InstCombineInternal.h 42.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// This file provides internal interfaces used to implement the InstCombine.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>

#define DEBUG_TYPE "instcombine"

using namespace llvm::PatternMatch;

namespace llvm {

class APInt;
class AssumptionCache;
class BlockFrequencyInfo;
class DataLayout;
class DominatorTree;
class GEPOperator;
class GlobalVariable;
class LoopInfo;
class OptimizationRemarkEmitter;
class ProfileSummaryInfo;
class TargetLibraryInfo;
class User;

/// Assign a complexity or rank value to LLVM Values. This is used to reduce
/// the amount of pattern matching needed for compares and commutative
/// instructions. For example, if we have:
///   icmp ugt X, Constant
/// or
///   xor (add X, Constant), cast Z
///
/// We do not have to consider the commuted variants of these patterns because
/// canonicalization based on complexity guarantees the above ordering.
///
/// This routine maps IR values to various complexity ranks:
///   0 -> undef
///   1 -> Constants
///   2 -> Other non-instructions
///   3 -> Arguments
///   4 -> Cast and (f)neg/not instructions
///   5 -> Other instructions
static inline unsigned getComplexity(Value *V) {
  if (isa<Instruction>(V)) {
    if (isa<CastInst>(V) || match(V, m_Neg(m_Value())) ||
        match(V, m_Not(m_Value())) || match(V, m_FNeg(m_Value())))
      return 4;
    return 5;
  }
  if (isa<Argument>(V))
    return 3;
  return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
}

/// Predicate canonicalization reduces the number of patterns that need to be
/// matched by other transforms. For example, we may swap the operands of a
/// conditional branch or select to create a compare with a canonical (inverted)
/// predicate which is then more likely to be matched with other values.
static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) {
  switch (Pred) {
  case CmpInst::ICMP_NE:
  case CmpInst::ICMP_ULE:
  case CmpInst::ICMP_SLE:
  case CmpInst::ICMP_UGE:
  case CmpInst::ICMP_SGE:
  // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
  case CmpInst::FCMP_ONE:
  case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_OGE:
    return false;
  default:
    return true;
  }
}

/// Given an exploded icmp instruction, return true if the comparison only
/// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
/// result of the comparison is true when the input value is signed.
inline bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
                           bool &TrueIfSigned) {
  switch (Pred) {
  case ICmpInst::ICMP_SLT: // True if LHS s< 0
    TrueIfSigned = true;
    return RHS.isNullValue();
  case ICmpInst::ICMP_SLE: // True if LHS s<= -1
    TrueIfSigned = true;
    return RHS.isAllOnesValue();
  case ICmpInst::ICMP_SGT: // True if LHS s> -1
    TrueIfSigned = false;
    return RHS.isAllOnesValue();
  case ICmpInst::ICMP_SGE: // True if LHS s>= 0
    TrueIfSigned = false;
    return RHS.isNullValue();
  case ICmpInst::ICMP_UGT:
    // True if LHS u> RHS and RHS == sign-bit-mask - 1
    TrueIfSigned = true;
    return RHS.isMaxSignedValue();
  case ICmpInst::ICMP_UGE:
    // True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
    TrueIfSigned = true;
    return RHS.isMinSignedValue();
  case ICmpInst::ICMP_ULT:
    // True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
    TrueIfSigned = false;
    return RHS.isMinSignedValue();
  case ICmpInst::ICMP_ULE:
    // True if LHS u<= RHS and RHS == sign-bit-mask - 1
    TrueIfSigned = false;
    return RHS.isMaxSignedValue();
  default:
    return false;
  }
}

llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, Constant *C);

/// Return the source operand of a potentially bitcasted value while optionally
/// checking if it has one use. If there is no bitcast or the one use check is
/// not met, return the input value itself.
static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
  if (auto *BitCast = dyn_cast<BitCastInst>(V))
    if (!OneUseOnly || BitCast->hasOneUse())
      return BitCast->getOperand(0);

  // V is not a bitcast or V has more than one use and OneUseOnly is true.
  return V;
}

/// Add one to a Constant
static inline Constant *AddOne(Constant *C) {
  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
}

/// Subtract one from a Constant
static inline Constant *SubOne(Constant *C) {
  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
}

/// Return true if the specified value is free to invert (apply ~ to).
/// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
/// is true, work under the assumption that the caller intends to remove all
/// uses of V and only keep uses of ~V.
///
/// See also: canFreelyInvertAllUsersOf()
static inline bool isFreeToInvert(Value *V, bool WillInvertAllUses) {
  // ~(~(X)) -> X.
  if (match(V, m_Not(m_Value())))
    return true;

  // Constants can be considered to be not'ed values.
  if (match(V, m_AnyIntegralConstant()))
    return true;

  // Compares can be inverted if all of their uses are being modified to use the
  // ~V.
  if (isa<CmpInst>(V))
    return WillInvertAllUses;

  // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
  // - Constant) - A` if we are willing to invert all of the uses.
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
    if (BO->getOpcode() == Instruction::Add ||
        BO->getOpcode() == Instruction::Sub)
      if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
        return WillInvertAllUses;

  // Selects with invertible operands are freely invertible
  if (match(V, m_Select(m_Value(), m_Not(m_Value()), m_Not(m_Value()))))
    return WillInvertAllUses;

  return false;
}

/// Given i1 V, can every user of V be freely adapted if V is changed to !V ?
///
/// See also: isFreeToInvert()
static inline bool canFreelyInvertAllUsersOf(Value *V, Value *IgnoredUser) {
  // Look at every user of V.
  for (User *U : V->users()) {
    if (U == IgnoredUser)
      continue; // Don't consider this user.

    auto *I = cast<Instruction>(U);
    switch (I->getOpcode()) {
    case Instruction::Select:
    case Instruction::Br:
      break; // Free to invert by swapping true/false values/destinations.
    case Instruction::Xor: // Can invert 'xor' if it's a 'not', by ignoring it.
      if (!match(I, m_Not(m_Value())))
        return false; // Not a 'not'.
      break;
    default:
      return false; // Don't know, likely not freely invertible.
    }
    // So far all users were free to invert...
  }
  return true; // Can freely invert all users!
}

/// Some binary operators require special handling to avoid poison and undefined
/// behavior. If a constant vector has undef elements, replace those undefs with
/// identity constants if possible because those are always safe to execute.
/// If no identity constant exists, replace undef with some other safe constant.
static inline Constant *getSafeVectorConstantForBinop(
      BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) {
  assert(In->getType()->isVectorTy() && "Not expecting scalars here");

  Type *EltTy = In->getType()->getVectorElementType();
  auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
  if (!SafeC) {
    // TODO: Should this be available as a constant utility function? It is
    // similar to getBinOpAbsorber().
    if (IsRHSConstant) {
      switch (Opcode) {
      case Instruction::SRem: // X % 1 = 0
      case Instruction::URem: // X %u 1 = 0
        SafeC = ConstantInt::get(EltTy, 1);
        break;
      case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
        SafeC = ConstantFP::get(EltTy, 1.0);
        break;
      default:
        llvm_unreachable("Only rem opcodes have no identity constant for RHS");
      }
    } else {
      switch (Opcode) {
      case Instruction::Shl:  // 0 << X = 0
      case Instruction::LShr: // 0 >>u X = 0
      case Instruction::AShr: // 0 >> X = 0
      case Instruction::SDiv: // 0 / X = 0
      case Instruction::UDiv: // 0 /u X = 0
      case Instruction::SRem: // 0 % X = 0
      case Instruction::URem: // 0 %u X = 0
      case Instruction::Sub:  // 0 - X (doesn't simplify, but it is safe)
      case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
      case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
      case Instruction::FRem: // 0.0 % X = 0
        SafeC = Constant::getNullValue(EltTy);
        break;
      default:
        llvm_unreachable("Expected to find identity constant for opcode");
      }
    }
  }
  assert(SafeC && "Must have safe constant for binop");
  unsigned NumElts = In->getType()->getVectorNumElements();
  SmallVector<Constant *, 16> Out(NumElts);
  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *C = In->getAggregateElement(i);
    Out[i] = isa<UndefValue>(C) ? SafeC : C;
  }
  return ConstantVector::get(Out);
}

/// The core instruction combiner logic.
///
/// This class provides both the logic to recursively visit instructions and
/// combine them.
class LLVM_LIBRARY_VISIBILITY InstCombiner
    : public InstVisitor<InstCombiner, Instruction *> {
  // FIXME: These members shouldn't be public.
public:
  /// A worklist of the instructions that need to be simplified.
  InstCombineWorklist &Worklist;

  /// An IRBuilder that automatically inserts new instructions into the
  /// worklist.
  using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
  BuilderTy &Builder;

private:
  // Mode in which we are running the combiner.
  const bool MinimizeSize;

  /// Enable combines that trigger rarely but are costly in compiletime.
  const bool ExpensiveCombines;

  AliasAnalysis *AA;

  // Required analyses.
  AssumptionCache &AC;
  TargetLibraryInfo &TLI;
  DominatorTree &DT;
  const DataLayout &DL;
  const SimplifyQuery SQ;
  OptimizationRemarkEmitter &ORE;
  BlockFrequencyInfo *BFI;
  ProfileSummaryInfo *PSI;

  // Optional analyses. When non-null, these can both be used to do better
  // combining and will be updated to reflect any changes.
  LoopInfo *LI;

  bool MadeIRChange = false;

public:
  InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
               bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
               AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
               OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
               ProfileSummaryInfo *PSI, const DataLayout &DL, LoopInfo *LI)
      : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
        ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
        DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), BFI(BFI), PSI(PSI), LI(LI) {}

  /// Run the combiner over the entire worklist until it is empty.
  ///
  /// \returns true if the IR is changed.
  bool run();

  AssumptionCache &getAssumptionCache() const { return AC; }

  const DataLayout &getDataLayout() const { return DL; }

  DominatorTree &getDominatorTree() const { return DT; }

  LoopInfo *getLoopInfo() const { return LI; }

  TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }

  // Visitation implementation - Implement instruction combining for different
  // instruction types.  The semantics are as follows:
  // Return Value:
  //    null        - No change was made
  //     I          - Change was made, I is still valid, I may be dead though
  //   otherwise    - Change was made, replace I with returned instruction
  //
  Instruction *visitFNeg(UnaryOperator &I);
  Instruction *visitAdd(BinaryOperator &I);
  Instruction *visitFAdd(BinaryOperator &I);
  Value *OptimizePointerDifference(
      Value *LHS, Value *RHS, Type *Ty, bool isNUW);
  Instruction *visitSub(BinaryOperator &I);
  Instruction *visitFSub(BinaryOperator &I);
  Instruction *visitMul(BinaryOperator &I);
  Instruction *visitFMul(BinaryOperator &I);
  Instruction *visitURem(BinaryOperator &I);
  Instruction *visitSRem(BinaryOperator &I);
  Instruction *visitFRem(BinaryOperator &I);
  bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
  Instruction *commonRemTransforms(BinaryOperator &I);
  Instruction *commonIRemTransforms(BinaryOperator &I);
  Instruction *commonDivTransforms(BinaryOperator &I);
  Instruction *commonIDivTransforms(BinaryOperator &I);
  Instruction *visitUDiv(BinaryOperator &I);
  Instruction *visitSDiv(BinaryOperator &I);
  Instruction *visitFDiv(BinaryOperator &I);
  Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
  Instruction *visitAnd(BinaryOperator &I);
  Instruction *visitOr(BinaryOperator &I);
  Instruction *visitXor(BinaryOperator &I);
  Instruction *visitShl(BinaryOperator &I);
  Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
      BinaryOperator *Sh0, const SimplifyQuery &SQ,
      bool AnalyzeForSignBitExtraction = false);
  Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
      BinaryOperator &I);
  Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
      BinaryOperator &OldAShr);
  Instruction *visitAShr(BinaryOperator &I);
  Instruction *visitLShr(BinaryOperator &I);
  Instruction *commonShiftTransforms(BinaryOperator &I);
  Instruction *visitFCmpInst(FCmpInst &I);
  Instruction *visitICmpInst(ICmpInst &I);
  Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
                                   BinaryOperator &I);
  Instruction *commonCastTransforms(CastInst &CI);
  Instruction *commonPointerCastTransforms(CastInst &CI);
  Instruction *visitTrunc(TruncInst &CI);
  Instruction *visitZExt(ZExtInst &CI);
  Instruction *visitSExt(SExtInst &CI);
  Instruction *visitFPTrunc(FPTruncInst &CI);
  Instruction *visitFPExt(CastInst &CI);
  Instruction *visitFPToUI(FPToUIInst &FI);
  Instruction *visitFPToSI(FPToSIInst &FI);
  Instruction *visitUIToFP(CastInst &CI);
  Instruction *visitSIToFP(CastInst &CI);
  Instruction *visitPtrToInt(PtrToIntInst &CI);
  Instruction *visitIntToPtr(IntToPtrInst &CI);
  Instruction *visitBitCast(BitCastInst &CI);
  Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
  Instruction *FoldItoFPtoI(Instruction &FI);
  Instruction *visitSelectInst(SelectInst &SI);
  Instruction *visitCallInst(CallInst &CI);
  Instruction *visitInvokeInst(InvokeInst &II);
  Instruction *visitCallBrInst(CallBrInst &CBI);

  Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
  Instruction *visitPHINode(PHINode &PN);
  Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
  Instruction *visitAllocaInst(AllocaInst &AI);
  Instruction *visitAllocSite(Instruction &FI);
  Instruction *visitFree(CallInst &FI);
  Instruction *visitLoadInst(LoadInst &LI);
  Instruction *visitStoreInst(StoreInst &SI);
  Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
  Instruction *visitBranchInst(BranchInst &BI);
  Instruction *visitFenceInst(FenceInst &FI);
  Instruction *visitSwitchInst(SwitchInst &SI);
  Instruction *visitReturnInst(ReturnInst &RI);
  Instruction *visitInsertValueInst(InsertValueInst &IV);
  Instruction *visitInsertElementInst(InsertElementInst &IE);
  Instruction *visitExtractElementInst(ExtractElementInst &EI);
  Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
  Instruction *visitExtractValueInst(ExtractValueInst &EV);
  Instruction *visitLandingPadInst(LandingPadInst &LI);
  Instruction *visitVAStartInst(VAStartInst &I);
  Instruction *visitVACopyInst(VACopyInst &I);
  Instruction *visitFreeze(FreezeInst &I);

  /// Specify what to return for unhandled instructions.
  Instruction *visitInstruction(Instruction &I) { return nullptr; }

  /// True when DB dominates all uses of DI except UI.
  /// UI must be in the same block as DI.
  /// The routine checks that the DI parent and DB are different.
  bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
                        const BasicBlock *DB) const;

  /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
  bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
                                 const unsigned SIOpd);

  /// Try to replace instruction \p I with value \p V which are pointers
  /// in different address space.
  /// \return true if successful.
  bool replacePointer(Instruction &I, Value *V);

  LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
                                 const Twine &Suffix = "");

private:
  bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
  bool shouldChangeType(Type *From, Type *To) const;
  Value *dyn_castNegVal(Value *V) const;
  Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
                            SmallVectorImpl<Value *> &NewIndices);

  /// Classify whether a cast is worth optimizing.
  ///
  /// This is a helper to decide whether the simplification of
  /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
  ///
  /// \param CI The cast we are interested in.
  ///
  /// \return true if this cast actually results in any code being generated and
  /// if it cannot already be eliminated by some other transformation.
  bool shouldOptimizeCast(CastInst *CI);

  /// Try to optimize a sequence of instructions checking if an operation
  /// on LHS and RHS overflows.
  ///
  /// If this overflow check is done via one of the overflow check intrinsics,
  /// then CtxI has to be the call instruction calling that intrinsic.  If this
  /// overflow check is done by arithmetic followed by a compare, then CtxI has
  /// to be the arithmetic instruction.
  ///
  /// If a simplification is possible, stores the simplified result of the
  /// operation in OperationResult and result of the overflow check in
  /// OverflowResult, and return true.  If no simplification is possible,
  /// returns false.
  bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
                             Value *LHS, Value *RHS,
                             Instruction &CtxI, Value *&OperationResult,
                             Constant *&OverflowResult);

  Instruction *visitCallBase(CallBase &Call);
  Instruction *tryOptimizeCall(CallInst *CI);
  bool transformConstExprCastCall(CallBase &Call);
  Instruction *transformCallThroughTrampoline(CallBase &Call,
                                              IntrinsicInst &Tramp);

  Value *simplifyMaskedLoad(IntrinsicInst &II);
  Instruction *simplifyMaskedStore(IntrinsicInst &II);
  Instruction *simplifyMaskedGather(IntrinsicInst &II);
  Instruction *simplifyMaskedScatter(IntrinsicInst &II);
  
  /// Transform (zext icmp) to bitwise / integer operations in order to
  /// eliminate it.
  ///
  /// \param ICI The icmp of the (zext icmp) pair we are interested in.
  /// \parem CI The zext of the (zext icmp) pair we are interested in.
  /// \param DoTransform Pass false to just test whether the given (zext icmp)
  /// would be transformed. Pass true to actually perform the transformation.
  ///
  /// \return null if the transformation cannot be performed. If the
  /// transformation can be performed the new instruction that replaces the
  /// (zext icmp) pair will be returned (if \p DoTransform is false the
  /// unmodified \p ICI will be returned in this case).
  Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
                                 bool DoTransform = true);

  Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);

  bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
                                const Instruction &CxtI) const {
    return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
           OverflowResult::NeverOverflows;
  }

  bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
                                  const Instruction &CxtI) const {
    return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
           OverflowResult::NeverOverflows;
  }

  bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
                          const Instruction &CxtI, bool IsSigned) const {
    return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
                    : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
  }

  bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
                                const Instruction &CxtI) const {
    return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
           OverflowResult::NeverOverflows;
  }

  bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
                                  const Instruction &CxtI) const {
    return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
           OverflowResult::NeverOverflows;
  }

  bool willNotOverflowSub(const Value *LHS, const Value *RHS,
                          const Instruction &CxtI, bool IsSigned) const {
    return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
                    : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
  }

  bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
                                const Instruction &CxtI) const {
    return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
           OverflowResult::NeverOverflows;
  }

  bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
                                  const Instruction &CxtI) const {
    return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
           OverflowResult::NeverOverflows;
  }

  bool willNotOverflowMul(const Value *LHS, const Value *RHS,
                          const Instruction &CxtI, bool IsSigned) const {
    return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
                    : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
  }

  bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
                       const Value *RHS, const Instruction &CxtI,
                       bool IsSigned) const {
    switch (Opcode) {
    case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
    case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
    case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
    default: llvm_unreachable("Unexpected opcode for overflow query");
    }
  }

  Value *EmitGEPOffset(User *GEP);
  Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
  Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
  Instruction *narrowBinOp(TruncInst &Trunc);
  Instruction *narrowMaskedBinOp(BinaryOperator &And);
  Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
  Instruction *narrowRotate(TruncInst &Trunc);
  Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
  Instruction *matchSAddSubSat(SelectInst &MinMax1);

  /// Determine if a pair of casts can be replaced by a single cast.
  ///
  /// \param CI1 The first of a pair of casts.
  /// \param CI2 The second of a pair of casts.
  ///
  /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
  /// Instruction::CastOps value for a cast that can replace the pair, casting
  /// CI1->getSrcTy() to CI2->getDstTy().
  ///
  /// \see CastInst::isEliminableCastPair
  Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
                                            const CastInst *CI2);

  Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
  Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
  Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &I);

  /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
  /// NOTE: Unlike most of instcombine, this returns a Value which should
  /// already be inserted into the function.
  Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);

  Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
                                       bool JoinedByAnd, Instruction &CxtI);
  Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
  Value *getSelectCondition(Value *A, Value *B);

  Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);

public:
  /// Inserts an instruction \p New before instruction \p Old
  ///
  /// Also adds the new instruction to the worklist and returns \p New so that
  /// it is suitable for use as the return from the visitation patterns.
  Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
    assert(New && !New->getParent() &&
           "New instruction already inserted into a basic block!");
    BasicBlock *BB = Old.getParent();
    BB->getInstList().insert(Old.getIterator(), New); // Insert inst
    Worklist.Add(New);
    return New;
  }

  /// Same as InsertNewInstBefore, but also sets the debug loc.
  Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
    New->setDebugLoc(Old.getDebugLoc());
    return InsertNewInstBefore(New, Old);
  }

  /// A combiner-aware RAUW-like routine.
  ///
  /// This method is to be used when an instruction is found to be dead,
  /// replaceable with another preexisting expression. Here we add all uses of
  /// I to the worklist, replace all uses of I with the new value, then return
  /// I, so that the inst combiner will know that I was modified.
  Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
    // If there are no uses to replace, then we return nullptr to indicate that
    // no changes were made to the program.
    if (I.use_empty()) return nullptr;

    Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.

    // If we are replacing the instruction with itself, this must be in a
    // segment of unreachable code, so just clobber the instruction.
    if (&I == V)
      V = UndefValue::get(I.getType());

    LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
                      << "    with " << *V << '\n');

    I.replaceAllUsesWith(V);
    return &I;
  }

  /// Creates a result tuple for an overflow intrinsic \p II with a given
  /// \p Result and a constant \p Overflow value.
  Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
                                   Constant *Overflow) {
    Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
    StructType *ST = cast<StructType>(II->getType());
    Constant *Struct = ConstantStruct::get(ST, V);
    return InsertValueInst::Create(Struct, Result, 0);
  }

  /// Create and insert the idiom we use to indicate a block is unreachable
  /// without having to rewrite the CFG from within InstCombine.
  void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
    auto &Ctx = InsertAt->getContext();
    new StoreInst(ConstantInt::getTrue(Ctx),
                  UndefValue::get(Type::getInt1PtrTy(Ctx)),
                  InsertAt);
  }


  /// Combiner aware instruction erasure.
  ///
  /// When dealing with an instruction that has side effects or produces a void
  /// value, we can't rely on DCE to delete the instruction. Instead, visit
  /// methods should return the value returned by this function.
  Instruction *eraseInstFromFunction(Instruction &I) {
    LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
    assert(I.use_empty() && "Cannot erase instruction that is used!");
    salvageDebugInfoOrMarkUndef(I);

    // Make sure that we reprocess all operands now that we reduced their
    // use counts.
    if (I.getNumOperands() < 8) {
      for (Use &Operand : I.operands())
        if (auto *Inst = dyn_cast<Instruction>(Operand))
          Worklist.Add(Inst);
    }
    Worklist.Remove(&I);
    I.eraseFromParent();
    MadeIRChange = true;
    return nullptr; // Don't do anything with FI
  }

  void computeKnownBits(const Value *V, KnownBits &Known,
                        unsigned Depth, const Instruction *CxtI) const {
    llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
  }

  KnownBits computeKnownBits(const Value *V, unsigned Depth,
                             const Instruction *CxtI) const {
    return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
  }

  bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
                              unsigned Depth = 0,
                              const Instruction *CxtI = nullptr) {
    return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
  }

  bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
                         const Instruction *CxtI = nullptr) const {
    return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
  }

  unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
                              const Instruction *CxtI = nullptr) const {
    return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
                                               const Value *RHS,
                                               const Instruction *CxtI) const {
    return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflowForSignedMul(const Value *LHS,
                                             const Value *RHS,
                                             const Instruction *CxtI) const {
    return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
                                               const Value *RHS,
                                               const Instruction *CxtI) const {
    return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflowForSignedAdd(const Value *LHS,
                                             const Value *RHS,
                                             const Instruction *CxtI) const {
    return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
                                               const Value *RHS,
                                               const Instruction *CxtI) const {
    return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
                                             const Instruction *CxtI) const {
    return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
  }

  OverflowResult computeOverflow(
      Instruction::BinaryOps BinaryOp, bool IsSigned,
      Value *LHS, Value *RHS, Instruction *CxtI) const;

  /// Maximum size of array considered when transforming.
  uint64_t MaxArraySizeForCombine = 0;

private:
  /// Performs a few simplifications for operators which are associative
  /// or commutative.
  bool SimplifyAssociativeOrCommutative(BinaryOperator &I);

  /// Tries to simplify binary operations which some other binary
  /// operation distributes over.
  ///
  /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
  /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
  /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
  /// value, or null if it didn't simplify.
  Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);

  /// Tries to simplify add operations using the definition of remainder.
  ///
  /// The definition of remainder is X % C = X - (X / C ) * C. The add
  /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
  /// X % (C0 * C1)
  Value *SimplifyAddWithRemainder(BinaryOperator &I);

  // Binary Op helper for select operations where the expression can be
  // efficiently reorganized.
  Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
                                        Value *RHS);

  /// This tries to simplify binary operations by factorizing out common terms
  /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
  Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
                          Value *, Value *, Value *);

  /// Match a select chain which produces one of three values based on whether
  /// the LHS is less than, equal to, or greater than RHS respectively.
  /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
  /// Equal and Greater values are saved in the matching process and returned to
  /// the caller.
  bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
                               ConstantInt *&Less, ConstantInt *&Equal,
                               ConstantInt *&Greater);

  /// Attempts to replace V with a simpler value based on the demanded
  /// bits.
  Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
                                 unsigned Depth, Instruction *CxtI);
  bool SimplifyDemandedBits(Instruction *I, unsigned Op,
                            const APInt &DemandedMask, KnownBits &Known,
                            unsigned Depth = 0);

  /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
  /// bits. It also tries to handle simplifications that can be done based on
  /// DemandedMask, but without modifying the Instruction.
  Value *SimplifyMultipleUseDemandedBits(Instruction *I,
                                         const APInt &DemandedMask,
                                         KnownBits &Known,
                                         unsigned Depth, Instruction *CxtI);

  /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
  /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
  Value *simplifyShrShlDemandedBits(
      Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
      const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);

  /// Tries to simplify operands to an integer instruction based on its
  /// demanded bits.
  bool SimplifyDemandedInstructionBits(Instruction &Inst);

  Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
                                               APInt DemandedElts,
                                               int DmaskIdx = -1);

  Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
                                    APInt &UndefElts, unsigned Depth = 0,
                                    bool AllowMultipleUsers = false);

  /// Canonicalize the position of binops relative to shufflevector.
  Instruction *foldVectorBinop(BinaryOperator &Inst);

  /// Given a binary operator, cast instruction, or select which has a PHI node
  /// as operand #0, see if we can fold the instruction into the PHI (which is
  /// only possible if all operands to the PHI are constants).
  Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);

  /// Given an instruction with a select as one operand and a constant as the
  /// other operand, try to fold the binary operator into the select arguments.
  /// This also works for Cast instructions, which obviously do not have a
  /// second operand.
  Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);

  /// This is a convenience wrapper function for the above two functions.
  Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);

  Instruction *foldAddWithConstant(BinaryOperator &Add);

  /// Try to rotate an operation below a PHI node, using PHI nodes for
  /// its operands.
  Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
  Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
  Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
  Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
  Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);

  /// If an integer typed PHI has only one use which is an IntToPtr operation,
  /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
  /// insert a new pointer typed PHI and replace the original one.
  Instruction *FoldIntegerTypedPHI(PHINode &PN);

  /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
  /// folded operation.
  void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);

  Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
                           ICmpInst::Predicate Cond, Instruction &I);
  Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
                             const Value *Other);
  Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
                                            GlobalVariable *GV, CmpInst &ICI,
                                            ConstantInt *AndCst = nullptr);
  Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
                                    Constant *RHSC);
  Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
                                  ICmpInst::Predicate Pred);
  Instruction *foldICmpWithCastOp(ICmpInst &ICI);

  Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
  Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
  Instruction *foldICmpWithConstant(ICmpInst &Cmp);
  Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
  Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
  Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
  Instruction *foldICmpEquality(ICmpInst &Cmp);
  Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
  Instruction *foldSignBitTest(ICmpInst &I);
  Instruction *foldICmpWithZero(ICmpInst &Cmp);

  Value *foldUnsignedMultiplicationOverflowCheck(ICmpInst &Cmp);

  Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
                                      ConstantInt *C);
  Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
                                     const APInt &C);
  Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
                                   const APInt &C);
  Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
                                   const APInt &C);
  Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
                                  const APInt &C);
  Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
                                   const APInt &C);
  Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
                                   const APInt &C);
  Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
                                   const APInt &C);
  Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
                                    const APInt &C);
  Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
                                    const APInt &C);
  Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
                                   const APInt &C);
  Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
                                   const APInt &C);
  Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
                                   const APInt &C);
  Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
                                     const APInt &C1);
  Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
                                const APInt &C1, const APInt &C2);
  Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
                                     const APInt &C2);
  Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
                                     const APInt &C2);

  Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
                                                 BinaryOperator *BO,
                                                 const APInt &C);
  Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
                                             const APInt &C);
  Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
                                               const APInt &C);

  // Helpers of visitSelectInst().
  Instruction *foldSelectExtConst(SelectInst &Sel);
  Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
  Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
  Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
                            Value *A, Value *B, Instruction &Outer,
                            SelectPatternFlavor SPF2, Value *C);
  Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);

  Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS,
                        ConstantInt *AndRHS, BinaryOperator &TheAnd);

  Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
                         bool isSigned, bool Inside);
  Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
  bool mergeStoreIntoSuccessor(StoreInst &SI);

  /// Given an 'or' instruction, check to see if it is part of a bswap idiom.
  /// If so, return the equivalent bswap intrinsic.
  Instruction *matchBSwap(BinaryOperator &Or);

  Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
  Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);

  Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);

  /// Returns a value X such that Val = X * Scale, or null if none.
  ///
  /// If the multiplication is known not to overflow then NoSignedWrap is set.
  Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
};

} // end namespace llvm

#undef DEBUG_TYPE

#endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H