \Reg, expand the closure as much as possible.
void buildClosure(Closure &, unsigned Reg);
/// Enqueue \p Reg to be considered for addition to the closure.
void visitRegister(Closure &, unsigned Reg, RegDomain &Domain,
SmallVectorImpl<unsigned> &Worklist);
/// Reassign the closure to \p Domain.
void reassign(const Closure &C, RegDomain Domain) const;
/// Add \p MI to the closure.
void encloseInstr(Closure &C, MachineInstr *MI);
/// /returns true if it is profitable to reassign the closure to \p Domain.
bool isReassignmentProfitable(const Closure &C, RegDomain Domain) const;
/// Calculate the total cost of reassigning the closure to \p Domain.
double calculateCost(const Closure &C, RegDomain Domain) const;
};
char X86DomainReassignment::ID = 0;
} // End anonymous namespace.
void X86DomainReassignment::visitRegister(Closure &C, unsigned Reg,
RegDomain &Domain,
SmallVectorImpl<unsigned> &Worklist) {
if (EnclosedEdges.count(Reg))
return;
if (!Register::isVirtualRegister(Reg))
return;
if (!MRI->hasOneDef(Reg))
return;
RegDomain RD = getDomain(MRI->getRegClass(Reg), MRI->getTargetRegisterInfo());
// First edge in closure sets the domain.
if (Domain == NoDomain)
Domain = RD;
if (Domain != RD)
return;
Worklist.push_back(Reg);
}
void X86DomainReassignment::encloseInstr(Closure &C, MachineInstr *MI) {
auto I = EnclosedInstrs.find(MI);
if (I != EnclosedInstrs.end()) {
if (I->second != C.getID())
// Instruction already belongs to another closure, avoid conflicts between
// closure and mark this closure as illegal.
C.setAllIllegal();
return;
}
EnclosedInstrs[MI] = C.getID();
C.addInstruction(MI);
// Mark closure as illegal for reassignment to domains, if there is no
// converter for the instruction or if the converter cannot convert the
// instruction.
for (int i = 0; i != NumDomains; ++i) {
if (C.isLegal((RegDomain)i)) {
InstrConverterBase *IC = Converters.lookup({i, MI->getOpcode()});
if (!IC || !IC->isLegal(MI, TII))
C.setIllegal((RegDomain)i);
}
}
}
double X86DomainReassignment::calculateCost(const Closure &C,
RegDomain DstDomain) const {
assert(C.isLegal(DstDomain) && "Cannot calculate cost for illegal closure");
double Cost = 0.0;
for (auto *MI : C.instructions())
Cost +=
Converters.lookup({DstDomain, MI->getOpcode()})->getExtraCost(MI, MRI);
return Cost;
}
bool X86DomainReassignment::isReassignmentProfitable(const Closure &C,
RegDomain Domain) const {
return calculateCost(C, Domain) < 0.0;
}
void X86DomainReassignment::reassign(const Closure &C, RegDomain Domain) const {
assert(C.isLegal(Domain) && "Cannot convert illegal closure");
// Iterate all instructions in the closure, convert each one using the
// appropriate converter.
SmallVector<MachineInstr *, 8> ToErase;
for (auto *MI : C.instructions())
if (Converters.lookup({Domain, MI->getOpcode()})
->convertInstr(MI, TII, MRI))
ToErase.push_back(MI);
// Iterate all registers in the closure, replace them with registers in the
// destination domain.
for (unsigned Reg : C.edges()) {
MRI->setRegClass(Reg, getDstRC(MRI->getRegClass(Reg), Domain));
for (auto &MO : MRI->use_operands(Reg)) {
if (MO.isReg())
// Remove all subregister references as they are not valid in the
// destination domain.
MO.setSubReg(0);
}
}
for (auto MI : ToErase)
MI->eraseFromParent();
}
/// \returns true when \p Reg is used as part of an address calculation in \p
/// MI.
static bool usedAsAddr(const MachineInstr &MI, unsigned Reg,
const TargetInstrInfo *TII) {
if (!MI.mayLoadOrStore())
return false;
const MCInstrDesc &Desc = TII->get(MI.getOpcode());
int MemOpStart = X86II::getMemoryOperandNo(Desc.TSFlags);
if (MemOpStart == -1)
return false;
MemOpStart += X86II::getOperandBias(Desc);
for (unsigned MemOpIdx = MemOpStart,
MemOpEnd = MemOpStart + X86::AddrNumOperands;
MemOpIdx < MemOpEnd; ++MemOpIdx) {
auto &Op = MI.getOperand(MemOpIdx);
if (Op.isReg() && Op.getReg() == Reg)
return true;
}
return false;
}
void X86DomainReassignment::buildClosure(Closure &C, unsigned Reg) {
SmallVector<unsigned, 4> Worklist;
RegDomain Domain = NoDomain;
visitRegister(C, Reg, Domain, Worklist);
while (!Worklist.empty()) {
unsigned CurReg = Worklist.pop_back_val();
// Register already in this closure.
if (!C.insertEdge(CurReg))
continue;
EnclosedEdges.insert(Reg);
MachineInstr *DefMI = MRI->getVRegDef(CurReg);
encloseInstr(C, DefMI);
// Add register used by the defining MI to the worklist.
// Do not add registers which are used in address calculation, they will be
// added to a different closure.
int OpEnd = DefMI->getNumOperands();
const MCInstrDesc &Desc = DefMI->getDesc();
int MemOp = X86II::getMemoryOperandNo(Desc.TSFlags);
if (MemOp != -1)
MemOp += X86II::getOperandBias(Desc);
for (int OpIdx = 0; OpIdx < OpEnd; ++OpIdx) {
if (OpIdx == MemOp) {
// skip address calculation.
OpIdx += (X86::AddrNumOperands - 1);
continue;
}
auto &Op = DefMI->getOperand(OpIdx);
if (!Op.isReg() || !Op.isUse())
continue;
visitRegister(C, Op.getReg(), Domain, Worklist);
}
// Expand closure through register uses.
for (auto &UseMI : MRI->use_nodbg_instructions(CurReg)) {
// We would like to avoid converting closures which calculare addresses,
// as this should remain in GPRs.
if (usedAsAddr(UseMI, CurReg, TII)) {
C.setAllIllegal();
continue;
}
encloseInstr(C, &UseMI);
for (auto &DefOp : UseMI.defs()) {
if (!DefOp.isReg())
continue;
Register DefReg = DefOp.getReg();
if (!Register::isVirtualRegister(DefReg)) {
C.setAllIllegal();
continue;
}
visitRegister(C, DefReg, Domain, Worklist);
}
}
}
}
void X86DomainReassignment::initConverters() {
Converters[{MaskDomain, TargetOpcode::PHI}] =
new InstrIgnore(TargetOpcode::PHI);
Converters[{MaskDomain, TargetOpcode::IMPLICIT_DEF}] =
new InstrIgnore(TargetOpcode::IMPLICIT_DEF);
Converters[{MaskDomain, TargetOpcode::INSERT_SUBREG}] =
new InstrReplaceWithCopy(TargetOpcode::INSERT_SUBREG, 2);
Converters[{MaskDomain, TargetOpcode::COPY}] =
new InstrCOPYReplacer(TargetOpcode::COPY, MaskDomain, TargetOpcode::COPY);
auto createReplacerDstCOPY = [&](unsigned From, unsigned To) {
Converters[{MaskDomain, From}] = new InstrReplacerDstCOPY(From, To);
};
createReplacerDstCOPY(X86::MOVZX32rm16, X86::KMOVWkm);
createReplacerDstCOPY(X86::MOVZX64rm16, X86::KMOVWkm);
createReplacerDstCOPY(X86::MOVZX32rr16, X86::KMOVWkk);
createReplacerDstCOPY(X86::MOVZX64rr16, X86::KMOVWkk);
if (STI->hasDQI()) {
createReplacerDstCOPY(X86::MOVZX16rm8, X86::KMOVBkm);
createReplacerDstCOPY(X86::MOVZX32rm8, X86::KMOVBkm);
createReplacerDstCOPY(X86::MOVZX64rm8, X86::KMOVBkm);
createReplacerDstCOPY(X86::MOVZX16rr8, X86::KMOVBkk);
createReplacerDstCOPY(X86::MOVZX32rr8, X86::KMOVBkk);
createReplacerDstCOPY(X86::MOVZX64rr8, X86::KMOVBkk);
}
auto createReplacer = [&](unsigned From, unsigned To) {
Converters[{MaskDomain, From}] = new InstrReplacer(From, To);
};
createReplacer(X86::MOV16rm, X86::KMOVWkm);
createReplacer(X86::MOV16mr, X86::KMOVWmk);
createReplacer(X86::MOV16rr, X86::KMOVWkk);
createReplacer(X86::SHR16ri, X86::KSHIFTRWri);
createReplacer(X86::SHL16ri, X86::KSHIFTLWri);
createReplacer(X86::NOT16r, X86::KNOTWrr);
createReplacer(X86::OR16rr, X86::KORWrr);
createReplacer(X86::AND16rr, X86::KANDWrr);
createReplacer(X86::XOR16rr, X86::KXORWrr);
if (STI->hasBWI()) {
createReplacer(X86::MOV32rm, X86::KMOVDkm);
createReplacer(X86::MOV64rm, X86::KMOVQkm);
createReplacer(X86::MOV32mr, X86::KMOVDmk);
createReplacer(X86::MOV64mr, X86::KMOVQmk);
createReplacer(X86::MOV32rr, X86::KMOVDkk);
createReplacer(X86::MOV64rr, X86::KMOVQkk);
createReplacer(X86::SHR32ri, X86::KSHIFTRDri);
createReplacer(X86::SHR64ri, X86::KSHIFTRQri);
createReplacer(X86::SHL32ri, X86::KSHIFTLDri);
createReplacer(X86::SHL64ri, X86::KSHIFTLQri);
createReplacer(X86::ADD32rr, X86::KADDDrr);
createReplacer(X86::ADD64rr, X86::KADDQrr);
createReplacer(X86::NOT32r, X86::KNOTDrr);
createReplacer(X86::NOT64r, X86::KNOTQrr);
createReplacer(X86::OR32rr, X86::KORDrr);
createReplacer(X86::OR64rr, X86::KORQrr);
createReplacer(X86::AND32rr, X86::KANDDrr);
createReplacer(X86::AND64rr, X86::KANDQrr);
createReplacer(X86::ANDN32rr, X86::KANDNDrr);
createReplacer(X86::ANDN64rr, X86::KANDNQrr);
createReplacer(X86::XOR32rr, X86::KXORDrr);
createReplacer(X86::XOR64rr, X86::KXORQrr);
// TODO: KTEST is not a replacement for TEST due to flag differences. Need
// to prove only Z flag is used.
//createReplacer(X86::TEST32rr, X86::KTESTDrr);
//createReplacer(X86::TEST64rr, X86::KTESTQrr);
}
if (STI->hasDQI()) {
createReplacer(X86::ADD8rr, X86::KADDBrr);
createReplacer(X86::ADD16rr, X86::KADDWrr);
createReplacer(X86::AND8rr, X86::KANDBrr);
createReplacer(X86::MOV8rm, X86::KMOVBkm);
createReplacer(X86::MOV8mr, X86::KMOVBmk);
createReplacer(X86::MOV8rr, X86::KMOVBkk);
createReplacer(X86::NOT8r, X86::KNOTBrr);
createReplacer(X86::OR8rr, X86::KORBrr);
createReplacer(X86::SHR8ri, X86::KSHIFTRBri);
createReplacer(X86::SHL8ri, X86::KSHIFTLBri);
// TODO: KTEST is not a replacement for TEST due to flag differences. Need
// to prove only Z flag is used.
//createReplacer(X86::TEST8rr, X86::KTESTBrr);
//createReplacer(X86::TEST16rr, X86::KTESTWrr);
createReplacer(X86::XOR8rr, X86::KXORBrr);
}
}
bool X86DomainReassignment::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
if (DisableX86DomainReassignment)
return false;
LLVM_DEBUG(
dbgs() << "***** Machine Function before Domain Reassignment *****\n");
LLVM_DEBUG(MF.print(dbgs()));
STI = &MF.getSubtarget<X86Subtarget>();
// GPR->K is the only transformation currently supported, bail out early if no
// AVX512.
// TODO: We're also bailing of AVX512BW isn't supported since we use VK32 and
// VK64 for GR32/GR64, but those aren't legal classes on KNL. If the register
// coalescer doesn't clean it up and we generate a spill we will crash.
if (!STI->hasAVX512() || !STI->hasBWI())
return false;
MRI = &MF.getRegInfo();
assert(MRI->isSSA() && "Expected MIR to be in SSA form");
TII = STI->getInstrInfo();
initConverters();
bool Changed = false;
EnclosedEdges.clear();
EnclosedInstrs.clear();
std::vector<Closure> Closures;
// Go over all virtual registers and calculate a closure.
unsigned ClosureID = 0;
for (unsigned Idx = 0; Idx < MRI->getNumVirtRegs(); ++Idx) {
unsigned Reg = Register::index2VirtReg(Idx);
// GPR only current source domain supported.
if (!isGPR(MRI->getRegClass(Reg)))
continue;
// Register already in closure.
if (EnclosedEdges.count(Reg))
continue;
// Calculate closure starting with Reg.
Closure C(ClosureID++, {MaskDomain});
buildClosure(C, Reg);
// Collect all closures that can potentially be converted.
if (!C.empty() && C.isLegal(MaskDomain))
Closures.push_back(std::move(C));
}
for (Closure &C : Closures) {
LLVM_DEBUG(C.dump(MRI));
if (isReassignmentProfitable(C, MaskDomain)) {
reassign(C, MaskDomain);
++NumClosuresConverted;
Changed = true;
}
}
DeleteContainerSeconds(Converters);
LLVM_DEBUG(
dbgs() << "***** Machine Function after Domain Reassignment *****\n");
LLVM_DEBUG(MF.print(dbgs()));
return Changed;
}
INITIALIZE_PASS(X86DomainReassignment, "x86-domain-reassignment",
"X86 Domain Reassignment Pass", false, false)
/// Returns an instance of the Domain Reassignment pass.
FunctionPass *llvm::createX86DomainReassignmentPass() {
return new X86DomainReassignment();
}