X86RegisterInfo.cpp 29.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
//===-- X86RegisterInfo.cpp - X86 Register Information --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetRegisterInfo class.
// This file is responsible for the frame pointer elimination optimization
// on X86.
//
//===----------------------------------------------------------------------===//

#include "X86RegisterInfo.h"
#include "X86FrameLowering.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"

using namespace llvm;

#define GET_REGINFO_TARGET_DESC
#include "X86GenRegisterInfo.inc"

static cl::opt<bool>
EnableBasePointer("x86-use-base-pointer", cl::Hidden, cl::init(true),
          cl::desc("Enable use of a base pointer for complex stack frames"));

X86RegisterInfo::X86RegisterInfo(const Triple &TT)
    : X86GenRegisterInfo((TT.isArch64Bit() ? X86::RIP : X86::EIP),
                         X86_MC::getDwarfRegFlavour(TT, false),
                         X86_MC::getDwarfRegFlavour(TT, true),
                         (TT.isArch64Bit() ? X86::RIP : X86::EIP)) {
  X86_MC::initLLVMToSEHAndCVRegMapping(this);

  // Cache some information.
  Is64Bit = TT.isArch64Bit();
  IsWin64 = Is64Bit && TT.isOSWindows();

  // Use a callee-saved register as the base pointer.  These registers must
  // not conflict with any ABI requirements.  For example, in 32-bit mode PIC
  // requires GOT in the EBX register before function calls via PLT GOT pointer.
  if (Is64Bit) {
    SlotSize = 8;
    // This matches the simplified 32-bit pointer code in the data layout
    // computation.
    // FIXME: Should use the data layout?
    bool Use64BitReg = TT.getEnvironment() != Triple::GNUX32;
    StackPtr = Use64BitReg ? X86::RSP : X86::ESP;
    FramePtr = Use64BitReg ? X86::RBP : X86::EBP;
    BasePtr = Use64BitReg ? X86::RBX : X86::EBX;
  } else {
    SlotSize = 4;
    StackPtr = X86::ESP;
    FramePtr = X86::EBP;
    BasePtr = X86::ESI;
  }
}

bool
X86RegisterInfo::trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
  // ExecutionDomainFix, BreakFalseDeps and PostRAScheduler require liveness.
  return true;
}

int
X86RegisterInfo::getSEHRegNum(unsigned i) const {
  return getEncodingValue(i);
}

const TargetRegisterClass *
X86RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
                                       unsigned Idx) const {
  // The sub_8bit sub-register index is more constrained in 32-bit mode.
  // It behaves just like the sub_8bit_hi index.
  if (!Is64Bit && Idx == X86::sub_8bit)
    Idx = X86::sub_8bit_hi;

  // Forward to TableGen's default version.
  return X86GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
}

const TargetRegisterClass *
X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
                                          const TargetRegisterClass *B,
                                          unsigned SubIdx) const {
  // The sub_8bit sub-register index is more constrained in 32-bit mode.
  if (!Is64Bit && SubIdx == X86::sub_8bit) {
    A = X86GenRegisterInfo::getSubClassWithSubReg(A, X86::sub_8bit_hi);
    if (!A)
      return nullptr;
  }
  return X86GenRegisterInfo::getMatchingSuperRegClass(A, B, SubIdx);
}

const TargetRegisterClass *
X86RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
                                           const MachineFunction &MF) const {
  // Don't allow super-classes of GR8_NOREX.  This class is only used after
  // extracting sub_8bit_hi sub-registers.  The H sub-registers cannot be copied
  // to the full GR8 register class in 64-bit mode, so we cannot allow the
  // reigster class inflation.
  //
  // The GR8_NOREX class is always used in a way that won't be constrained to a
  // sub-class, so sub-classes like GR8_ABCD_L are allowed to expand to the
  // full GR8 class.
  if (RC == &X86::GR8_NOREXRegClass)
    return RC;

  const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();

  const TargetRegisterClass *Super = RC;
  TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
  do {
    switch (Super->getID()) {
    case X86::FR32RegClassID:
    case X86::FR64RegClassID:
      // If AVX-512 isn't supported we should only inflate to these classes.
      if (!Subtarget.hasAVX512() &&
          getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
        return Super;
      break;
    case X86::VR128RegClassID:
    case X86::VR256RegClassID:
      // If VLX isn't supported we should only inflate to these classes.
      if (!Subtarget.hasVLX() &&
          getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
        return Super;
      break;
    case X86::VR128XRegClassID:
    case X86::VR256XRegClassID:
      // If VLX isn't support we shouldn't inflate to these classes.
      if (Subtarget.hasVLX() &&
          getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
        return Super;
      break;
    case X86::FR32XRegClassID:
    case X86::FR64XRegClassID:
      // If AVX-512 isn't support we shouldn't inflate to these classes.
      if (Subtarget.hasAVX512() &&
          getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
        return Super;
      break;
    case X86::GR8RegClassID:
    case X86::GR16RegClassID:
    case X86::GR32RegClassID:
    case X86::GR64RegClassID:
    case X86::RFP32RegClassID:
    case X86::RFP64RegClassID:
    case X86::RFP80RegClassID:
    case X86::VR512_0_15RegClassID:
    case X86::VR512RegClassID:
      // Don't return a super-class that would shrink the spill size.
      // That can happen with the vector and float classes.
      if (getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
        return Super;
    }
    Super = *I++;
  } while (Super);
  return RC;
}

const TargetRegisterClass *
X86RegisterInfo::getPointerRegClass(const MachineFunction &MF,
                                    unsigned Kind) const {
  const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
  switch (Kind) {
  default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
  case 0: // Normal GPRs.
    if (Subtarget.isTarget64BitLP64())
      return &X86::GR64RegClass;
    // If the target is 64bit but we have been told to use 32bit addresses,
    // we can still use 64-bit register as long as we know the high bits
    // are zeros.
    // Reflect that in the returned register class.
    if (Is64Bit) {
      // When the target also allows 64-bit frame pointer and we do have a
      // frame, this is fine to use it for the address accesses as well.
      const X86FrameLowering *TFI = getFrameLowering(MF);
      return TFI->hasFP(MF) && TFI->Uses64BitFramePtr
                 ? &X86::LOW32_ADDR_ACCESS_RBPRegClass
                 : &X86::LOW32_ADDR_ACCESSRegClass;
    }
    return &X86::GR32RegClass;
  case 1: // Normal GPRs except the stack pointer (for encoding reasons).
    if (Subtarget.isTarget64BitLP64())
      return &X86::GR64_NOSPRegClass;
    // NOSP does not contain RIP, so no special case here.
    return &X86::GR32_NOSPRegClass;
  case 2: // NOREX GPRs.
    if (Subtarget.isTarget64BitLP64())
      return &X86::GR64_NOREXRegClass;
    return &X86::GR32_NOREXRegClass;
  case 3: // NOREX GPRs except the stack pointer (for encoding reasons).
    if (Subtarget.isTarget64BitLP64())
      return &X86::GR64_NOREX_NOSPRegClass;
    // NOSP does not contain RIP, so no special case here.
    return &X86::GR32_NOREX_NOSPRegClass;
  case 4: // Available for tailcall (not callee-saved GPRs).
    return getGPRsForTailCall(MF);
  }
}

bool X86RegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
                                           unsigned DefSubReg,
                                           const TargetRegisterClass *SrcRC,
                                           unsigned SrcSubReg) const {
  // Prevent rewriting a copy where the destination size is larger than the
  // input size. See PR41619.
  // FIXME: Should this be factored into the base implementation somehow.
  if (DefRC->hasSuperClassEq(&X86::GR64RegClass) && DefSubReg == 0 &&
      SrcRC->hasSuperClassEq(&X86::GR64RegClass) && SrcSubReg == X86::sub_32bit)
    return false;

  return TargetRegisterInfo::shouldRewriteCopySrc(DefRC, DefSubReg,
                                                  SrcRC, SrcSubReg);
}

const TargetRegisterClass *
X86RegisterInfo::getGPRsForTailCall(const MachineFunction &MF) const {
  const Function &F = MF.getFunction();
  if (IsWin64 || (F.getCallingConv() == CallingConv::Win64))
    return &X86::GR64_TCW64RegClass;
  else if (Is64Bit)
    return &X86::GR64_TCRegClass;

  bool hasHipeCC = (F.getCallingConv() == CallingConv::HiPE);
  if (hasHipeCC)
    return &X86::GR32RegClass;
  return &X86::GR32_TCRegClass;
}

const TargetRegisterClass *
X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
  if (RC == &X86::CCRRegClass) {
    if (Is64Bit)
      return &X86::GR64RegClass;
    else
      return &X86::GR32RegClass;
  }
  return RC;
}

unsigned
X86RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
                                     MachineFunction &MF) const {
  const X86FrameLowering *TFI = getFrameLowering(MF);

  unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
  switch (RC->getID()) {
  default:
    return 0;
  case X86::GR32RegClassID:
    return 4 - FPDiff;
  case X86::GR64RegClassID:
    return 12 - FPDiff;
  case X86::VR128RegClassID:
    return Is64Bit ? 10 : 4;
  case X86::VR64RegClassID:
    return 4;
  }
}

const MCPhysReg *
X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
  assert(MF && "MachineFunction required");

  const X86Subtarget &Subtarget = MF->getSubtarget<X86Subtarget>();
  const Function &F = MF->getFunction();
  bool HasSSE = Subtarget.hasSSE1();
  bool HasAVX = Subtarget.hasAVX();
  bool HasAVX512 = Subtarget.hasAVX512();
  bool CallsEHReturn = MF->callsEHReturn();

  CallingConv::ID CC = F.getCallingConv();

  // If attribute NoCallerSavedRegisters exists then we set X86_INTR calling
  // convention because it has the CSR list.
  if (MF->getFunction().hasFnAttribute("no_caller_saved_registers"))
    CC = CallingConv::X86_INTR;

  switch (CC) {
  case CallingConv::GHC:
  case CallingConv::HiPE:
    return CSR_NoRegs_SaveList;
  case CallingConv::AnyReg:
    if (HasAVX)
      return CSR_64_AllRegs_AVX_SaveList;
    return CSR_64_AllRegs_SaveList;
  case CallingConv::PreserveMost:
    return CSR_64_RT_MostRegs_SaveList;
  case CallingConv::PreserveAll:
    if (HasAVX)
      return CSR_64_RT_AllRegs_AVX_SaveList;
    return CSR_64_RT_AllRegs_SaveList;
  case CallingConv::CXX_FAST_TLS:
    if (Is64Bit)
      return MF->getInfo<X86MachineFunctionInfo>()->isSplitCSR() ?
             CSR_64_CXX_TLS_Darwin_PE_SaveList : CSR_64_TLS_Darwin_SaveList;
    break;
  case CallingConv::Intel_OCL_BI: {
    if (HasAVX512 && IsWin64)
      return CSR_Win64_Intel_OCL_BI_AVX512_SaveList;
    if (HasAVX512 && Is64Bit)
      return CSR_64_Intel_OCL_BI_AVX512_SaveList;
    if (HasAVX && IsWin64)
      return CSR_Win64_Intel_OCL_BI_AVX_SaveList;
    if (HasAVX && Is64Bit)
      return CSR_64_Intel_OCL_BI_AVX_SaveList;
    if (!HasAVX && !IsWin64 && Is64Bit)
      return CSR_64_Intel_OCL_BI_SaveList;
    break;
  }
  case CallingConv::HHVM:
    return CSR_64_HHVM_SaveList;
  case CallingConv::X86_RegCall:
    if (Is64Bit) {
      if (IsWin64) {
        return (HasSSE ? CSR_Win64_RegCall_SaveList :
                         CSR_Win64_RegCall_NoSSE_SaveList);
      } else {
        return (HasSSE ? CSR_SysV64_RegCall_SaveList :
                         CSR_SysV64_RegCall_NoSSE_SaveList);
      }
    } else {
      return (HasSSE ? CSR_32_RegCall_SaveList :
                       CSR_32_RegCall_NoSSE_SaveList);
    }
  case CallingConv::CFGuard_Check:
    assert(!Is64Bit && "CFGuard check mechanism only used on 32-bit X86");
    return (HasSSE ? CSR_Win32_CFGuard_Check_SaveList
                   : CSR_Win32_CFGuard_Check_NoSSE_SaveList);
  case CallingConv::Cold:
    if (Is64Bit)
      return CSR_64_MostRegs_SaveList;
    break;
  case CallingConv::Win64:
    if (!HasSSE)
      return CSR_Win64_NoSSE_SaveList;
    return CSR_Win64_SaveList;
  case CallingConv::X86_64_SysV:
    if (CallsEHReturn)
      return CSR_64EHRet_SaveList;
    return CSR_64_SaveList;
  case CallingConv::X86_INTR:
    if (Is64Bit) {
      if (HasAVX512)
        return CSR_64_AllRegs_AVX512_SaveList;
      if (HasAVX)
        return CSR_64_AllRegs_AVX_SaveList;
      if (HasSSE)
        return CSR_64_AllRegs_SaveList;
      return CSR_64_AllRegs_NoSSE_SaveList;
    } else {
      if (HasAVX512)
        return CSR_32_AllRegs_AVX512_SaveList;
      if (HasAVX)
        return CSR_32_AllRegs_AVX_SaveList;
      if (HasSSE)
        return CSR_32_AllRegs_SSE_SaveList;
      return CSR_32_AllRegs_SaveList;
    }
  default:
    break;
  }

  if (Is64Bit) {
    bool IsSwiftCC = Subtarget.getTargetLowering()->supportSwiftError() &&
                     F.getAttributes().hasAttrSomewhere(Attribute::SwiftError);
    if (IsSwiftCC)
      return IsWin64 ? CSR_Win64_SwiftError_SaveList
                     : CSR_64_SwiftError_SaveList;

    if (IsWin64)
      return HasSSE ? CSR_Win64_SaveList : CSR_Win64_NoSSE_SaveList;
    if (CallsEHReturn)
      return CSR_64EHRet_SaveList;
    return CSR_64_SaveList;
  }

  return CallsEHReturn ? CSR_32EHRet_SaveList : CSR_32_SaveList;
}

const MCPhysReg *X86RegisterInfo::getCalleeSavedRegsViaCopy(
    const MachineFunction *MF) const {
  assert(MF && "Invalid MachineFunction pointer.");
  if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
      MF->getInfo<X86MachineFunctionInfo>()->isSplitCSR())
    return CSR_64_CXX_TLS_Darwin_ViaCopy_SaveList;
  return nullptr;
}

const uint32_t *
X86RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
                                      CallingConv::ID CC) const {
  const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
  bool HasSSE = Subtarget.hasSSE1();
  bool HasAVX = Subtarget.hasAVX();
  bool HasAVX512 = Subtarget.hasAVX512();

  switch (CC) {
  case CallingConv::GHC:
  case CallingConv::HiPE:
    return CSR_NoRegs_RegMask;
  case CallingConv::AnyReg:
    if (HasAVX)
      return CSR_64_AllRegs_AVX_RegMask;
    return CSR_64_AllRegs_RegMask;
  case CallingConv::PreserveMost:
    return CSR_64_RT_MostRegs_RegMask;
  case CallingConv::PreserveAll:
    if (HasAVX)
      return CSR_64_RT_AllRegs_AVX_RegMask;
    return CSR_64_RT_AllRegs_RegMask;
  case CallingConv::CXX_FAST_TLS:
    if (Is64Bit)
      return CSR_64_TLS_Darwin_RegMask;
    break;
  case CallingConv::Intel_OCL_BI: {
    if (HasAVX512 && IsWin64)
      return CSR_Win64_Intel_OCL_BI_AVX512_RegMask;
    if (HasAVX512 && Is64Bit)
      return CSR_64_Intel_OCL_BI_AVX512_RegMask;
    if (HasAVX && IsWin64)
      return CSR_Win64_Intel_OCL_BI_AVX_RegMask;
    if (HasAVX && Is64Bit)
      return CSR_64_Intel_OCL_BI_AVX_RegMask;
    if (!HasAVX && !IsWin64 && Is64Bit)
      return CSR_64_Intel_OCL_BI_RegMask;
    break;
  }
  case CallingConv::HHVM:
    return CSR_64_HHVM_RegMask;
  case CallingConv::X86_RegCall:
    if (Is64Bit) {
      if (IsWin64) {
        return (HasSSE ? CSR_Win64_RegCall_RegMask :
                         CSR_Win64_RegCall_NoSSE_RegMask);
      } else {
        return (HasSSE ? CSR_SysV64_RegCall_RegMask :
                         CSR_SysV64_RegCall_NoSSE_RegMask);
      }
    } else {
      return (HasSSE ? CSR_32_RegCall_RegMask :
                       CSR_32_RegCall_NoSSE_RegMask);
    }
  case CallingConv::CFGuard_Check:
    assert(!Is64Bit && "CFGuard check mechanism only used on 32-bit X86");
    return (HasSSE ? CSR_Win32_CFGuard_Check_RegMask
                   : CSR_Win32_CFGuard_Check_NoSSE_RegMask);
  case CallingConv::Cold:
    if (Is64Bit)
      return CSR_64_MostRegs_RegMask;
    break;
  case CallingConv::Win64:
    return CSR_Win64_RegMask;
  case CallingConv::X86_64_SysV:
    return CSR_64_RegMask;
  case CallingConv::X86_INTR:
    if (Is64Bit) {
      if (HasAVX512)
        return CSR_64_AllRegs_AVX512_RegMask;
      if (HasAVX)
        return CSR_64_AllRegs_AVX_RegMask;
      if (HasSSE)
        return CSR_64_AllRegs_RegMask;
      return CSR_64_AllRegs_NoSSE_RegMask;
    } else {
      if (HasAVX512)
        return CSR_32_AllRegs_AVX512_RegMask;
      if (HasAVX)
        return CSR_32_AllRegs_AVX_RegMask;
      if (HasSSE)
        return CSR_32_AllRegs_SSE_RegMask;
      return CSR_32_AllRegs_RegMask;
    }
  default:
    break;
  }

  // Unlike getCalleeSavedRegs(), we don't have MMI so we can't check
  // callsEHReturn().
  if (Is64Bit) {
    const Function &F = MF.getFunction();
    bool IsSwiftCC = Subtarget.getTargetLowering()->supportSwiftError() &&
                     F.getAttributes().hasAttrSomewhere(Attribute::SwiftError);
    if (IsSwiftCC)
      return IsWin64 ? CSR_Win64_SwiftError_RegMask : CSR_64_SwiftError_RegMask;
    return IsWin64 ? CSR_Win64_RegMask : CSR_64_RegMask;
  }

  return CSR_32_RegMask;
}

const uint32_t*
X86RegisterInfo::getNoPreservedMask() const {
  return CSR_NoRegs_RegMask;
}

const uint32_t *X86RegisterInfo::getDarwinTLSCallPreservedMask() const {
  return CSR_64_TLS_Darwin_RegMask;
}

BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
  BitVector Reserved(getNumRegs());
  const X86FrameLowering *TFI = getFrameLowering(MF);

  // Set the floating point control register as reserved.
  Reserved.set(X86::FPCW);

  // Set the floating point status register as reserved.
  Reserved.set(X86::FPSW);

  // Set the SIMD floating point control register as reserved.
  Reserved.set(X86::MXCSR);

  // Set the stack-pointer register and its aliases as reserved.
  for (const MCPhysReg &SubReg : subregs_inclusive(X86::RSP))
    Reserved.set(SubReg);

  // Set the Shadow Stack Pointer as reserved.
  Reserved.set(X86::SSP);

  // Set the instruction pointer register and its aliases as reserved.
  for (const MCPhysReg &SubReg : subregs_inclusive(X86::RIP))
    Reserved.set(SubReg);

  // Set the frame-pointer register and its aliases as reserved if needed.
  if (TFI->hasFP(MF)) {
    for (const MCPhysReg &SubReg : subregs_inclusive(X86::RBP))
      Reserved.set(SubReg);
  }

  // Set the base-pointer register and its aliases as reserved if needed.
  if (hasBasePointer(MF)) {
    CallingConv::ID CC = MF.getFunction().getCallingConv();
    const uint32_t *RegMask = getCallPreservedMask(MF, CC);
    if (MachineOperand::clobbersPhysReg(RegMask, getBaseRegister()))
      report_fatal_error(
        "Stack realignment in presence of dynamic allocas is not supported with"
        "this calling convention.");

    Register BasePtr = getX86SubSuperRegister(getBaseRegister(), 64);
    for (const MCPhysReg &SubReg : subregs_inclusive(BasePtr))
      Reserved.set(SubReg);
  }

  // Mark the segment registers as reserved.
  Reserved.set(X86::CS);
  Reserved.set(X86::SS);
  Reserved.set(X86::DS);
  Reserved.set(X86::ES);
  Reserved.set(X86::FS);
  Reserved.set(X86::GS);

  // Mark the floating point stack registers as reserved.
  for (unsigned n = 0; n != 8; ++n)
    Reserved.set(X86::ST0 + n);

  // Reserve the registers that only exist in 64-bit mode.
  if (!Is64Bit) {
    // These 8-bit registers are part of the x86-64 extension even though their
    // super-registers are old 32-bits.
    Reserved.set(X86::SIL);
    Reserved.set(X86::DIL);
    Reserved.set(X86::BPL);
    Reserved.set(X86::SPL);
    Reserved.set(X86::SIH);
    Reserved.set(X86::DIH);
    Reserved.set(X86::BPH);
    Reserved.set(X86::SPH);

    for (unsigned n = 0; n != 8; ++n) {
      // R8, R9, ...
      for (MCRegAliasIterator AI(X86::R8 + n, this, true); AI.isValid(); ++AI)
        Reserved.set(*AI);

      // XMM8, XMM9, ...
      for (MCRegAliasIterator AI(X86::XMM8 + n, this, true); AI.isValid(); ++AI)
        Reserved.set(*AI);
    }
  }
  if (!Is64Bit || !MF.getSubtarget<X86Subtarget>().hasAVX512()) {
    for (unsigned n = 16; n != 32; ++n) {
      for (MCRegAliasIterator AI(X86::XMM0 + n, this, true); AI.isValid(); ++AI)
        Reserved.set(*AI);
    }
  }

  assert(checkAllSuperRegsMarked(Reserved,
                                 {X86::SIL, X86::DIL, X86::BPL, X86::SPL,
                                  X86::SIH, X86::DIH, X86::BPH, X86::SPH}));
  return Reserved;
}

void X86RegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
  // Check if the EFLAGS register is marked as live-out. This shouldn't happen,
  // because the calling convention defines the EFLAGS register as NOT
  // preserved.
  //
  // Unfortunatelly the EFLAGS show up as live-out after branch folding. Adding
  // an assert to track this and clear the register afterwards to avoid
  // unnecessary crashes during release builds.
  assert(!(Mask[X86::EFLAGS / 32] & (1U << (X86::EFLAGS % 32))) &&
         "EFLAGS are not live-out from a patchpoint.");

  // Also clean other registers that don't need preserving (IP).
  for (auto Reg : {X86::EFLAGS, X86::RIP, X86::EIP, X86::IP})
    Mask[Reg / 32] &= ~(1U << (Reg % 32));
}

//===----------------------------------------------------------------------===//
// Stack Frame Processing methods
//===----------------------------------------------------------------------===//

static bool CantUseSP(const MachineFrameInfo &MFI) {
  return MFI.hasVarSizedObjects() || MFI.hasOpaqueSPAdjustment();
}

bool X86RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
   const MachineFrameInfo &MFI = MF.getFrameInfo();

   if (!EnableBasePointer)
     return false;

   // When we need stack realignment, we can't address the stack from the frame
   // pointer.  When we have dynamic allocas or stack-adjusting inline asm, we
   // can't address variables from the stack pointer.  MS inline asm can
   // reference locals while also adjusting the stack pointer.  When we can't
   // use both the SP and the FP, we need a separate base pointer register.
   bool CantUseFP = needsStackRealignment(MF);
   return CantUseFP && CantUseSP(MFI);
}

bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
  if (!TargetRegisterInfo::canRealignStack(MF))
    return false;

  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const MachineRegisterInfo *MRI = &MF.getRegInfo();

  // Stack realignment requires a frame pointer.  If we already started
  // register allocation with frame pointer elimination, it is too late now.
  if (!MRI->canReserveReg(FramePtr))
    return false;

  // If a base pointer is necessary.  Check that it isn't too late to reserve
  // it.
  if (CantUseSP(MFI))
    return MRI->canReserveReg(BasePtr);
  return true;
}

bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
                                           unsigned Reg, int &FrameIdx) const {
  // Since X86 defines assignCalleeSavedSpillSlots which always return true
  // this function neither used nor tested.
  llvm_unreachable("Unused function on X86. Otherwise need a test case.");
}

// tryOptimizeLEAtoMOV - helper function that tries to replace a LEA instruction
// of the form 'lea (%esp), %ebx' --> 'mov %esp, %ebx'.
// TODO: In this case we should be really trying first to entirely eliminate
// this instruction which is a plain copy.
static bool tryOptimizeLEAtoMOV(MachineBasicBlock::iterator II) {
  MachineInstr &MI = *II;
  unsigned Opc = II->getOpcode();
  // Check if this is a LEA of the form 'lea (%esp), %ebx'
  if ((Opc != X86::LEA32r && Opc != X86::LEA64r && Opc != X86::LEA64_32r) ||
      MI.getOperand(2).getImm() != 1 ||
      MI.getOperand(3).getReg() != X86::NoRegister ||
      MI.getOperand(4).getImm() != 0 ||
      MI.getOperand(5).getReg() != X86::NoRegister)
    return false;
  Register BasePtr = MI.getOperand(1).getReg();
  // In X32 mode, ensure the base-pointer is a 32-bit operand, so the LEA will
  // be replaced with a 32-bit operand MOV which will zero extend the upper
  // 32-bits of the super register.
  if (Opc == X86::LEA64_32r)
    BasePtr = getX86SubSuperRegister(BasePtr, 32);
  Register NewDestReg = MI.getOperand(0).getReg();
  const X86InstrInfo *TII =
      MI.getParent()->getParent()->getSubtarget<X86Subtarget>().getInstrInfo();
  TII->copyPhysReg(*MI.getParent(), II, MI.getDebugLoc(), NewDestReg, BasePtr,
                   MI.getOperand(1).isKill());
  MI.eraseFromParent();
  return true;
}

static bool isFuncletReturnInstr(MachineInstr &MI) {
  switch (MI.getOpcode()) {
  case X86::CATCHRET:
  case X86::CLEANUPRET:
    return true;
  default:
    return false;
  }
  llvm_unreachable("impossible");
}

void
X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
                                     int SPAdj, unsigned FIOperandNum,
                                     RegScavenger *RS) const {
  MachineInstr &MI = *II;
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
  bool IsEHFuncletEpilogue = MBBI == MBB.end() ? false
                                               : isFuncletReturnInstr(*MBBI);
  const X86FrameLowering *TFI = getFrameLowering(MF);
  int FrameIndex = MI.getOperand(FIOperandNum).getIndex();

  // Determine base register and offset.
  int FIOffset;
  unsigned BasePtr;
  if (MI.isReturn()) {
    assert((!needsStackRealignment(MF) ||
           MF.getFrameInfo().isFixedObjectIndex(FrameIndex)) &&
           "Return instruction can only reference SP relative frame objects");
    FIOffset = TFI->getFrameIndexReferenceSP(MF, FrameIndex, BasePtr, 0);
  } else if (TFI->Is64Bit && (MBB.isEHFuncletEntry() || IsEHFuncletEpilogue)) {
    FIOffset = TFI->getWin64EHFrameIndexRef(MF, FrameIndex, BasePtr);
  } else {
    FIOffset = TFI->getFrameIndexReference(MF, FrameIndex, BasePtr);
  }

  // LOCAL_ESCAPE uses a single offset, with no register. It only works in the
  // simple FP case, and doesn't work with stack realignment. On 32-bit, the
  // offset is from the traditional base pointer location.  On 64-bit, the
  // offset is from the SP at the end of the prologue, not the FP location. This
  // matches the behavior of llvm.frameaddress.
  unsigned Opc = MI.getOpcode();
  if (Opc == TargetOpcode::LOCAL_ESCAPE) {
    MachineOperand &FI = MI.getOperand(FIOperandNum);
    FI.ChangeToImmediate(FIOffset);
    return;
  }

  // For LEA64_32r when BasePtr is 32-bits (X32) we can use full-size 64-bit
  // register as source operand, semantic is the same and destination is
  // 32-bits. It saves one byte per lea in code since 0x67 prefix is avoided.
  // Don't change BasePtr since it is used later for stack adjustment.
  Register MachineBasePtr = BasePtr;
  if (Opc == X86::LEA64_32r && X86::GR32RegClass.contains(BasePtr))
    MachineBasePtr = getX86SubSuperRegister(BasePtr, 64);

  // This must be part of a four operand memory reference.  Replace the
  // FrameIndex with base register.  Add an offset to the offset.
  MI.getOperand(FIOperandNum).ChangeToRegister(MachineBasePtr, false);

  if (BasePtr == StackPtr)
    FIOffset += SPAdj;

  // The frame index format for stackmaps and patchpoints is different from the
  // X86 format. It only has a FI and an offset.
  if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
    assert(BasePtr == FramePtr && "Expected the FP as base register");
    int64_t Offset = MI.getOperand(FIOperandNum + 1).getImm() + FIOffset;
    MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
    return;
  }

  if (MI.getOperand(FIOperandNum+3).isImm()) {
    // Offset is a 32-bit integer.
    int Imm = (int)(MI.getOperand(FIOperandNum + 3).getImm());
    int Offset = FIOffset + Imm;
    assert((!Is64Bit || isInt<32>((long long)FIOffset + Imm)) &&
           "Requesting 64-bit offset in 32-bit immediate!");
    if (Offset != 0 || !tryOptimizeLEAtoMOV(II))
      MI.getOperand(FIOperandNum + 3).ChangeToImmediate(Offset);
  } else {
    // Offset is symbolic. This is extremely rare.
    uint64_t Offset = FIOffset +
      (uint64_t)MI.getOperand(FIOperandNum+3).getOffset();
    MI.getOperand(FIOperandNum + 3).setOffset(Offset);
  }
}

Register X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
  const X86FrameLowering *TFI = getFrameLowering(MF);
  return TFI->hasFP(MF) ? FramePtr : StackPtr;
}

unsigned
X86RegisterInfo::getPtrSizedFrameRegister(const MachineFunction &MF) const {
  const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
  Register FrameReg = getFrameRegister(MF);
  if (Subtarget.isTarget64BitILP32())
    FrameReg = getX86SubSuperRegister(FrameReg, 32);
  return FrameReg;
}

unsigned
X86RegisterInfo::getPtrSizedStackRegister(const MachineFunction &MF) const {
  const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
  Register StackReg = getStackRegister();
  if (Subtarget.isTarget64BitILP32())
    StackReg = getX86SubSuperRegister(StackReg, 32);
  return StackReg;
}