X86FlagsCopyLowering.cpp 45.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
//====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
/// flag bits.
///
/// We have to do this by carefully analyzing and rewriting the usage of the
/// copied EFLAGS register because there is no general way to rematerialize the
/// entire EFLAGS register safely and efficiently. Using `popf` both forces
/// dynamic stack adjustment and can create correctness issues due to IF, TF,
/// and other non-status flags being overwritten. Using sequences involving
/// SAHF don't work on all x86 processors and are often quite slow compared to
/// directly testing a single status preserved in its own GPR.
///
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSSAUpdater.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <utility>

using namespace llvm;

#define PASS_KEY "x86-flags-copy-lowering"
#define DEBUG_TYPE PASS_KEY

STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
STATISTIC(NumTestsInserted, "Number of test instructions inserted");
STATISTIC(NumAddsInserted, "Number of adds instructions inserted");

namespace {

// Convenient array type for storing registers associated with each condition.
using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;

class X86FlagsCopyLoweringPass : public MachineFunctionPass {
public:
  X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) { }

  StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
  bool runOnMachineFunction(MachineFunction &MF) override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;

  /// Pass identification, replacement for typeid.
  static char ID;

private:
  MachineRegisterInfo *MRI = nullptr;
  const X86Subtarget *Subtarget = nullptr;
  const X86InstrInfo *TII = nullptr;
  const TargetRegisterInfo *TRI = nullptr;
  const TargetRegisterClass *PromoteRC = nullptr;
  MachineDominatorTree *MDT = nullptr;

  CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
                                  MachineBasicBlock::iterator CopyDefI);

  unsigned promoteCondToReg(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator TestPos,
                            DebugLoc TestLoc, X86::CondCode Cond);
  std::pair<unsigned, bool>
  getCondOrInverseInReg(MachineBasicBlock &TestMBB,
                        MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
                        X86::CondCode Cond, CondRegArray &CondRegs);
  void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
                  DebugLoc Loc, unsigned Reg);

  void rewriteArithmetic(MachineBasicBlock &TestMBB,
                         MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
                         MachineInstr &MI, MachineOperand &FlagUse,
                         CondRegArray &CondRegs);
  void rewriteCMov(MachineBasicBlock &TestMBB,
                   MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
                   MachineInstr &CMovI, MachineOperand &FlagUse,
                   CondRegArray &CondRegs);
  void rewriteFCMov(MachineBasicBlock &TestMBB,
                    MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
                    MachineInstr &CMovI, MachineOperand &FlagUse,
                    CondRegArray &CondRegs);
  void rewriteCondJmp(MachineBasicBlock &TestMBB,
                      MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
                      MachineInstr &JmpI, CondRegArray &CondRegs);
  void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
                   MachineInstr &CopyDefI);
  void rewriteSetCarryExtended(MachineBasicBlock &TestMBB,
                               MachineBasicBlock::iterator TestPos,
                               DebugLoc TestLoc, MachineInstr &SetBI,
                               MachineOperand &FlagUse, CondRegArray &CondRegs);
  void rewriteSetCC(MachineBasicBlock &TestMBB,
                    MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
                    MachineInstr &SetCCI, MachineOperand &FlagUse,
                    CondRegArray &CondRegs);
};

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
                      "X86 EFLAGS copy lowering", false, false)
INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
                    "X86 EFLAGS copy lowering", false, false)

FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
  return new X86FlagsCopyLoweringPass();
}

char X86FlagsCopyLoweringPass::ID = 0;

void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<MachineDominatorTree>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

namespace {
/// An enumeration of the arithmetic instruction mnemonics which have
/// interesting flag semantics.
///
/// We can map instruction opcodes into these mnemonics to make it easy to
/// dispatch with specific functionality.
enum class FlagArithMnemonic {
  ADC,
  ADCX,
  ADOX,
  RCL,
  RCR,
  SBB,
};
} // namespace

static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
  switch (Opcode) {
  default:
    report_fatal_error("No support for lowering a copy into EFLAGS when used "
                       "by this instruction!");

#define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX)                              \
  case X86::MNEMONIC##8##SUFFIX:                                               \
  case X86::MNEMONIC##16##SUFFIX:                                              \
  case X86::MNEMONIC##32##SUFFIX:                                              \
  case X86::MNEMONIC##64##SUFFIX:

#define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC)                                    \
  LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr)                                        \
  LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV)                                    \
  LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm)                                        \
  LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr)                                        \
  case X86::MNEMONIC##8ri:                                                     \
  case X86::MNEMONIC##16ri8:                                                   \
  case X86::MNEMONIC##32ri8:                                                   \
  case X86::MNEMONIC##64ri8:                                                   \
  case X86::MNEMONIC##16ri:                                                    \
  case X86::MNEMONIC##32ri:                                                    \
  case X86::MNEMONIC##64ri32:                                                  \
  case X86::MNEMONIC##8mi:                                                     \
  case X86::MNEMONIC##16mi8:                                                   \
  case X86::MNEMONIC##32mi8:                                                   \
  case X86::MNEMONIC##64mi8:                                                   \
  case X86::MNEMONIC##16mi:                                                    \
  case X86::MNEMONIC##32mi:                                                    \
  case X86::MNEMONIC##64mi32:                                                  \
  case X86::MNEMONIC##8i8:                                                     \
  case X86::MNEMONIC##16i16:                                                   \
  case X86::MNEMONIC##32i32:                                                   \
  case X86::MNEMONIC##64i32:

    LLVM_EXPAND_ADC_SBB_INSTR(ADC)
    return FlagArithMnemonic::ADC;

    LLVM_EXPAND_ADC_SBB_INSTR(SBB)
    return FlagArithMnemonic::SBB;

#undef LLVM_EXPAND_ADC_SBB_INSTR

    LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
    LLVM_EXPAND_INSTR_SIZES(RCL, r1)
    LLVM_EXPAND_INSTR_SIZES(RCL, ri)
    return FlagArithMnemonic::RCL;

    LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
    LLVM_EXPAND_INSTR_SIZES(RCR, r1)
    LLVM_EXPAND_INSTR_SIZES(RCR, ri)
    return FlagArithMnemonic::RCR;

#undef LLVM_EXPAND_INSTR_SIZES

  case X86::ADCX32rr:
  case X86::ADCX64rr:
  case X86::ADCX32rm:
  case X86::ADCX64rm:
    return FlagArithMnemonic::ADCX;

  case X86::ADOX32rr:
  case X86::ADOX64rr:
  case X86::ADOX32rm:
  case X86::ADOX64rm:
    return FlagArithMnemonic::ADOX;
  }
}

static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
                                     MachineInstr &SplitI,
                                     const X86InstrInfo &TII) {
  MachineFunction &MF = *MBB.getParent();

  assert(SplitI.getParent() == &MBB &&
         "Split instruction must be in the split block!");
  assert(SplitI.isBranch() &&
         "Only designed to split a tail of branch instructions!");
  assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID &&
         "Must split on an actual jCC instruction!");

  // Dig out the previous instruction to the split point.
  MachineInstr &PrevI = *std::prev(SplitI.getIterator());
  assert(PrevI.isBranch() && "Must split after a branch!");
  assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID &&
         "Must split after an actual jCC instruction!");
  assert(!std::prev(PrevI.getIterator())->isTerminator() &&
         "Must only have this one terminator prior to the split!");

  // Grab the one successor edge that will stay in `MBB`.
  MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();

  // Analyze the original block to see if we are actually splitting an edge
  // into two edges. This can happen when we have multiple conditional jumps to
  // the same successor.
  bool IsEdgeSplit =
      std::any_of(SplitI.getIterator(), MBB.instr_end(),
                  [&](MachineInstr &MI) {
                    assert(MI.isTerminator() &&
                           "Should only have spliced terminators!");
                    return llvm::any_of(
                        MI.operands(), [&](MachineOperand &MOp) {
                          return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
                        });
                  }) ||
      MBB.getFallThrough() == &UnsplitSucc;

  MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();

  // Insert the new block immediately after the current one. Any existing
  // fallthrough will be sunk into this new block anyways.
  MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);

  // Splice the tail of instructions into the new block.
  NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());

  // Copy the necessary succesors (and their probability info) into the new
  // block.
  for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
    if (IsEdgeSplit || *SI != &UnsplitSucc)
      NewMBB.copySuccessor(&MBB, SI);
  // Normalize the probabilities if we didn't end up splitting the edge.
  if (!IsEdgeSplit)
    NewMBB.normalizeSuccProbs();

  // Now replace all of the moved successors in the original block with the new
  // block. This will merge their probabilities.
  for (MachineBasicBlock *Succ : NewMBB.successors())
    if (Succ != &UnsplitSucc)
      MBB.replaceSuccessor(Succ, &NewMBB);

  // We should always end up replacing at least one successor.
  assert(MBB.isSuccessor(&NewMBB) &&
         "Failed to make the new block a successor!");

  // Now update all the PHIs.
  for (MachineBasicBlock *Succ : NewMBB.successors()) {
    for (MachineInstr &MI : *Succ) {
      if (!MI.isPHI())
        break;

      for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
           OpIdx += 2) {
        MachineOperand &OpV = MI.getOperand(OpIdx);
        MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
        assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
        if (OpMBB.getMBB() != &MBB)
          continue;

        // Replace the operand for unsplit successors
        if (!IsEdgeSplit || Succ != &UnsplitSucc) {
          OpMBB.setMBB(&NewMBB);

          // We have to continue scanning as there may be multiple entries in
          // the PHI.
          continue;
        }

        // When we have split the edge append a new successor.
        MI.addOperand(MF, OpV);
        MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
        break;
      }
    }
  }

  return NewMBB;
}

static X86::CondCode getCondFromFCMOV(unsigned Opcode) {
  switch (Opcode) {
  default: return X86::COND_INVALID;
  case X86::CMOVBE_Fp32:  case X86::CMOVBE_Fp64:  case X86::CMOVBE_Fp80:
    return X86::COND_BE;
  case X86::CMOVB_Fp32:   case X86::CMOVB_Fp64:   case X86::CMOVB_Fp80:
    return X86::COND_B;
  case X86::CMOVE_Fp32:   case X86::CMOVE_Fp64:   case X86::CMOVE_Fp80:
    return X86::COND_E;
  case X86::CMOVNBE_Fp32: case X86::CMOVNBE_Fp64: case X86::CMOVNBE_Fp80:
    return X86::COND_A;
  case X86::CMOVNB_Fp32:  case X86::CMOVNB_Fp64:  case X86::CMOVNB_Fp80:
    return X86::COND_AE;
  case X86::CMOVNE_Fp32:  case X86::CMOVNE_Fp64:  case X86::CMOVNE_Fp80:
    return X86::COND_NE;
  case X86::CMOVNP_Fp32:  case X86::CMOVNP_Fp64:  case X86::CMOVNP_Fp80:
    return X86::COND_NP;
  case X86::CMOVP_Fp32:   case X86::CMOVP_Fp64:   case X86::CMOVP_Fp80:
    return X86::COND_P;
  }
}

bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
                    << " **********\n");

  Subtarget = &MF.getSubtarget<X86Subtarget>();
  MRI = &MF.getRegInfo();
  TII = Subtarget->getInstrInfo();
  TRI = Subtarget->getRegisterInfo();
  MDT = &getAnalysis<MachineDominatorTree>();
  PromoteRC = &X86::GR8RegClass;

  if (MF.begin() == MF.end())
    // Nothing to do for a degenerate empty function...
    return false;

  // Collect the copies in RPO so that when there are chains where a copy is in
  // turn copied again we visit the first one first. This ensures we can find
  // viable locations for testing the original EFLAGS that dominate all the
  // uses across complex CFGs.
  SmallVector<MachineInstr *, 4> Copies;
  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
  for (MachineBasicBlock *MBB : RPOT)
    for (MachineInstr &MI : *MBB)
      if (MI.getOpcode() == TargetOpcode::COPY &&
          MI.getOperand(0).getReg() == X86::EFLAGS)
        Copies.push_back(&MI);

  for (MachineInstr *CopyI : Copies) {
    MachineBasicBlock &MBB = *CopyI->getParent();

    MachineOperand &VOp = CopyI->getOperand(1);
    assert(VOp.isReg() &&
           "The input to the copy for EFLAGS should always be a register!");
    MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
    if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
      // FIXME: The big likely candidate here are PHI nodes. We could in theory
      // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
      // enough that it is probably better to change every other part of LLVM
      // to avoid creating them. The issue is that once we have PHIs we won't
      // know which original EFLAGS value we need to capture with our setCCs
      // below. The end result will be computing a complete set of setCCs that
      // we *might* want, computing them in every place where we copy *out* of
      // EFLAGS and then doing SSA formation on all of them to insert necessary
      // PHI nodes and consume those here. Then hoping that somehow we DCE the
      // unnecessary ones. This DCE seems very unlikely to be successful and so
      // we will almost certainly end up with a glut of dead setCC
      // instructions. Until we have a motivating test case and fail to avoid
      // it by changing other parts of LLVM's lowering, we refuse to handle
      // this complex case here.
      LLVM_DEBUG(
          dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
          CopyDefI.dump());
      report_fatal_error(
          "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
    }

    auto Cleanup = make_scope_exit([&] {
      // All uses of the EFLAGS copy are now rewritten, kill the copy into
      // eflags and if dead the copy from.
      CopyI->eraseFromParent();
      if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
        CopyDefI.eraseFromParent();
      ++NumCopiesEliminated;
    });

    MachineOperand &DOp = CopyI->getOperand(0);
    assert(DOp.isDef() && "Expected register def!");
    assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
    if (DOp.isDead())
      continue;

    MachineBasicBlock *TestMBB = CopyDefI.getParent();
    auto TestPos = CopyDefI.getIterator();
    DebugLoc TestLoc = CopyDefI.getDebugLoc();

    LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());

    // Walk up across live-in EFLAGS to find where they were actually def'ed.
    //
    // This copy's def may just be part of a region of blocks covered by
    // a single def of EFLAGS and we want to find the top of that region where
    // possible.
    //
    // This is essentially a search for a *candidate* reaching definition
    // location. We don't need to ever find the actual reaching definition here,
    // but we want to walk up the dominator tree to find the highest point which
    // would be viable for such a definition.
    auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
                                MachineBasicBlock::iterator End) {
      // Scan backwards as we expect these to be relatively short and often find
      // a clobber near the end.
      return llvm::any_of(
          llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
            // Flag any instruction (other than the copy we are
            // currently rewriting) that defs EFLAGS.
            return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
          });
    };
    auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
                                    MachineBasicBlock *EndMBB) {
      assert(MDT->dominates(BeginMBB, EndMBB) &&
             "Only support paths down the dominator tree!");
      SmallPtrSet<MachineBasicBlock *, 4> Visited;
      SmallVector<MachineBasicBlock *, 4> Worklist;
      // We terminate at the beginning. No need to scan it.
      Visited.insert(BeginMBB);
      Worklist.push_back(EndMBB);
      do {
        auto *MBB = Worklist.pop_back_val();
        for (auto *PredMBB : MBB->predecessors()) {
          if (!Visited.insert(PredMBB).second)
            continue;
          if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
            return true;
          // Enqueue this block to walk its predecessors.
          Worklist.push_back(PredMBB);
        }
      } while (!Worklist.empty());
      // No clobber found along a path from the begin to end.
      return false;
    };
    while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
           !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
      // Find the nearest common dominator of the predecessors, as
      // that will be the best candidate to hoist into.
      MachineBasicBlock *HoistMBB =
          std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
                          *TestMBB->pred_begin(),
                          [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
                            return MDT->findNearestCommonDominator(LHS, RHS);
                          });

      // Now we need to scan all predecessors that may be reached along paths to
      // the hoist block. A clobber anywhere in any of these blocks the hoist.
      // Note that this even handles loops because we require *no* clobbers.
      if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
        break;

      // We also need the terminators to not sneakily clobber flags.
      if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
                           HoistMBB->instr_end()))
        break;

      // We found a viable location, hoist our test position to it.
      TestMBB = HoistMBB;
      TestPos = TestMBB->getFirstTerminator()->getIterator();
      // Clear the debug location as it would just be confusing after hoisting.
      TestLoc = DebugLoc();
    }
    LLVM_DEBUG({
      auto DefIt = llvm::find_if(
          llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
          [&](MachineInstr &MI) {
            return MI.findRegisterDefOperand(X86::EFLAGS);
          });
      if (DefIt.base() != TestMBB->instr_begin()) {
        dbgs() << "  Using EFLAGS defined by: ";
        DefIt->dump();
      } else {
        dbgs() << "  Using live-in flags for BB:\n";
        TestMBB->dump();
      }
    });

    // While rewriting uses, we buffer jumps and rewrite them in a second pass
    // because doing so will perturb the CFG that we are walking to find the
    // uses in the first place.
    SmallVector<MachineInstr *, 4> JmpIs;

    // Gather the condition flags that have already been preserved in
    // registers. We do this from scratch each time as we expect there to be
    // very few of them and we expect to not revisit the same copy definition
    // many times. If either of those change sufficiently we could build a map
    // of these up front instead.
    CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);

    // Collect the basic blocks we need to scan. Typically this will just be
    // a single basic block but we may have to scan multiple blocks if the
    // EFLAGS copy lives into successors.
    SmallVector<MachineBasicBlock *, 2> Blocks;
    SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
    Blocks.push_back(&MBB);

    do {
      MachineBasicBlock &UseMBB = *Blocks.pop_back_val();

      // Track when if/when we find a kill of the flags in this block.
      bool FlagsKilled = false;

      // In most cases, we walk from the beginning to the end of the block. But
      // when the block is the same block as the copy is from, we will visit it
      // twice. The first time we start from the copy and go to the end. The
      // second time we start from the beginning and go to the copy. This lets
      // us handle copies inside of cycles.
      // FIXME: This loop is *super* confusing. This is at least in part
      // a symptom of all of this routine needing to be refactored into
      // documentable components. Once done, there may be a better way to write
      // this loop.
      for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
                          ? std::next(CopyI->getIterator())
                          : UseMBB.instr_begin(),
                MIE = UseMBB.instr_end();
           MII != MIE;) {
        MachineInstr &MI = *MII++;
        // If we are in the original copy block and encounter either the copy
        // def or the copy itself, break so that we don't re-process any part of
        // the block or process the instructions in the range that was copied
        // over.
        if (&MI == CopyI || &MI == &CopyDefI) {
          assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
                 "Should only encounter these on the second pass over the "
                 "original block.");
          break;
        }

        MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
        if (!FlagUse) {
          if (MI.findRegisterDefOperand(X86::EFLAGS)) {
            // If EFLAGS are defined, it's as-if they were killed. We can stop
            // scanning here.
            //
            // NB!!! Many instructions only modify some flags. LLVM currently
            // models this as clobbering all flags, but if that ever changes
            // this will need to be carefully updated to handle that more
            // complex logic.
            FlagsKilled = true;
            break;
          }
          continue;
        }

        LLVM_DEBUG(dbgs() << "  Rewriting use: "; MI.dump());

        // Check the kill flag before we rewrite as that may change it.
        if (FlagUse->isKill())
          FlagsKilled = true;

        // Once we encounter a branch, the rest of the instructions must also be
        // branches. We can't rewrite in place here, so we handle them below.
        //
        // Note that we don't have to handle tail calls here, even conditional
        // tail calls, as those are not introduced into the X86 MI until post-RA
        // branch folding or black placement. As a consequence, we get to deal
        // with the simpler formulation of conditional branches followed by tail
        // calls.
        if (X86::getCondFromBranch(MI) != X86::COND_INVALID) {
          auto JmpIt = MI.getIterator();
          do {
            JmpIs.push_back(&*JmpIt);
            ++JmpIt;
          } while (JmpIt != UseMBB.instr_end() &&
                   X86::getCondFromBranch(*JmpIt) !=
                       X86::COND_INVALID);
          break;
        }

        // Otherwise we can just rewrite in-place.
        if (X86::getCondFromCMov(MI) != X86::COND_INVALID) {
          rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
        } else if (getCondFromFCMOV(MI.getOpcode()) != X86::COND_INVALID) {
          rewriteFCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
        } else if (X86::getCondFromSETCC(MI) != X86::COND_INVALID) {
          rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
        } else if (MI.getOpcode() == TargetOpcode::COPY) {
          rewriteCopy(MI, *FlagUse, CopyDefI);
        } else {
          // We assume all other instructions that use flags also def them.
          assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
                 "Expected a def of EFLAGS for this instruction!");

          // NB!!! Several arithmetic instructions only *partially* update
          // flags. Theoretically, we could generate MI code sequences that
          // would rely on this fact and observe different flags independently.
          // But currently LLVM models all of these instructions as clobbering
          // all the flags in an undef way. We rely on that to simplify the
          // logic.
          FlagsKilled = true;

          switch (MI.getOpcode()) {
          case X86::SETB_C8r:
          case X86::SETB_C16r:
          case X86::SETB_C32r:
          case X86::SETB_C64r:
            // Use custom lowering for arithmetic that is merely extending the
            // carry flag. We model this as the SETB_C* pseudo instructions.
            rewriteSetCarryExtended(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
                                    CondRegs);
            break;

          default:
            // Generically handle remaining uses as arithmetic instructions.
            rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
                              CondRegs);
            break;
          }
          break;
        }

        // If this was the last use of the flags, we're done.
        if (FlagsKilled)
          break;
      }

      // If the flags were killed, we're done with this block.
      if (FlagsKilled)
        continue;

      // Otherwise we need to scan successors for ones where the flags live-in
      // and queue those up for processing.
      for (MachineBasicBlock *SuccMBB : UseMBB.successors())
        if (SuccMBB->isLiveIn(X86::EFLAGS) &&
            VisitedBlocks.insert(SuccMBB).second) {
          // We currently don't do any PHI insertion and so we require that the
          // test basic block dominates all of the use basic blocks. Further, we
          // can't have a cycle from the test block back to itself as that would
          // create a cycle requiring a PHI to break it.
          //
          // We could in theory do PHI insertion here if it becomes useful by
          // just taking undef values in along every edge that we don't trace
          // this EFLAGS copy along. This isn't as bad as fully general PHI
          // insertion, but still seems like a great deal of complexity.
          //
          // Because it is theoretically possible that some earlier MI pass or
          // other lowering transformation could induce this to happen, we do
          // a hard check even in non-debug builds here.
          if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
            LLVM_DEBUG({
              dbgs()
                  << "ERROR: Encountered use that is not dominated by our test "
                     "basic block! Rewriting this would require inserting PHI "
                     "nodes to track the flag state across the CFG.\n\nTest "
                     "block:\n";
              TestMBB->dump();
              dbgs() << "Use block:\n";
              SuccMBB->dump();
            });
            report_fatal_error(
                "Cannot lower EFLAGS copy when original copy def "
                "does not dominate all uses.");
          }

          Blocks.push_back(SuccMBB);

          // After this, EFLAGS will be recreated before each use.
          SuccMBB->removeLiveIn(X86::EFLAGS);
        }
    } while (!Blocks.empty());

    // Now rewrite the jumps that use the flags. These we handle specially
    // because if there are multiple jumps in a single basic block we'll have
    // to do surgery on the CFG.
    MachineBasicBlock *LastJmpMBB = nullptr;
    for (MachineInstr *JmpI : JmpIs) {
      // Past the first jump within a basic block we need to split the blocks
      // apart.
      if (JmpI->getParent() == LastJmpMBB)
        splitBlock(*JmpI->getParent(), *JmpI, *TII);
      else
        LastJmpMBB = JmpI->getParent();

      rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
    }

    // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
    // the copy's def operand is itself a kill.
  }

#ifndef NDEBUG
  for (MachineBasicBlock &MBB : MF)
    for (MachineInstr &MI : MBB)
      if (MI.getOpcode() == TargetOpcode::COPY &&
          (MI.getOperand(0).getReg() == X86::EFLAGS ||
           MI.getOperand(1).getReg() == X86::EFLAGS)) {
        LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
                   MI.dump());
        llvm_unreachable("Unlowered EFLAGS copy!");
      }
#endif

  return true;
}

/// Collect any conditions that have already been set in registers so that we
/// can re-use them rather than adding duplicates.
CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
  CondRegArray CondRegs = {};

  // Scan backwards across the range of instructions with live EFLAGS.
  for (MachineInstr &MI :
       llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
    X86::CondCode Cond = X86::getCondFromSETCC(MI);
    if (Cond != X86::COND_INVALID && !MI.mayStore() &&
        MI.getOperand(0).isReg() &&
        Register::isVirtualRegister(MI.getOperand(0).getReg())) {
      assert(MI.getOperand(0).isDef() &&
             "A non-storing SETcc should always define a register!");
      CondRegs[Cond] = MI.getOperand(0).getReg();
    }

    // Stop scanning when we see the first definition of the EFLAGS as prior to
    // this we would potentially capture the wrong flag state.
    if (MI.findRegisterDefOperand(X86::EFLAGS))
      break;
  }
  return CondRegs;
}

unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
    MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
    DebugLoc TestLoc, X86::CondCode Cond) {
  Register Reg = MRI->createVirtualRegister(PromoteRC);
  auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
                      TII->get(X86::SETCCr), Reg).addImm(Cond);
  (void)SetI;
  LLVM_DEBUG(dbgs() << "    save cond: "; SetI->dump());
  ++NumSetCCsInserted;
  return Reg;
}

std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
    MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
    DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
  unsigned &CondReg = CondRegs[Cond];
  unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
  if (!CondReg && !InvCondReg)
    CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);

  if (CondReg)
    return {CondReg, false};
  else
    return {InvCondReg, true};
}

void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
                                          MachineBasicBlock::iterator Pos,
                                          DebugLoc Loc, unsigned Reg) {
  auto TestI =
      BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
  (void)TestI;
  LLVM_DEBUG(dbgs() << "    test cond: "; TestI->dump());
  ++NumTestsInserted;
}

void X86FlagsCopyLoweringPass::rewriteArithmetic(
    MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
    DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
    CondRegArray &CondRegs) {
  // Arithmetic is either reading CF or OF. Figure out which condition we need
  // to preserve in a register.
  X86::CondCode Cond = X86::COND_INVALID;

  // The addend to use to reset CF or OF when added to the flag value.
  int Addend = 0;

  switch (getMnemonicFromOpcode(MI.getOpcode())) {
  case FlagArithMnemonic::ADC:
  case FlagArithMnemonic::ADCX:
  case FlagArithMnemonic::RCL:
  case FlagArithMnemonic::RCR:
  case FlagArithMnemonic::SBB:
    Cond = X86::COND_B; // CF == 1
    // Set up an addend that when one is added will need a carry due to not
    // having a higher bit available.
    Addend = 255;
    break;

  case FlagArithMnemonic::ADOX:
    Cond = X86::COND_O; // OF == 1
    // Set up an addend that when one is added will turn from positive to
    // negative and thus overflow in the signed domain.
    Addend = 127;
    break;
  }

  // Now get a register that contains the value of the flag input to the
  // arithmetic. We require exactly this flag to simplify the arithmetic
  // required to materialize it back into the flag.
  unsigned &CondReg = CondRegs[Cond];
  if (!CondReg)
    CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);

  MachineBasicBlock &MBB = *MI.getParent();

  // Insert an instruction that will set the flag back to the desired value.
  Register TmpReg = MRI->createVirtualRegister(PromoteRC);
  auto AddI =
      BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
          .addDef(TmpReg, RegState::Dead)
          .addReg(CondReg)
          .addImm(Addend);
  (void)AddI;
  LLVM_DEBUG(dbgs() << "    add cond: "; AddI->dump());
  ++NumAddsInserted;
  FlagUse.setIsKill(true);
}

void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
                                           MachineBasicBlock::iterator TestPos,
                                           DebugLoc TestLoc,
                                           MachineInstr &CMovI,
                                           MachineOperand &FlagUse,
                                           CondRegArray &CondRegs) {
  // First get the register containing this specific condition.
  X86::CondCode Cond = X86::getCondFromCMov(CMovI);
  unsigned CondReg;
  bool Inverted;
  std::tie(CondReg, Inverted) =
      getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);

  MachineBasicBlock &MBB = *CMovI.getParent();

  // Insert a direct test of the saved register.
  insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);

  // Rewrite the CMov to use the !ZF flag from the test, and then kill its use
  // of the flags afterward.
  CMovI.getOperand(CMovI.getDesc().getNumOperands() - 1)
      .setImm(Inverted ? X86::COND_E : X86::COND_NE);
  FlagUse.setIsKill(true);
  LLVM_DEBUG(dbgs() << "    fixed cmov: "; CMovI.dump());
}

void X86FlagsCopyLoweringPass::rewriteFCMov(MachineBasicBlock &TestMBB,
                                            MachineBasicBlock::iterator TestPos,
                                            DebugLoc TestLoc,
                                            MachineInstr &CMovI,
                                            MachineOperand &FlagUse,
                                            CondRegArray &CondRegs) {
  // First get the register containing this specific condition.
  X86::CondCode Cond = getCondFromFCMOV(CMovI.getOpcode());
  unsigned CondReg;
  bool Inverted;
  std::tie(CondReg, Inverted) =
      getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);

  MachineBasicBlock &MBB = *CMovI.getParent();

  // Insert a direct test of the saved register.
  insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);

  auto getFCMOVOpcode = [](unsigned Opcode, bool Inverted) {
    switch (Opcode) {
    default: llvm_unreachable("Unexpected opcode!");
    case X86::CMOVBE_Fp32: case X86::CMOVNBE_Fp32:
    case X86::CMOVB_Fp32:  case X86::CMOVNB_Fp32:
    case X86::CMOVE_Fp32:  case X86::CMOVNE_Fp32:
    case X86::CMOVP_Fp32:  case X86::CMOVNP_Fp32:
      return Inverted ? X86::CMOVE_Fp32 : X86::CMOVNE_Fp32;
    case X86::CMOVBE_Fp64: case X86::CMOVNBE_Fp64:
    case X86::CMOVB_Fp64:  case X86::CMOVNB_Fp64:
    case X86::CMOVE_Fp64:  case X86::CMOVNE_Fp64:
    case X86::CMOVP_Fp64:  case X86::CMOVNP_Fp64:
      return Inverted ? X86::CMOVE_Fp64 : X86::CMOVNE_Fp64;
    case X86::CMOVBE_Fp80: case X86::CMOVNBE_Fp80:
    case X86::CMOVB_Fp80:  case X86::CMOVNB_Fp80:
    case X86::CMOVE_Fp80:  case X86::CMOVNE_Fp80:
    case X86::CMOVP_Fp80:  case X86::CMOVNP_Fp80:
      return Inverted ? X86::CMOVE_Fp80 : X86::CMOVNE_Fp80;
    }
  };

  // Rewrite the CMov to use the !ZF flag from the test.
  CMovI.setDesc(TII->get(getFCMOVOpcode(CMovI.getOpcode(), Inverted)));
  FlagUse.setIsKill(true);
  LLVM_DEBUG(dbgs() << "    fixed fcmov: "; CMovI.dump());
}

void X86FlagsCopyLoweringPass::rewriteCondJmp(
    MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
    DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
  // First get the register containing this specific condition.
  X86::CondCode Cond = X86::getCondFromBranch(JmpI);
  unsigned CondReg;
  bool Inverted;
  std::tie(CondReg, Inverted) =
      getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);

  MachineBasicBlock &JmpMBB = *JmpI.getParent();

  // Insert a direct test of the saved register.
  insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);

  // Rewrite the jump to use the !ZF flag from the test, and kill its use of
  // flags afterward.
  JmpI.getOperand(1).setImm(Inverted ? X86::COND_E : X86::COND_NE);
  JmpI.findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
  LLVM_DEBUG(dbgs() << "    fixed jCC: "; JmpI.dump());
}

void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
                                           MachineOperand &FlagUse,
                                           MachineInstr &CopyDefI) {
  // Just replace this copy with the original copy def.
  MRI->replaceRegWith(MI.getOperand(0).getReg(),
                      CopyDefI.getOperand(0).getReg());
  MI.eraseFromParent();
}

void X86FlagsCopyLoweringPass::rewriteSetCarryExtended(
    MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
    DebugLoc TestLoc, MachineInstr &SetBI, MachineOperand &FlagUse,
    CondRegArray &CondRegs) {
  // This routine is only used to handle pseudos for setting a register to zero
  // or all ones based on CF. This is essentially the sign extended from 1-bit
  // form of SETB and modeled with the SETB_C* pseudos. They require special
  // handling as they aren't normal SETcc instructions and are lowered to an
  // EFLAGS clobbering operation (SBB typically). One simplifying aspect is that
  // they are only provided in reg-defining forms. A complicating factor is that
  // they can define many different register widths.
  assert(SetBI.getOperand(0).isReg() &&
         "Cannot have a non-register defined operand to this variant of SETB!");

  // Little helper to do the common final step of replacing the register def'ed
  // by this SETB instruction with a new register and removing the SETB
  // instruction.
  auto RewriteToReg = [&](unsigned Reg) {
    MRI->replaceRegWith(SetBI.getOperand(0).getReg(), Reg);
    SetBI.eraseFromParent();
  };

  // Grab the register class used for this particular instruction.
  auto &SetBRC = *MRI->getRegClass(SetBI.getOperand(0).getReg());

  MachineBasicBlock &MBB = *SetBI.getParent();
  auto SetPos = SetBI.getIterator();
  auto SetLoc = SetBI.getDebugLoc();

  auto AdjustReg = [&](unsigned Reg) {
    auto &OrigRC = *MRI->getRegClass(Reg);
    if (&OrigRC == &SetBRC)
      return Reg;

    unsigned NewReg;

    int OrigRegSize = TRI->getRegSizeInBits(OrigRC) / 8;
    int TargetRegSize = TRI->getRegSizeInBits(SetBRC) / 8;
    assert(OrigRegSize <= 8 && "No GPRs larger than 64-bits!");
    assert(TargetRegSize <= 8 && "No GPRs larger than 64-bits!");
    int SubRegIdx[] = {X86::NoSubRegister, X86::sub_8bit, X86::sub_16bit,
                       X86::NoSubRegister, X86::sub_32bit};

    // If the original size is smaller than the target *and* is smaller than 4
    // bytes, we need to explicitly zero extend it. We always extend to 4-bytes
    // to maximize the chance of being able to CSE that operation and to avoid
    // partial dependency stalls extending to 2-bytes.
    if (OrigRegSize < TargetRegSize && OrigRegSize < 4) {
      NewReg = MRI->createVirtualRegister(&X86::GR32RegClass);
      BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOVZX32rr8), NewReg)
          .addReg(Reg);
      if (&SetBRC == &X86::GR32RegClass)
        return NewReg;
      Reg = NewReg;
      OrigRegSize = 4;
    }

    NewReg = MRI->createVirtualRegister(&SetBRC);
    if (OrigRegSize < TargetRegSize) {
      BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::SUBREG_TO_REG),
              NewReg)
          .addImm(0)
          .addReg(Reg)
          .addImm(SubRegIdx[OrigRegSize]);
    } else if (OrigRegSize > TargetRegSize) {
      if (TargetRegSize == 1 && !Subtarget->is64Bit()) {
        // Need to constrain the register class.
        MRI->constrainRegClass(Reg, &X86::GR32_ABCDRegClass);
      }

      BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY),
              NewReg)
          .addReg(Reg, 0, SubRegIdx[TargetRegSize]);
    } else {
      BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY), NewReg)
          .addReg(Reg);
    }
    return NewReg;
  };

  unsigned &CondReg = CondRegs[X86::COND_B];
  if (!CondReg)
    CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, X86::COND_B);

  // Adjust the condition to have the desired register width by zero-extending
  // as needed.
  // FIXME: We should use a better API to avoid the local reference and using a
  // different variable here.
  unsigned ExtCondReg = AdjustReg(CondReg);

  // Now we need to turn this into a bitmask. We do this by subtracting it from
  // zero.
  Register ZeroReg = MRI->createVirtualRegister(&X86::GR32RegClass);
  BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOV32r0), ZeroReg);
  ZeroReg = AdjustReg(ZeroReg);

  unsigned Sub;
  switch (SetBI.getOpcode()) {
  case X86::SETB_C8r:
    Sub = X86::SUB8rr;
    break;

  case X86::SETB_C16r:
    Sub = X86::SUB16rr;
    break;

  case X86::SETB_C32r:
    Sub = X86::SUB32rr;
    break;

  case X86::SETB_C64r:
    Sub = X86::SUB64rr;
    break;

  default:
    llvm_unreachable("Invalid SETB_C* opcode!");
  }
  Register ResultReg = MRI->createVirtualRegister(&SetBRC);
  BuildMI(MBB, SetPos, SetLoc, TII->get(Sub), ResultReg)
      .addReg(ZeroReg)
      .addReg(ExtCondReg);
  return RewriteToReg(ResultReg);
}

void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
                                            MachineBasicBlock::iterator TestPos,
                                            DebugLoc TestLoc,
                                            MachineInstr &SetCCI,
                                            MachineOperand &FlagUse,
                                            CondRegArray &CondRegs) {
  X86::CondCode Cond = X86::getCondFromSETCC(SetCCI);
  // Note that we can't usefully rewrite this to the inverse without complex
  // analysis of the users of the setCC. Largely we rely on duplicates which
  // could have been avoided already being avoided here.
  unsigned &CondReg = CondRegs[Cond];
  if (!CondReg)
    CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);

  // Rewriting a register def is trivial: we just replace the register and
  // remove the setcc.
  if (!SetCCI.mayStore()) {
    assert(SetCCI.getOperand(0).isReg() &&
           "Cannot have a non-register defined operand to SETcc!");
    MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
    SetCCI.eraseFromParent();
    return;
  }

  // Otherwise, we need to emit a store.
  auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
                     SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
  // Copy the address operands.
  for (int i = 0; i < X86::AddrNumOperands; ++i)
    MIB.add(SetCCI.getOperand(i));

  MIB.addReg(CondReg);

  MIB.setMemRefs(SetCCI.memoperands());

  SetCCI.eraseFromParent();
  return;
}