InstructionCombining.cpp 148 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions.  This pass does not modify the CFG.  This pass is where
// algebraic simplification happens.
//
// This pass combines things like:
//    %Y = add i32 %X, 1
//    %Z = add i32 %Y, 1
// into:
//    %Z = add i32 %X, 2
//
// This is a simple worklist driven algorithm.
//
// This pass guarantees that the following canonicalizations are performed on
// the program:
//    1. If a binary operator has a constant operand, it is moved to the RHS
//    2. Bitwise operators with constant operands are always grouped so that
//       shifts are performed first, then or's, then and's, then xor's.
//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
//    4. All cmp instructions on boolean values are replaced with logical ops
//    5. add X, X is represented as (X*2) => (X << 1)
//    6. Multiplies with a power-of-two constant argument are transformed into
//       shifts.
//   ... etc.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm-c/Initialization.h"
#include "llvm-c/Transforms/InstCombine.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "instcombine"

STATISTIC(NumCombined , "Number of insts combined");
STATISTIC(NumConstProp, "Number of constant folds");
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
STATISTIC(NumSunkInst , "Number of instructions sunk");
STATISTIC(NumExpand,    "Number of expansions");
STATISTIC(NumFactor   , "Number of factorizations");
STATISTIC(NumReassoc  , "Number of reassociations");
DEBUG_COUNTER(VisitCounter, "instcombine-visit",
              "Controls which instructions are visited");

static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;

static cl::opt<bool>
EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
                                              cl::init(true));

static cl::opt<bool>
EnableExpensiveCombines("expensive-combines",
                        cl::desc("Enable expensive instruction combines"));

static cl::opt<unsigned> LimitMaxIterations(
    "instcombine-max-iterations",
    cl::desc("Limit the maximum number of instruction combining iterations"),
    cl::init(InstCombineDefaultMaxIterations));

static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
    "instcombine-infinite-loop-threshold",
    cl::desc("Number of instruction combining iterations considered an "
             "infinite loop"),
    cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);

static cl::opt<unsigned>
MaxArraySize("instcombine-maxarray-size", cl::init(1024),
             cl::desc("Maximum array size considered when doing a combine"));

// FIXME: Remove this flag when it is no longer necessary to convert
// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
// increases variable availability at the cost of accuracy. Variables that
// cannot be promoted by mem2reg or SROA will be described as living in memory
// for their entire lifetime. However, passes like DSE and instcombine can
// delete stores to the alloca, leading to misleading and inaccurate debug
// information. This flag can be removed when those passes are fixed.
static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
                                               cl::Hidden, cl::init(true));

Value *InstCombiner::EmitGEPOffset(User *GEP) {
  return llvm::EmitGEPOffset(&Builder, DL, GEP);
}

/// Return true if it is desirable to convert an integer computation from a
/// given bit width to a new bit width.
/// We don't want to convert from a legal to an illegal type or from a smaller
/// to a larger illegal type. A width of '1' is always treated as a legal type
/// because i1 is a fundamental type in IR, and there are many specialized
/// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
/// legal to convert to, in order to open up more combining opportunities.
/// NOTE: this treats i8, i16 and i32 specially, due to them being so common
/// from frontend languages.
bool InstCombiner::shouldChangeType(unsigned FromWidth,
                                    unsigned ToWidth) const {
  bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
  bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);

  // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
  // shrink types, to prevent infinite loops.
  if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
    return true;

  // If this is a legal integer from type, and the result would be an illegal
  // type, don't do the transformation.
  if (FromLegal && !ToLegal)
    return false;

  // Otherwise, if both are illegal, do not increase the size of the result. We
  // do allow things like i160 -> i64, but not i64 -> i160.
  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
    return false;

  return true;
}

/// Return true if it is desirable to convert a computation from 'From' to 'To'.
/// We don't want to convert from a legal to an illegal type or from a smaller
/// to a larger illegal type. i1 is always treated as a legal type because it is
/// a fundamental type in IR, and there are many specialized optimizations for
/// i1 types.
bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
  // TODO: This could be extended to allow vectors. Datalayout changes might be
  // needed to properly support that.
  if (!From->isIntegerTy() || !To->isIntegerTy())
    return false;

  unsigned FromWidth = From->getPrimitiveSizeInBits();
  unsigned ToWidth = To->getPrimitiveSizeInBits();
  return shouldChangeType(FromWidth, ToWidth);
}

// Return true, if No Signed Wrap should be maintained for I.
// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
// where both B and C should be ConstantInts, results in a constant that does
// not overflow. This function only handles the Add and Sub opcodes. For
// all other opcodes, the function conservatively returns false.
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
  auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
  if (!OBO || !OBO->hasNoSignedWrap())
    return false;

  // We reason about Add and Sub Only.
  Instruction::BinaryOps Opcode = I.getOpcode();
  if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
    return false;

  const APInt *BVal, *CVal;
  if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
    return false;

  bool Overflow = false;
  if (Opcode == Instruction::Add)
    (void)BVal->sadd_ov(*CVal, Overflow);
  else
    (void)BVal->ssub_ov(*CVal, Overflow);

  return !Overflow;
}

static bool hasNoUnsignedWrap(BinaryOperator &I) {
  auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
  return OBO && OBO->hasNoUnsignedWrap();
}

static bool hasNoSignedWrap(BinaryOperator &I) {
  auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
  return OBO && OBO->hasNoSignedWrap();
}

/// Conservatively clears subclassOptionalData after a reassociation or
/// commutation. We preserve fast-math flags when applicable as they can be
/// preserved.
static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
  FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
  if (!FPMO) {
    I.clearSubclassOptionalData();
    return;
  }

  FastMathFlags FMF = I.getFastMathFlags();
  I.clearSubclassOptionalData();
  I.setFastMathFlags(FMF);
}

/// Combine constant operands of associative operations either before or after a
/// cast to eliminate one of the associative operations:
/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
  auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
  if (!Cast || !Cast->hasOneUse())
    return false;

  // TODO: Enhance logic for other casts and remove this check.
  auto CastOpcode = Cast->getOpcode();
  if (CastOpcode != Instruction::ZExt)
    return false;

  // TODO: Enhance logic for other BinOps and remove this check.
  if (!BinOp1->isBitwiseLogicOp())
    return false;

  auto AssocOpcode = BinOp1->getOpcode();
  auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
  if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
    return false;

  Constant *C1, *C2;
  if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
      !match(BinOp2->getOperand(1), m_Constant(C2)))
    return false;

  // TODO: This assumes a zext cast.
  // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
  // to the destination type might lose bits.

  // Fold the constants together in the destination type:
  // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
  Type *DestTy = C1->getType();
  Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
  Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
  Cast->setOperand(0, BinOp2->getOperand(0));
  BinOp1->setOperand(1, FoldedC);
  return true;
}

/// This performs a few simplifications for operators that are associative or
/// commutative:
///
///  Commutative operators:
///
///  1. Order operands such that they are listed from right (least complex) to
///     left (most complex).  This puts constants before unary operators before
///     binary operators.
///
///  Associative operators:
///
///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
///
///  Associative and commutative operators:
///
///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
///     if C1 and C2 are constants.
bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
  Instruction::BinaryOps Opcode = I.getOpcode();
  bool Changed = false;

  do {
    // Order operands such that they are listed from right (least complex) to
    // left (most complex).  This puts constants before unary operators before
    // binary operators.
    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
        getComplexity(I.getOperand(1)))
      Changed = !I.swapOperands();

    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));

    if (I.isAssociative()) {
      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
      if (Op0 && Op0->getOpcode() == Opcode) {
        Value *A = Op0->getOperand(0);
        Value *B = Op0->getOperand(1);
        Value *C = I.getOperand(1);

        // Does "B op C" simplify?
        if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
          // It simplifies to V.  Form "A op V".
          I.setOperand(0, A);
          I.setOperand(1, V);
          bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
          bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);

          // Conservatively clear all optional flags since they may not be
          // preserved by the reassociation. Reset nsw/nuw based on the above
          // analysis.
          ClearSubclassDataAfterReassociation(I);

          // Note: this is only valid because SimplifyBinOp doesn't look at
          // the operands to Op0.
          if (IsNUW)
            I.setHasNoUnsignedWrap(true);

          if (IsNSW)
            I.setHasNoSignedWrap(true);

          Changed = true;
          ++NumReassoc;
          continue;
        }
      }

      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
      if (Op1 && Op1->getOpcode() == Opcode) {
        Value *A = I.getOperand(0);
        Value *B = Op1->getOperand(0);
        Value *C = Op1->getOperand(1);

        // Does "A op B" simplify?
        if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
          // It simplifies to V.  Form "V op C".
          I.setOperand(0, V);
          I.setOperand(1, C);
          // Conservatively clear the optional flags, since they may not be
          // preserved by the reassociation.
          ClearSubclassDataAfterReassociation(I);
          Changed = true;
          ++NumReassoc;
          continue;
        }
      }
    }

    if (I.isAssociative() && I.isCommutative()) {
      if (simplifyAssocCastAssoc(&I)) {
        Changed = true;
        ++NumReassoc;
        continue;
      }

      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
      if (Op0 && Op0->getOpcode() == Opcode) {
        Value *A = Op0->getOperand(0);
        Value *B = Op0->getOperand(1);
        Value *C = I.getOperand(1);

        // Does "C op A" simplify?
        if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
          // It simplifies to V.  Form "V op B".
          I.setOperand(0, V);
          I.setOperand(1, B);
          // Conservatively clear the optional flags, since they may not be
          // preserved by the reassociation.
          ClearSubclassDataAfterReassociation(I);
          Changed = true;
          ++NumReassoc;
          continue;
        }
      }

      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
      if (Op1 && Op1->getOpcode() == Opcode) {
        Value *A = I.getOperand(0);
        Value *B = Op1->getOperand(0);
        Value *C = Op1->getOperand(1);

        // Does "C op A" simplify?
        if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
          // It simplifies to V.  Form "B op V".
          I.setOperand(0, B);
          I.setOperand(1, V);
          // Conservatively clear the optional flags, since they may not be
          // preserved by the reassociation.
          ClearSubclassDataAfterReassociation(I);
          Changed = true;
          ++NumReassoc;
          continue;
        }
      }

      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
      // if C1 and C2 are constants.
      Value *A, *B;
      Constant *C1, *C2;
      if (Op0 && Op1 &&
          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
          match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
          match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
        bool IsNUW = hasNoUnsignedWrap(I) &&
           hasNoUnsignedWrap(*Op0) &&
           hasNoUnsignedWrap(*Op1);
         BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
           BinaryOperator::CreateNUW(Opcode, A, B) :
           BinaryOperator::Create(Opcode, A, B);

         if (isa<FPMathOperator>(NewBO)) {
          FastMathFlags Flags = I.getFastMathFlags();
          Flags &= Op0->getFastMathFlags();
          Flags &= Op1->getFastMathFlags();
          NewBO->setFastMathFlags(Flags);
        }
        InsertNewInstWith(NewBO, I);
        NewBO->takeName(Op1);
        I.setOperand(0, NewBO);
        I.setOperand(1, ConstantExpr::get(Opcode, C1, C2));
        // Conservatively clear the optional flags, since they may not be
        // preserved by the reassociation.
        ClearSubclassDataAfterReassociation(I);
        if (IsNUW)
          I.setHasNoUnsignedWrap(true);

        Changed = true;
        continue;
      }
    }

    // No further simplifications.
    return Changed;
  } while (true);
}

/// Return whether "X LOp (Y ROp Z)" is always equal to
/// "(X LOp Y) ROp (X LOp Z)".
static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
                                     Instruction::BinaryOps ROp) {
  // X & (Y | Z) <--> (X & Y) | (X & Z)
  // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
  if (LOp == Instruction::And)
    return ROp == Instruction::Or || ROp == Instruction::Xor;

  // X | (Y & Z) <--> (X | Y) & (X | Z)
  if (LOp == Instruction::Or)
    return ROp == Instruction::And;

  // X * (Y + Z) <--> (X * Y) + (X * Z)
  // X * (Y - Z) <--> (X * Y) - (X * Z)
  if (LOp == Instruction::Mul)
    return ROp == Instruction::Add || ROp == Instruction::Sub;

  return false;
}

/// Return whether "(X LOp Y) ROp Z" is always equal to
/// "(X ROp Z) LOp (Y ROp Z)".
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
                                     Instruction::BinaryOps ROp) {
  if (Instruction::isCommutative(ROp))
    return leftDistributesOverRight(ROp, LOp);

  // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
  return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);

  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
  // but this requires knowing that the addition does not overflow and other
  // such subtleties.
}

/// This function returns identity value for given opcode, which can be used to
/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
  if (isa<Constant>(V))
    return nullptr;

  return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
}

/// This function predicates factorization using distributive laws. By default,
/// it just returns the 'Op' inputs. But for special-cases like
/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
/// allow more factorization opportunities.
static Instruction::BinaryOps
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
                          Value *&LHS, Value *&RHS) {
  assert(Op && "Expected a binary operator");
  LHS = Op->getOperand(0);
  RHS = Op->getOperand(1);
  if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
    Constant *C;
    if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
      // X << C --> X * (1 << C)
      RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
      return Instruction::Mul;
    }
    // TODO: We can add other conversions e.g. shr => div etc.
  }
  return Op->getOpcode();
}

/// This tries to simplify binary operations by factorizing out common terms
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
Value *InstCombiner::tryFactorization(BinaryOperator &I,
                                      Instruction::BinaryOps InnerOpcode,
                                      Value *A, Value *B, Value *C, Value *D) {
  assert(A && B && C && D && "All values must be provided");

  Value *V = nullptr;
  Value *SimplifiedInst = nullptr;
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();

  // Does "X op' Y" always equal "Y op' X"?
  bool InnerCommutative = Instruction::isCommutative(InnerOpcode);

  // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
  if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
    // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
    // commutative case, "(A op' B) op (C op' A)"?
    if (A == C || (InnerCommutative && A == D)) {
      if (A != C)
        std::swap(C, D);
      // Consider forming "A op' (B op D)".
      // If "B op D" simplifies then it can be formed with no cost.
      V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
      // If "B op D" doesn't simplify then only go on if both of the existing
      // operations "A op' B" and "C op' D" will be zapped as no longer used.
      if (!V && LHS->hasOneUse() && RHS->hasOneUse())
        V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
      if (V) {
        SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
      }
    }

  // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
  if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
    // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
    // commutative case, "(A op' B) op (B op' D)"?
    if (B == D || (InnerCommutative && B == C)) {
      if (B != D)
        std::swap(C, D);
      // Consider forming "(A op C) op' B".
      // If "A op C" simplifies then it can be formed with no cost.
      V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));

      // If "A op C" doesn't simplify then only go on if both of the existing
      // operations "A op' B" and "C op' D" will be zapped as no longer used.
      if (!V && LHS->hasOneUse() && RHS->hasOneUse())
        V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
      if (V) {
        SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
      }
    }

  if (SimplifiedInst) {
    ++NumFactor;
    SimplifiedInst->takeName(&I);

    // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
      if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
        bool HasNSW = false;
        bool HasNUW = false;
        if (isa<OverflowingBinaryOperator>(&I)) {
          HasNSW = I.hasNoSignedWrap();
          HasNUW = I.hasNoUnsignedWrap();
        }

        if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
          HasNSW &= LOBO->hasNoSignedWrap();
          HasNUW &= LOBO->hasNoUnsignedWrap();
        }

        if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
          HasNSW &= ROBO->hasNoSignedWrap();
          HasNUW &= ROBO->hasNoUnsignedWrap();
        }

        if (TopLevelOpcode == Instruction::Add &&
            InnerOpcode == Instruction::Mul) {
          // We can propagate 'nsw' if we know that
          //  %Y = mul nsw i16 %X, C
          //  %Z = add nsw i16 %Y, %X
          // =>
          //  %Z = mul nsw i16 %X, C+1
          //
          // iff C+1 isn't INT_MIN
          const APInt *CInt;
          if (match(V, m_APInt(CInt))) {
            if (!CInt->isMinSignedValue())
              BO->setHasNoSignedWrap(HasNSW);
          }

          // nuw can be propagated with any constant or nuw value.
          BO->setHasNoUnsignedWrap(HasNUW);
        }
      }
    }
  }
  return SimplifiedInst;
}

/// This tries to simplify binary operations which some other binary operation
/// distributes over either by factorizing out common terms
/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
/// Returns the simplified value, or null if it didn't simplify.
Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();

  {
    // Factorization.
    Value *A, *B, *C, *D;
    Instruction::BinaryOps LHSOpcode, RHSOpcode;
    if (Op0)
      LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
    if (Op1)
      RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);

    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
    // a common term.
    if (Op0 && Op1 && LHSOpcode == RHSOpcode)
      if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
        return V;

    // The instruction has the form "(A op' B) op (C)".  Try to factorize common
    // term.
    if (Op0)
      if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
        if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
          return V;

    // The instruction has the form "(B) op (C op' D)".  Try to factorize common
    // term.
    if (Op1)
      if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
        if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
          return V;
  }

  // Expansion.
  if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
    // The instruction has the form "(A op' B) op C".  See if expanding it out
    // to "(A op C) op' (B op C)" results in simplifications.
    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'

    Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
    Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));

    // Do "A op C" and "B op C" both simplify?
    if (L && R) {
      // They do! Return "L op' R".
      ++NumExpand;
      C = Builder.CreateBinOp(InnerOpcode, L, R);
      C->takeName(&I);
      return C;
    }

    // Does "A op C" simplify to the identity value for the inner opcode?
    if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
      // They do! Return "B op C".
      ++NumExpand;
      C = Builder.CreateBinOp(TopLevelOpcode, B, C);
      C->takeName(&I);
      return C;
    }

    // Does "B op C" simplify to the identity value for the inner opcode?
    if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
      // They do! Return "A op C".
      ++NumExpand;
      C = Builder.CreateBinOp(TopLevelOpcode, A, C);
      C->takeName(&I);
      return C;
    }
  }

  if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
    // The instruction has the form "A op (B op' C)".  See if expanding it out
    // to "(A op B) op' (A op C)" results in simplifications.
    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'

    Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
    Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));

    // Do "A op B" and "A op C" both simplify?
    if (L && R) {
      // They do! Return "L op' R".
      ++NumExpand;
      A = Builder.CreateBinOp(InnerOpcode, L, R);
      A->takeName(&I);
      return A;
    }

    // Does "A op B" simplify to the identity value for the inner opcode?
    if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
      // They do! Return "A op C".
      ++NumExpand;
      A = Builder.CreateBinOp(TopLevelOpcode, A, C);
      A->takeName(&I);
      return A;
    }

    // Does "A op C" simplify to the identity value for the inner opcode?
    if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
      // They do! Return "A op B".
      ++NumExpand;
      A = Builder.CreateBinOp(TopLevelOpcode, A, B);
      A->takeName(&I);
      return A;
    }
  }

  return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
}

Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
                                                    Value *LHS, Value *RHS) {
  Value *A, *B, *C, *D, *E, *F;
  bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
  bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
  if (!LHSIsSelect && !RHSIsSelect)
    return nullptr;

  FastMathFlags FMF;
  BuilderTy::FastMathFlagGuard Guard(Builder);
  if (isa<FPMathOperator>(&I)) {
    FMF = I.getFastMathFlags();
    Builder.setFastMathFlags(FMF);
  }

  Instruction::BinaryOps Opcode = I.getOpcode();
  SimplifyQuery Q = SQ.getWithInstruction(&I);

  Value *Cond, *True = nullptr, *False = nullptr;
  if (LHSIsSelect && RHSIsSelect && A == D) {
    // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
    Cond = A;
    True = SimplifyBinOp(Opcode, B, E, FMF, Q);
    False = SimplifyBinOp(Opcode, C, F, FMF, Q);

    if (LHS->hasOneUse() && RHS->hasOneUse()) {
      if (False && !True)
        True = Builder.CreateBinOp(Opcode, B, E);
      else if (True && !False)
        False = Builder.CreateBinOp(Opcode, C, F);
    }
  } else if (LHSIsSelect && LHS->hasOneUse()) {
    // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
    Cond = A;
    True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
    False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
  } else if (RHSIsSelect && RHS->hasOneUse()) {
    // X op (D ? E : F) -> D ? (X op E) : (X op F)
    Cond = D;
    True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
    False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
  }

  if (!True || !False)
    return nullptr;

  Value *SI = Builder.CreateSelect(Cond, True, False);
  SI->takeName(&I);
  return SI;
}

/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
/// constant zero (which is the 'negate' form).
Value *InstCombiner::dyn_castNegVal(Value *V) const {
  Value *NegV;
  if (match(V, m_Neg(m_Value(NegV))))
    return NegV;

  // Constants can be considered to be negated values if they can be folded.
  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
    return ConstantExpr::getNeg(C);

  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    if (C->getType()->getElementType()->isIntegerTy())
      return ConstantExpr::getNeg(C);

  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
      Constant *Elt = CV->getAggregateElement(i);
      if (!Elt)
        return nullptr;

      if (isa<UndefValue>(Elt))
        continue;

      if (!isa<ConstantInt>(Elt))
        return nullptr;
    }
    return ConstantExpr::getNeg(CV);
  }

  return nullptr;
}

static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
                                             InstCombiner::BuilderTy &Builder) {
  if (auto *Cast = dyn_cast<CastInst>(&I))
    return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());

  assert(I.isBinaryOp() && "Unexpected opcode for select folding");

  // Figure out if the constant is the left or the right argument.
  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));

  if (auto *SOC = dyn_cast<Constant>(SO)) {
    if (ConstIsRHS)
      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
  }

  Value *Op0 = SO, *Op1 = ConstOperand;
  if (!ConstIsRHS)
    std::swap(Op0, Op1);

  auto *BO = cast<BinaryOperator>(&I);
  Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
                                  SO->getName() + ".op");
  auto *FPInst = dyn_cast<Instruction>(RI);
  if (FPInst && isa<FPMathOperator>(FPInst))
    FPInst->copyFastMathFlags(BO);
  return RI;
}

Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
  // Don't modify shared select instructions.
  if (!SI->hasOneUse())
    return nullptr;

  Value *TV = SI->getTrueValue();
  Value *FV = SI->getFalseValue();
  if (!(isa<Constant>(TV) || isa<Constant>(FV)))
    return nullptr;

  // Bool selects with constant operands can be folded to logical ops.
  if (SI->getType()->isIntOrIntVectorTy(1))
    return nullptr;

  // If it's a bitcast involving vectors, make sure it has the same number of
  // elements on both sides.
  if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
    VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
    VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());

    // Verify that either both or neither are vectors.
    if ((SrcTy == nullptr) != (DestTy == nullptr))
      return nullptr;

    // If vectors, verify that they have the same number of elements.
    if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
      return nullptr;
  }

  // Test if a CmpInst instruction is used exclusively by a select as
  // part of a minimum or maximum operation. If so, refrain from doing
  // any other folding. This helps out other analyses which understand
  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
  // and CodeGen. And in this case, at least one of the comparison
  // operands has at least one user besides the compare (the select),
  // which would often largely negate the benefit of folding anyway.
  if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
    if (CI->hasOneUse()) {
      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
        return nullptr;
    }
  }

  Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
  Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
  return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
}

static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
                                        InstCombiner::BuilderTy &Builder) {
  bool ConstIsRHS = isa<Constant>(I->getOperand(1));
  Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));

  if (auto *InC = dyn_cast<Constant>(InV)) {
    if (ConstIsRHS)
      return ConstantExpr::get(I->getOpcode(), InC, C);
    return ConstantExpr::get(I->getOpcode(), C, InC);
  }

  Value *Op0 = InV, *Op1 = C;
  if (!ConstIsRHS)
    std::swap(Op0, Op1);

  Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp");
  auto *FPInst = dyn_cast<Instruction>(RI);
  if (FPInst && isa<FPMathOperator>(FPInst))
    FPInst->copyFastMathFlags(I);
  return RI;
}

Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
  unsigned NumPHIValues = PN->getNumIncomingValues();
  if (NumPHIValues == 0)
    return nullptr;

  // We normally only transform phis with a single use.  However, if a PHI has
  // multiple uses and they are all the same operation, we can fold *all* of the
  // uses into the PHI.
  if (!PN->hasOneUse()) {
    // Walk the use list for the instruction, comparing them to I.
    for (User *U : PN->users()) {
      Instruction *UI = cast<Instruction>(U);
      if (UI != &I && !I.isIdenticalTo(UI))
        return nullptr;
    }
    // Otherwise, we can replace *all* users with the new PHI we form.
  }

  // Check to see if all of the operands of the PHI are simple constants
  // (constantint/constantfp/undef).  If there is one non-constant value,
  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
  // bail out.  We don't do arbitrary constant expressions here because moving
  // their computation can be expensive without a cost model.
  BasicBlock *NonConstBB = nullptr;
  for (unsigned i = 0; i != NumPHIValues; ++i) {
    Value *InVal = PN->getIncomingValue(i);
    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
      continue;

    if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
    if (NonConstBB) return nullptr;  // More than one non-const value.

    NonConstBB = PN->getIncomingBlock(i);

    // If the InVal is an invoke at the end of the pred block, then we can't
    // insert a computation after it without breaking the edge.
    if (isa<InvokeInst>(InVal))
      if (cast<Instruction>(InVal)->getParent() == NonConstBB)
        return nullptr;

    // If the incoming non-constant value is in I's block, we will remove one
    // instruction, but insert another equivalent one, leading to infinite
    // instcombine.
    if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
      return nullptr;
  }

  // If there is exactly one non-constant value, we can insert a copy of the
  // operation in that block.  However, if this is a critical edge, we would be
  // inserting the computation on some other paths (e.g. inside a loop).  Only
  // do this if the pred block is unconditionally branching into the phi block.
  if (NonConstBB != nullptr) {
    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
    if (!BI || !BI->isUnconditional()) return nullptr;
  }

  // Okay, we can do the transformation: create the new PHI node.
  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
  InsertNewInstBefore(NewPN, *PN);
  NewPN->takeName(PN);

  // If we are going to have to insert a new computation, do so right before the
  // predecessor's terminator.
  if (NonConstBB)
    Builder.SetInsertPoint(NonConstBB->getTerminator());

  // Next, add all of the operands to the PHI.
  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
    // We only currently try to fold the condition of a select when it is a phi,
    // not the true/false values.
    Value *TrueV = SI->getTrueValue();
    Value *FalseV = SI->getFalseValue();
    BasicBlock *PhiTransBB = PN->getParent();
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      BasicBlock *ThisBB = PN->getIncomingBlock(i);
      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
      Value *InV = nullptr;
      // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
      // even if currently isNullValue gives false.
      Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
      // For vector constants, we cannot use isNullValue to fold into
      // FalseVInPred versus TrueVInPred. When we have individual nonzero
      // elements in the vector, we will incorrectly fold InC to
      // `TrueVInPred`.
      if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
      else {
        // Generate the select in the same block as PN's current incoming block.
        // Note: ThisBB need not be the NonConstBB because vector constants
        // which are constants by definition are handled here.
        // FIXME: This can lead to an increase in IR generation because we might
        // generate selects for vector constant phi operand, that could not be
        // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
        // non-vector phis, this transformation was always profitable because
        // the select would be generated exactly once in the NonConstBB.
        Builder.SetInsertPoint(ThisBB->getTerminator());
        InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
                                   FalseVInPred, "phitmp");
      }
      NewPN->addIncoming(InV, ThisBB);
    }
  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
    Constant *C = cast<Constant>(I.getOperand(1));
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      Value *InV = nullptr;
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
      else if (isa<ICmpInst>(CI))
        InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
                                 C, "phitmp");
      else
        InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
                                 C, "phitmp");
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    }
  } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
                                             Builder);
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    }
  } else {
    CastInst *CI = cast<CastInst>(&I);
    Type *RetTy = CI->getType();
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      Value *InV;
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
      else
        InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
                                 I.getType(), "phitmp");
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    }
  }

  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
    Instruction *User = cast<Instruction>(*UI++);
    if (User == &I) continue;
    replaceInstUsesWith(*User, NewPN);
    eraseInstFromFunction(*User);
  }
  return replaceInstUsesWith(I, NewPN);
}

Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
  if (!isa<Constant>(I.getOperand(1)))
    return nullptr;

  if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
    if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
      return NewSel;
  } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
    if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
      return NewPhi;
  }
  return nullptr;
}

/// Given a pointer type and a constant offset, determine whether or not there
/// is a sequence of GEP indices into the pointed type that will land us at the
/// specified offset. If so, fill them into NewIndices and return the resultant
/// element type, otherwise return null.
Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
                                        SmallVectorImpl<Value *> &NewIndices) {
  Type *Ty = PtrTy->getElementType();
  if (!Ty->isSized())
    return nullptr;

  // Start with the index over the outer type.  Note that the type size
  // might be zero (even if the offset isn't zero) if the indexed type
  // is something like [0 x {int, int}]
  Type *IndexTy = DL.getIndexType(PtrTy);
  int64_t FirstIdx = 0;
  if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
    FirstIdx = Offset/TySize;
    Offset -= FirstIdx*TySize;

    // Handle hosts where % returns negative instead of values [0..TySize).
    if (Offset < 0) {
      --FirstIdx;
      Offset += TySize;
      assert(Offset >= 0);
    }
    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
  }

  NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));

  // Index into the types.  If we fail, set OrigBase to null.
  while (Offset) {
    // Indexing into tail padding between struct/array elements.
    if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
      return nullptr;

    if (StructType *STy = dyn_cast<StructType>(Ty)) {
      const StructLayout *SL = DL.getStructLayout(STy);
      assert(Offset < (int64_t)SL->getSizeInBytes() &&
             "Offset must stay within the indexed type");

      unsigned Elt = SL->getElementContainingOffset(Offset);
      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
                                            Elt));

      Offset -= SL->getElementOffset(Elt);
      Ty = STy->getElementType(Elt);
    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
      uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
      assert(EltSize && "Cannot index into a zero-sized array");
      NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
      Offset %= EltSize;
      Ty = AT->getElementType();
    } else {
      // Otherwise, we can't index into the middle of this atomic type, bail.
      return nullptr;
    }
  }

  return Ty;
}

static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
  // If this GEP has only 0 indices, it is the same pointer as
  // Src. If Src is not a trivial GEP too, don't combine
  // the indices.
  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
      !Src.hasOneUse())
    return false;
  return true;
}

/// Return a value X such that Val = X * Scale, or null if none.
/// If the multiplication is known not to overflow, then NoSignedWrap is set.
Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
  assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
  assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
         Scale.getBitWidth() && "Scale not compatible with value!");

  // If Val is zero or Scale is one then Val = Val * Scale.
  if (match(Val, m_Zero()) || Scale == 1) {
    NoSignedWrap = true;
    return Val;
  }

  // If Scale is zero then it does not divide Val.
  if (Scale.isMinValue())
    return nullptr;

  // Look through chains of multiplications, searching for a constant that is
  // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
  // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
  // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
  // down from Val:
  //
  //     Val = M1 * X          ||   Analysis starts here and works down
  //      M1 = M2 * Y          ||   Doesn't descend into terms with more
  //      M2 =  Z * 4          \/   than one use
  //
  // Then to modify a term at the bottom:
  //
  //     Val = M1 * X
  //      M1 =  Z * Y          ||   Replaced M2 with Z
  //
  // Then to work back up correcting nsw flags.

  // Op - the term we are currently analyzing.  Starts at Val then drills down.
  // Replaced with its descaled value before exiting from the drill down loop.
  Value *Op = Val;

  // Parent - initially null, but after drilling down notes where Op came from.
  // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
  // 0'th operand of Val.
  std::pair<Instruction *, unsigned> Parent;

  // Set if the transform requires a descaling at deeper levels that doesn't
  // overflow.
  bool RequireNoSignedWrap = false;

  // Log base 2 of the scale. Negative if not a power of 2.
  int32_t logScale = Scale.exactLogBase2();

  for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
      // If Op is a constant divisible by Scale then descale to the quotient.
      APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
      APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
      if (!Remainder.isMinValue())
        // Not divisible by Scale.
        return nullptr;
      // Replace with the quotient in the parent.
      Op = ConstantInt::get(CI->getType(), Quotient);
      NoSignedWrap = true;
      break;
    }

    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
      if (BO->getOpcode() == Instruction::Mul) {
        // Multiplication.
        NoSignedWrap = BO->hasNoSignedWrap();
        if (RequireNoSignedWrap && !NoSignedWrap)
          return nullptr;

        // There are three cases for multiplication: multiplication by exactly
        // the scale, multiplication by a constant different to the scale, and
        // multiplication by something else.
        Value *LHS = BO->getOperand(0);
        Value *RHS = BO->getOperand(1);

        if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
          // Multiplication by a constant.
          if (CI->getValue() == Scale) {
            // Multiplication by exactly the scale, replace the multiplication
            // by its left-hand side in the parent.
            Op = LHS;
            break;
          }

          // Otherwise drill down into the constant.
          if (!Op->hasOneUse())
            return nullptr;

          Parent = std::make_pair(BO, 1);
          continue;
        }

        // Multiplication by something else. Drill down into the left-hand side
        // since that's where the reassociate pass puts the good stuff.
        if (!Op->hasOneUse())
          return nullptr;

        Parent = std::make_pair(BO, 0);
        continue;
      }

      if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
          isa<ConstantInt>(BO->getOperand(1))) {
        // Multiplication by a power of 2.
        NoSignedWrap = BO->hasNoSignedWrap();
        if (RequireNoSignedWrap && !NoSignedWrap)
          return nullptr;

        Value *LHS = BO->getOperand(0);
        int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
          getLimitedValue(Scale.getBitWidth());
        // Op = LHS << Amt.

        if (Amt == logScale) {
          // Multiplication by exactly the scale, replace the multiplication
          // by its left-hand side in the parent.
          Op = LHS;
          break;
        }
        if (Amt < logScale || !Op->hasOneUse())
          return nullptr;

        // Multiplication by more than the scale.  Reduce the multiplying amount
        // by the scale in the parent.
        Parent = std::make_pair(BO, 1);
        Op = ConstantInt::get(BO->getType(), Amt - logScale);
        break;
      }
    }

    if (!Op->hasOneUse())
      return nullptr;

    if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
      if (Cast->getOpcode() == Instruction::SExt) {
        // Op is sign-extended from a smaller type, descale in the smaller type.
        unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
        APInt SmallScale = Scale.trunc(SmallSize);
        // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
        // descale Op as (sext Y) * Scale.  In order to have
        //   sext (Y * SmallScale) = (sext Y) * Scale
        // some conditions need to hold however: SmallScale must sign-extend to
        // Scale and the multiplication Y * SmallScale should not overflow.
        if (SmallScale.sext(Scale.getBitWidth()) != Scale)
          // SmallScale does not sign-extend to Scale.
          return nullptr;
        assert(SmallScale.exactLogBase2() == logScale);
        // Require that Y * SmallScale must not overflow.
        RequireNoSignedWrap = true;

        // Drill down through the cast.
        Parent = std::make_pair(Cast, 0);
        Scale = SmallScale;
        continue;
      }

      if (Cast->getOpcode() == Instruction::Trunc) {
        // Op is truncated from a larger type, descale in the larger type.
        // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
        //   trunc (Y * sext Scale) = (trunc Y) * Scale
        // always holds.  However (trunc Y) * Scale may overflow even if
        // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
        // from this point up in the expression (see later).
        if (RequireNoSignedWrap)
          return nullptr;

        // Drill down through the cast.
        unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
        Parent = std::make_pair(Cast, 0);
        Scale = Scale.sext(LargeSize);
        if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
          logScale = -1;
        assert(Scale.exactLogBase2() == logScale);
        continue;
      }
    }

    // Unsupported expression, bail out.
    return nullptr;
  }

  // If Op is zero then Val = Op * Scale.
  if (match(Op, m_Zero())) {
    NoSignedWrap = true;
    return Op;
  }

  // We know that we can successfully descale, so from here on we can safely
  // modify the IR.  Op holds the descaled version of the deepest term in the
  // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
  // not to overflow.

  if (!Parent.first)
    // The expression only had one term.
    return Op;

  // Rewrite the parent using the descaled version of its operand.
  assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
  assert(Op != Parent.first->getOperand(Parent.second) &&
         "Descaling was a no-op?");
  Parent.first->setOperand(Parent.second, Op);
  Worklist.Add(Parent.first);

  // Now work back up the expression correcting nsw flags.  The logic is based
  // on the following observation: if X * Y is known not to overflow as a signed
  // multiplication, and Y is replaced by a value Z with smaller absolute value,
  // then X * Z will not overflow as a signed multiplication either.  As we work
  // our way up, having NoSignedWrap 'true' means that the descaled value at the
  // current level has strictly smaller absolute value than the original.
  Instruction *Ancestor = Parent.first;
  do {
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
      // If the multiplication wasn't nsw then we can't say anything about the
      // value of the descaled multiplication, and we have to clear nsw flags
      // from this point on up.
      bool OpNoSignedWrap = BO->hasNoSignedWrap();
      NoSignedWrap &= OpNoSignedWrap;
      if (NoSignedWrap != OpNoSignedWrap) {
        BO->setHasNoSignedWrap(NoSignedWrap);
        Worklist.Add(Ancestor);
      }
    } else if (Ancestor->getOpcode() == Instruction::Trunc) {
      // The fact that the descaled input to the trunc has smaller absolute
      // value than the original input doesn't tell us anything useful about
      // the absolute values of the truncations.
      NoSignedWrap = false;
    }
    assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
           "Failed to keep proper track of nsw flags while drilling down?");

    if (Ancestor == Val)
      // Got to the top, all done!
      return Val;

    // Move up one level in the expression.
    assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
    Ancestor = Ancestor->user_back();
  } while (true);
}

Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
  if (!Inst.getType()->isVectorTy()) return nullptr;

  BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
  unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements();
  Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
  assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts);
  assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts);

  // If both operands of the binop are vector concatenations, then perform the
  // narrow binop on each pair of the source operands followed by concatenation
  // of the results.
  Value *L0, *L1, *R0, *R1;
  Constant *Mask;
  if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) &&
      match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) &&
      LHS->hasOneUse() && RHS->hasOneUse() &&
      cast<ShuffleVectorInst>(LHS)->isConcat() &&
      cast<ShuffleVectorInst>(RHS)->isConcat()) {
    // This transform does not have the speculative execution constraint as
    // below because the shuffle is a concatenation. The new binops are
    // operating on exactly the same elements as the existing binop.
    // TODO: We could ease the mask requirement to allow different undef lanes,
    //       but that requires an analysis of the binop-with-undef output value.
    Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
    if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
      BO->copyIRFlags(&Inst);
    Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
    if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
      BO->copyIRFlags(&Inst);
    return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
  }

  // It may not be safe to reorder shuffles and things like div, urem, etc.
  // because we may trap when executing those ops on unknown vector elements.
  // See PR20059.
  if (!isSafeToSpeculativelyExecute(&Inst))
    return nullptr;

  auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) {
    Value *XY = Builder.CreateBinOp(Opcode, X, Y);
    if (auto *BO = dyn_cast<BinaryOperator>(XY))
      BO->copyIRFlags(&Inst);
    return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
  };

  // If both arguments of the binary operation are shuffles that use the same
  // mask and shuffle within a single vector, move the shuffle after the binop.
  Value *V1, *V2;
  if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) &&
      match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) &&
      V1->getType() == V2->getType() &&
      (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
    // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
    return createBinOpShuffle(V1, V2, Mask);
  }

  // If both arguments of a commutative binop are select-shuffles that use the
  // same mask with commuted operands, the shuffles are unnecessary.
  if (Inst.isCommutative() &&
      match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) &&
      match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1),
                                 m_Specific(Mask)))) {
    auto *LShuf = cast<ShuffleVectorInst>(LHS);
    auto *RShuf = cast<ShuffleVectorInst>(RHS);
    // TODO: Allow shuffles that contain undefs in the mask?
    //       That is legal, but it reduces undef knowledge.
    // TODO: Allow arbitrary shuffles by shuffling after binop?
    //       That might be legal, but we have to deal with poison.
    if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() &&
        RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) {
      // Example:
      // LHS = shuffle V1, V2, <0, 5, 6, 3>
      // RHS = shuffle V2, V1, <0, 5, 6, 3>
      // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
      Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
      NewBO->copyIRFlags(&Inst);
      return NewBO;
    }
  }

  // If one argument is a shuffle within one vector and the other is a constant,
  // try moving the shuffle after the binary operation. This canonicalization
  // intends to move shuffles closer to other shuffles and binops closer to
  // other binops, so they can be folded. It may also enable demanded elements
  // transforms.
  Constant *C;
  if (match(&Inst, m_c_BinOp(
          m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))),
          m_Constant(C))) &&
      V1->getType()->getVectorNumElements() <= NumElts) {
    assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
           "Shuffle should not change scalar type");

    // Find constant NewC that has property:
    //   shuffle(NewC, ShMask) = C
    // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
    // reorder is not possible. A 1-to-1 mapping is not required. Example:
    // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
    bool ConstOp1 = isa<Constant>(RHS);
    SmallVector<int, 16> ShMask;
    ShuffleVectorInst::getShuffleMask(Mask, ShMask);
    unsigned SrcVecNumElts = V1->getType()->getVectorNumElements();
    UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
    SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
    bool MayChange = true;
    for (unsigned I = 0; I < NumElts; ++I) {
      Constant *CElt = C->getAggregateElement(I);
      if (ShMask[I] >= 0) {
        assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
        Constant *NewCElt = NewVecC[ShMask[I]];
        // Bail out if:
        // 1. The constant vector contains a constant expression.
        // 2. The shuffle needs an element of the constant vector that can't
        //    be mapped to a new constant vector.
        // 3. This is a widening shuffle that copies elements of V1 into the
        //    extended elements (extending with undef is allowed).
        if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
            I >= SrcVecNumElts) {
          MayChange = false;
          break;
        }
        NewVecC[ShMask[I]] = CElt;
      }
      // If this is a widening shuffle, we must be able to extend with undef
      // elements. If the original binop does not produce an undef in the high
      // lanes, then this transform is not safe.
      // Similarly for undef lanes due to the shuffle mask, we can only
      // transform binops that preserve undef.
      // TODO: We could shuffle those non-undef constant values into the
      //       result by using a constant vector (rather than an undef vector)
      //       as operand 1 of the new binop, but that might be too aggressive
      //       for target-independent shuffle creation.
      if (I >= SrcVecNumElts || ShMask[I] < 0) {
        Constant *MaybeUndef =
            ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
                     : ConstantExpr::get(Opcode, CElt, UndefScalar);
        if (!isa<UndefValue>(MaybeUndef)) {
          MayChange = false;
          break;
        }
      }
    }
    if (MayChange) {
      Constant *NewC = ConstantVector::get(NewVecC);
      // It may not be safe to execute a binop on a vector with undef elements
      // because the entire instruction can be folded to undef or create poison
      // that did not exist in the original code.
      if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
        NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);

      // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
      // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
      Value *NewLHS = ConstOp1 ? V1 : NewC;
      Value *NewRHS = ConstOp1 ? NewC : V1;
      return createBinOpShuffle(NewLHS, NewRHS, Mask);
    }
  }

  return nullptr;
}

/// Try to narrow the width of a binop if at least 1 operand is an extend of
/// of a value. This requires a potentially expensive known bits check to make
/// sure the narrow op does not overflow.
Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
  // We need at least one extended operand.
  Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);

  // If this is a sub, we swap the operands since we always want an extension
  // on the RHS. The LHS can be an extension or a constant.
  if (BO.getOpcode() == Instruction::Sub)
    std::swap(Op0, Op1);

  Value *X;
  bool IsSext = match(Op0, m_SExt(m_Value(X)));
  if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
    return nullptr;

  // If both operands are the same extension from the same source type and we
  // can eliminate at least one (hasOneUse), this might work.
  CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
  Value *Y;
  if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
        cast<Operator>(Op1)->getOpcode() == CastOpc &&
        (Op0->hasOneUse() || Op1->hasOneUse()))) {
    // If that did not match, see if we have a suitable constant operand.
    // Truncating and extending must produce the same constant.
    Constant *WideC;
    if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
      return nullptr;
    Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
    if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
      return nullptr;
    Y = NarrowC;
  }

  // Swap back now that we found our operands.
  if (BO.getOpcode() == Instruction::Sub)
    std::swap(X, Y);

  // Both operands have narrow versions. Last step: the math must not overflow
  // in the narrow width.
  if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
    return nullptr;

  // bo (ext X), (ext Y) --> ext (bo X, Y)
  // bo (ext X), C       --> ext (bo X, C')
  Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
  if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
    if (IsSext)
      NewBinOp->setHasNoSignedWrap();
    else
      NewBinOp->setHasNoUnsignedWrap();
  }
  return CastInst::Create(CastOpc, NarrowBO, BO.getType());
}

static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
  // At least one GEP must be inbounds.
  if (!GEP1.isInBounds() && !GEP2.isInBounds())
    return false;

  return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
         (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
}

Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
  Type *GEPType = GEP.getType();
  Type *GEPEltType = GEP.getSourceElementType();
  if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
    return replaceInstUsesWith(GEP, V);

  // For vector geps, use the generic demanded vector support.
  if (GEP.getType()->isVectorTy()) {
    auto VWidth = GEP.getType()->getVectorNumElements();
    APInt UndefElts(VWidth, 0);
    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
    if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
                                              UndefElts)) {
      if (V != &GEP)
        return replaceInstUsesWith(GEP, V);
      return &GEP;
    }

    // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
    // possible (decide on canonical form for pointer broadcast), 3) exploit
    // undef elements to decrease demanded bits  
  }

  Value *PtrOp = GEP.getOperand(0);

  // Eliminate unneeded casts for indices, and replace indices which displace
  // by multiples of a zero size type with zero.
  bool MadeChange = false;

  // Index width may not be the same width as pointer width.
  // Data layout chooses the right type based on supported integer types.
  Type *NewScalarIndexTy =
      DL.getIndexType(GEP.getPointerOperandType()->getScalarType());

  gep_type_iterator GTI = gep_type_begin(GEP);
  for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
       ++I, ++GTI) {
    // Skip indices into struct types.
    if (GTI.isStruct())
      continue;

    Type *IndexTy = (*I)->getType();
    Type *NewIndexType =
        IndexTy->isVectorTy()
            ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements())
            : NewScalarIndexTy;

    // If the element type has zero size then any index over it is equivalent
    // to an index of zero, so replace it with zero if it is not zero already.
    Type *EltTy = GTI.getIndexedType();
    if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
      if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
        *I = Constant::getNullValue(NewIndexType);
        MadeChange = true;
      }

    if (IndexTy != NewIndexType) {
      // If we are using a wider index than needed for this platform, shrink
      // it to what we need.  If narrower, sign-extend it to what we need.
      // This explicit cast can make subsequent optimizations more obvious.
      *I = Builder.CreateIntCast(*I, NewIndexType, true);
      MadeChange = true;
    }
  }
  if (MadeChange)
    return &GEP;

  // Check to see if the inputs to the PHI node are getelementptr instructions.
  if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
    auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
    if (!Op1)
      return nullptr;

    // Don't fold a GEP into itself through a PHI node. This can only happen
    // through the back-edge of a loop. Folding a GEP into itself means that
    // the value of the previous iteration needs to be stored in the meantime,
    // thus requiring an additional register variable to be live, but not
    // actually achieving anything (the GEP still needs to be executed once per
    // loop iteration).
    if (Op1 == &GEP)
      return nullptr;

    int DI = -1;

    for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
      auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
      if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
        return nullptr;

      // As for Op1 above, don't try to fold a GEP into itself.
      if (Op2 == &GEP)
        return nullptr;

      // Keep track of the type as we walk the GEP.
      Type *CurTy = nullptr;

      for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
        if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
          return nullptr;

        if (Op1->getOperand(J) != Op2->getOperand(J)) {
          if (DI == -1) {
            // We have not seen any differences yet in the GEPs feeding the
            // PHI yet, so we record this one if it is allowed to be a
            // variable.

            // The first two arguments can vary for any GEP, the rest have to be
            // static for struct slots
            if (J > 1) {
              assert(CurTy && "No current type?");
              if (CurTy->isStructTy())
                return nullptr;
            }

            DI = J;
          } else {
            // The GEP is different by more than one input. While this could be
            // extended to support GEPs that vary by more than one variable it
            // doesn't make sense since it greatly increases the complexity and
            // would result in an R+R+R addressing mode which no backend
            // directly supports and would need to be broken into several
            // simpler instructions anyway.
            return nullptr;
          }
        }

        // Sink down a layer of the type for the next iteration.
        if (J > 0) {
          if (J == 1) {
            CurTy = Op1->getSourceElementType();
          } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) {
            CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
          } else {
            CurTy = nullptr;
          }
        }
      }
    }

    // If not all GEPs are identical we'll have to create a new PHI node.
    // Check that the old PHI node has only one use so that it will get
    // removed.
    if (DI != -1 && !PN->hasOneUse())
      return nullptr;

    auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
    if (DI == -1) {
      // All the GEPs feeding the PHI are identical. Clone one down into our
      // BB so that it can be merged with the current GEP.
      GEP.getParent()->getInstList().insert(
          GEP.getParent()->getFirstInsertionPt(), NewGEP);
    } else {
      // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
      // into the current block so it can be merged, and create a new PHI to
      // set that index.
      PHINode *NewPN;
      {
        IRBuilderBase::InsertPointGuard Guard(Builder);
        Builder.SetInsertPoint(PN);
        NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
                                  PN->getNumOperands());
      }

      for (auto &I : PN->operands())
        NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
                           PN->getIncomingBlock(I));

      NewGEP->setOperand(DI, NewPN);
      GEP.getParent()->getInstList().insert(
          GEP.getParent()->getFirstInsertionPt(), NewGEP);
      NewGEP->setOperand(DI, NewPN);
    }

    GEP.setOperand(0, NewGEP);
    PtrOp = NewGEP;
  }

  // Combine Indices - If the source pointer to this getelementptr instruction
  // is a getelementptr instruction, combine the indices of the two
  // getelementptr instructions into a single instruction.
  if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
      return nullptr;

    // Try to reassociate loop invariant GEP chains to enable LICM.
    if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
        Src->hasOneUse()) {
      if (Loop *L = LI->getLoopFor(GEP.getParent())) {
        Value *GO1 = GEP.getOperand(1);
        Value *SO1 = Src->getOperand(1);
        // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
        // invariant: this breaks the dependence between GEPs and allows LICM
        // to hoist the invariant part out of the loop.
        if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
          // We have to be careful here.
          // We have something like:
          //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
          //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
          // If we just swap idx & idx2 then we could inadvertantly
          // change %src from a vector to a scalar, or vice versa.
          // Cases:
          //  1) %base a scalar & idx a scalar & idx2 a vector
          //      => Swapping idx & idx2 turns %src into a vector type.
          //  2) %base a scalar & idx a vector & idx2 a scalar
          //      => Swapping idx & idx2 turns %src in a scalar type
          //  3) %base, %idx, and %idx2 are scalars
          //      => %src & %gep are scalars
          //      => swapping idx & idx2 is safe
          //  4) %base a vector
          //      => %src is a vector
          //      => swapping idx & idx2 is safe.
          auto *SO0 = Src->getOperand(0);
          auto *SO0Ty = SO0->getType();
          if (!isa<VectorType>(GEPType) || // case 3
              isa<VectorType>(SO0Ty)) {    // case 4
            Src->setOperand(1, GO1);
            GEP.setOperand(1, SO1);
            return &GEP;
          } else {
            // Case 1 or 2
            // -- have to recreate %src & %gep
            // put NewSrc at same location as %src
            Builder.SetInsertPoint(cast<Instruction>(PtrOp));
            auto *NewSrc = cast<GetElementPtrInst>(
                Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
            NewSrc->setIsInBounds(Src->isInBounds());
            auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
            NewGEP->setIsInBounds(GEP.isInBounds());
            return NewGEP;
          }
        }
      }
    }

    // Note that if our source is a gep chain itself then we wait for that
    // chain to be resolved before we perform this transformation.  This
    // avoids us creating a TON of code in some cases.
    if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
        return nullptr;   // Wait until our source is folded to completion.

    SmallVector<Value*, 8> Indices;

    // Find out whether the last index in the source GEP is a sequential idx.
    bool EndsWithSequential = false;
    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
         I != E; ++I)
      EndsWithSequential = I.isSequential();

    // Can we combine the two pointer arithmetics offsets?
    if (EndsWithSequential) {
      // Replace: gep (gep %P, long B), long A, ...
      // With:    T = long A+B; gep %P, T, ...
      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
      Value *GO1 = GEP.getOperand(1);

      // If they aren't the same type, then the input hasn't been processed
      // by the loop above yet (which canonicalizes sequential index types to
      // intptr_t).  Just avoid transforming this until the input has been
      // normalized.
      if (SO1->getType() != GO1->getType())
        return nullptr;

      Value *Sum =
          SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
      // Only do the combine when we are sure the cost after the
      // merge is never more than that before the merge.
      if (Sum == nullptr)
        return nullptr;

      // Update the GEP in place if possible.
      if (Src->getNumOperands() == 2) {
        GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
        GEP.setOperand(0, Src->getOperand(0));
        GEP.setOperand(1, Sum);
        return &GEP;
      }
      Indices.append(Src->op_begin()+1, Src->op_end()-1);
      Indices.push_back(Sum);
      Indices.append(GEP.op_begin()+2, GEP.op_end());
    } else if (isa<Constant>(*GEP.idx_begin()) &&
               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
               Src->getNumOperands() != 1) {
      // Otherwise we can do the fold if the first index of the GEP is a zero
      Indices.append(Src->op_begin()+1, Src->op_end());
      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
    }

    if (!Indices.empty())
      return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
                 ? GetElementPtrInst::CreateInBounds(
                       Src->getSourceElementType(), Src->getOperand(0), Indices,
                       GEP.getName())
                 : GetElementPtrInst::Create(Src->getSourceElementType(),
                                             Src->getOperand(0), Indices,
                                             GEP.getName());
  }

  if (GEP.getNumIndices() == 1) {
    unsigned AS = GEP.getPointerAddressSpace();
    if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
        DL.getIndexSizeInBits(AS)) {
      uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType);

      bool Matched = false;
      uint64_t C;
      Value *V = nullptr;
      if (TyAllocSize == 1) {
        V = GEP.getOperand(1);
        Matched = true;
      } else if (match(GEP.getOperand(1),
                       m_AShr(m_Value(V), m_ConstantInt(C)))) {
        if (TyAllocSize == 1ULL << C)
          Matched = true;
      } else if (match(GEP.getOperand(1),
                       m_SDiv(m_Value(V), m_ConstantInt(C)))) {
        if (TyAllocSize == C)
          Matched = true;
      }

      if (Matched) {
        // Canonicalize (gep i8* X, -(ptrtoint Y))
        // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
        // The GEP pattern is emitted by the SCEV expander for certain kinds of
        // pointer arithmetic.
        if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
          Operator *Index = cast<Operator>(V);
          Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
          Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
          return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
        }
        // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
        // to (bitcast Y)
        Value *Y;
        if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
                           m_PtrToInt(m_Specific(GEP.getOperand(0))))))
          return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
      }
    }
  }

  // We do not handle pointer-vector geps here.
  if (GEPType->isVectorTy())
    return nullptr;

  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
  Value *StrippedPtr = PtrOp->stripPointerCasts();
  PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());

  if (StrippedPtr != PtrOp) {
    bool HasZeroPointerIndex = false;
    Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();

    if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
      HasZeroPointerIndex = C->isZero();

    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
    // into     : GEP [10 x i8]* X, i32 0, ...
    //
    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
    //           into     : GEP i8* X, ...
    //
    // This occurs when the program declares an array extern like "int X[];"
    if (HasZeroPointerIndex) {
      if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
        if (CATy->getElementType() == StrippedPtrEltTy) {
          // -> GEP i8* X, ...
          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
          GetElementPtrInst *Res = GetElementPtrInst::Create(
              StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
          Res->setIsInBounds(GEP.isInBounds());
          if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
            return Res;
          // Insert Res, and create an addrspacecast.
          // e.g.,
          // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
          // ->
          // %0 = GEP i8 addrspace(1)* X, ...
          // addrspacecast i8 addrspace(1)* %0 to i8*
          return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
        }

        if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
          if (CATy->getElementType() == XATy->getElementType()) {
            // -> GEP [10 x i8]* X, i32 0, ...
            // At this point, we know that the cast source type is a pointer
            // to an array of the same type as the destination pointer
            // array.  Because the array type is never stepped over (there
            // is a leading zero) we can fold the cast into this GEP.
            if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
              GEP.setOperand(0, StrippedPtr);
              GEP.setSourceElementType(XATy);
              return &GEP;
            }
            // Cannot replace the base pointer directly because StrippedPtr's
            // address space is different. Instead, create a new GEP followed by
            // an addrspacecast.
            // e.g.,
            // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
            //   i32 0, ...
            // ->
            // %0 = GEP [10 x i8] addrspace(1)* X, ...
            // addrspacecast i8 addrspace(1)* %0 to i8*
            SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
            Value *NewGEP =
                GEP.isInBounds()
                    ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
                                                Idx, GEP.getName())
                    : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
                                        GEP.getName());
            return new AddrSpaceCastInst(NewGEP, GEPType);
          }
        }
      }
    } else if (GEP.getNumOperands() == 2) {
      // Transform things like:
      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
      if (StrippedPtrEltTy->isArrayTy() &&
          DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
              DL.getTypeAllocSize(GEPEltType)) {
        Type *IdxType = DL.getIndexType(GEPType);
        Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
        Value *NewGEP =
            GEP.isInBounds()
                ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
                                            GEP.getName())
                : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
                                    GEP.getName());

        // V and GEP are both pointer types --> BitCast
        return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
      }

      // Transform things like:
      // %V = mul i64 %N, 4
      // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
      // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
      if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
        // Check that changing the type amounts to dividing the index by a scale
        // factor.
        uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
        uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy);
        if (ResSize && SrcSize % ResSize == 0) {
          Value *Idx = GEP.getOperand(1);
          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
          uint64_t Scale = SrcSize / ResSize;

          // Earlier transforms ensure that the index has the right type
          // according to Data Layout, which considerably simplifies the
          // logic by eliminating implicit casts.
          assert(Idx->getType() == DL.getIndexType(GEPType) &&
                 "Index type does not match the Data Layout preferences");

          bool NSW;
          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
            // If the multiplication NewIdx * Scale may overflow then the new
            // GEP may not be "inbounds".
            Value *NewGEP =
                GEP.isInBounds() && NSW
                    ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
                                                NewIdx, GEP.getName())
                    : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
                                        GEP.getName());

            // The NewGEP must be pointer typed, so must the old one -> BitCast
            return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
                                                                 GEPType);
          }
        }
      }

      // Similarly, transform things like:
      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
      //   (where tmp = 8*tmp2) into:
      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
      if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
          StrippedPtrEltTy->isArrayTy()) {
        // Check that changing to the array element type amounts to dividing the
        // index by a scale factor.
        uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
        uint64_t ArrayEltSize =
            DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType());
        if (ResSize && ArrayEltSize % ResSize == 0) {
          Value *Idx = GEP.getOperand(1);
          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
          uint64_t Scale = ArrayEltSize / ResSize;

          // Earlier transforms ensure that the index has the right type
          // according to the Data Layout, which considerably simplifies
          // the logic by eliminating implicit casts.
          assert(Idx->getType() == DL.getIndexType(GEPType) &&
                 "Index type does not match the Data Layout preferences");

          bool NSW;
          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
            // If the multiplication NewIdx * Scale may overflow then the new
            // GEP may not be "inbounds".
            Type *IndTy = DL.getIndexType(GEPType);
            Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};

            Value *NewGEP =
                GEP.isInBounds() && NSW
                    ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
                                                Off, GEP.getName())
                    : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
                                        GEP.getName());
            // The NewGEP must be pointer typed, so must the old one -> BitCast
            return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
                                                                 GEPType);
          }
        }
      }
    }
  }

  // addrspacecast between types is canonicalized as a bitcast, then an
  // addrspacecast. To take advantage of the below bitcast + struct GEP, look
  // through the addrspacecast.
  Value *ASCStrippedPtrOp = PtrOp;
  if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
    //   X = bitcast A addrspace(1)* to B addrspace(1)*
    //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
    //   Z = gep Y, <...constant indices...>
    // Into an addrspacecasted GEP of the struct.
    if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
      ASCStrippedPtrOp = BC;
  }

  if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
    Value *SrcOp = BCI->getOperand(0);
    PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
    Type *SrcEltType = SrcType->getElementType();

    // GEP directly using the source operand if this GEP is accessing an element
    // of a bitcasted pointer to vector or array of the same dimensions:
    // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
    // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
    auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
                                          const DataLayout &DL) {
      return ArrTy->getArrayElementType() == VecTy->getVectorElementType() &&
             ArrTy->getArrayNumElements() == VecTy->getVectorNumElements() &&
             DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
    };
    if (GEP.getNumOperands() == 3 &&
        ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
          areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
         (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
          areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {

      // Create a new GEP here, as using `setOperand()` followed by
      // `setSourceElementType()` won't actually update the type of the
      // existing GEP Value. Causing issues if this Value is accessed when
      // constructing an AddrSpaceCastInst
      Value *NGEP =
          GEP.isInBounds()
              ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
              : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
      NGEP->takeName(&GEP);

      // Preserve GEP address space to satisfy users
      if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
        return new AddrSpaceCastInst(NGEP, GEPType);

      return replaceInstUsesWith(GEP, NGEP);
    }

    // See if we can simplify:
    //   X = bitcast A* to B*
    //   Y = gep X, <...constant indices...>
    // into a gep of the original struct. This is important for SROA and alias
    // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
    unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
    APInt Offset(OffsetBits, 0);
    if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
      // If this GEP instruction doesn't move the pointer, just replace the GEP
      // with a bitcast of the real input to the dest type.
      if (!Offset) {
        // If the bitcast is of an allocation, and the allocation will be
        // converted to match the type of the cast, don't touch this.
        if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
          if (Instruction *I = visitBitCast(*BCI)) {
            if (I != BCI) {
              I->takeName(BCI);
              BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
              replaceInstUsesWith(*BCI, I);
            }
            return &GEP;
          }
        }

        if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
          return new AddrSpaceCastInst(SrcOp, GEPType);
        return new BitCastInst(SrcOp, GEPType);
      }

      // Otherwise, if the offset is non-zero, we need to find out if there is a
      // field at Offset in 'A's type.  If so, we can pull the cast through the
      // GEP.
      SmallVector<Value*, 8> NewIndices;
      if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
        Value *NGEP =
            GEP.isInBounds()
                ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
                : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);

        if (NGEP->getType() == GEPType)
          return replaceInstUsesWith(GEP, NGEP);
        NGEP->takeName(&GEP);

        if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
          return new AddrSpaceCastInst(NGEP, GEPType);
        return new BitCastInst(NGEP, GEPType);
      }
    }
  }

  if (!GEP.isInBounds()) {
    unsigned IdxWidth =
        DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
    APInt BasePtrOffset(IdxWidth, 0);
    Value *UnderlyingPtrOp =
            PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
                                                             BasePtrOffset);
    if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
      if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
          BasePtrOffset.isNonNegative()) {
        APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
        if (BasePtrOffset.ule(AllocSize)) {
          return GetElementPtrInst::CreateInBounds(
              GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
              GEP.getName());
        }
      }
    }
  }

  return nullptr;
}

static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
                                         Instruction *AI) {
  if (isa<ConstantPointerNull>(V))
    return true;
  if (auto *LI = dyn_cast<LoadInst>(V))
    return isa<GlobalVariable>(LI->getPointerOperand());
  // Two distinct allocations will never be equal.
  // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
  // through bitcasts of V can cause
  // the result statement below to be true, even when AI and V (ex:
  // i8* ->i32* ->i8* of AI) are the same allocations.
  return isAllocLikeFn(V, TLI) && V != AI;
}

static bool isAllocSiteRemovable(Instruction *AI,
                                 SmallVectorImpl<WeakTrackingVH> &Users,
                                 const TargetLibraryInfo *TLI) {
  SmallVector<Instruction*, 4> Worklist;
  Worklist.push_back(AI);

  do {
    Instruction *PI = Worklist.pop_back_val();
    for (User *U : PI->users()) {
      Instruction *I = cast<Instruction>(U);
      switch (I->getOpcode()) {
      default:
        // Give up the moment we see something we can't handle.
        return false;

      case Instruction::AddrSpaceCast:
      case Instruction::BitCast:
      case Instruction::GetElementPtr:
        Users.emplace_back(I);
        Worklist.push_back(I);
        continue;

      case Instruction::ICmp: {
        ICmpInst *ICI = cast<ICmpInst>(I);
        // We can fold eq/ne comparisons with null to false/true, respectively.
        // We also fold comparisons in some conditions provided the alloc has
        // not escaped (see isNeverEqualToUnescapedAlloc).
        if (!ICI->isEquality())
          return false;
        unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
        if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
          return false;
        Users.emplace_back(I);
        continue;
      }

      case Instruction::Call:
        // Ignore no-op and store intrinsics.
        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
          switch (II->getIntrinsicID()) {
          default:
            return false;

          case Intrinsic::memmove:
          case Intrinsic::memcpy:
          case Intrinsic::memset: {
            MemIntrinsic *MI = cast<MemIntrinsic>(II);
            if (MI->isVolatile() || MI->getRawDest() != PI)
              return false;
            LLVM_FALLTHROUGH;
          }
          case Intrinsic::invariant_start:
          case Intrinsic::invariant_end:
          case Intrinsic::lifetime_start:
          case Intrinsic::lifetime_end:
          case Intrinsic::objectsize:
            Users.emplace_back(I);
            continue;
          }
        }

        if (isFreeCall(I, TLI)) {
          Users.emplace_back(I);
          continue;
        }
        return false;

      case Instruction::Store: {
        StoreInst *SI = cast<StoreInst>(I);
        if (SI->isVolatile() || SI->getPointerOperand() != PI)
          return false;
        Users.emplace_back(I);
        continue;
      }
      }
      llvm_unreachable("missing a return?");
    }
  } while (!Worklist.empty());
  return true;
}

Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
  // If we have a malloc call which is only used in any amount of comparisons to
  // null and free calls, delete the calls and replace the comparisons with true
  // or false as appropriate.

  // This is based on the principle that we can substitute our own allocation
  // function (which will never return null) rather than knowledge of the
  // specific function being called. In some sense this can change the permitted
  // outputs of a program (when we convert a malloc to an alloca, the fact that
  // the allocation is now on the stack is potentially visible, for example),
  // but we believe in a permissible manner.
  SmallVector<WeakTrackingVH, 64> Users;

  // If we are removing an alloca with a dbg.declare, insert dbg.value calls
  // before each store.
  TinyPtrVector<DbgVariableIntrinsic *> DIIs;
  std::unique_ptr<DIBuilder> DIB;
  if (isa<AllocaInst>(MI)) {
    DIIs = FindDbgAddrUses(&MI);
    DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
  }

  if (isAllocSiteRemovable(&MI, Users, &TLI)) {
    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
      // Lowering all @llvm.objectsize calls first because they may
      // use a bitcast/GEP of the alloca we are removing.
      if (!Users[i])
       continue;

      Instruction *I = cast<Instruction>(&*Users[i]);

      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
        if (II->getIntrinsicID() == Intrinsic::objectsize) {
          Value *Result =
              lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
          replaceInstUsesWith(*I, Result);
          eraseInstFromFunction(*I);
          Users[i] = nullptr; // Skip examining in the next loop.
        }
      }
    }
    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
      if (!Users[i])
        continue;

      Instruction *I = cast<Instruction>(&*Users[i]);

      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
        replaceInstUsesWith(*C,
                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
                                             C->isFalseWhenEqual()));
      } else if (auto *SI = dyn_cast<StoreInst>(I)) {
        for (auto *DII : DIIs)
          ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
      } else {
        // Casts, GEP, or anything else: we're about to delete this instruction,
        // so it can not have any valid uses.
        replaceInstUsesWith(*I, UndefValue::get(I->getType()));
      }
      eraseInstFromFunction(*I);
    }

    if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
      // Replace invoke with a NOP intrinsic to maintain the original CFG
      Module *M = II->getModule();
      Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
      InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
                         None, "", II->getParent());
    }

    for (auto *DII : DIIs)
      eraseInstFromFunction(*DII);

    return eraseInstFromFunction(MI);
  }
  return nullptr;
}

/// Move the call to free before a NULL test.
///
/// Check if this free is accessed after its argument has been test
/// against NULL (property 0).
/// If yes, it is legal to move this call in its predecessor block.
///
/// The move is performed only if the block containing the call to free
/// will be removed, i.e.:
/// 1. it has only one predecessor P, and P has two successors
/// 2. it contains the call, noops, and an unconditional branch
/// 3. its successor is the same as its predecessor's successor
///
/// The profitability is out-of concern here and this function should
/// be called only if the caller knows this transformation would be
/// profitable (e.g., for code size).
static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
                                                const DataLayout &DL) {
  Value *Op = FI.getArgOperand(0);
  BasicBlock *FreeInstrBB = FI.getParent();
  BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();

  // Validate part of constraint #1: Only one predecessor
  // FIXME: We can extend the number of predecessor, but in that case, we
  //        would duplicate the call to free in each predecessor and it may
  //        not be profitable even for code size.
  if (!PredBB)
    return nullptr;

  // Validate constraint #2: Does this block contains only the call to
  //                         free, noops, and an unconditional branch?
  BasicBlock *SuccBB;
  Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
  if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
    return nullptr;

  // If there are only 2 instructions in the block, at this point,
  // this is the call to free and unconditional.
  // If there are more than 2 instructions, check that they are noops
  // i.e., they won't hurt the performance of the generated code.
  if (FreeInstrBB->size() != 2) {
    for (const Instruction &Inst : *FreeInstrBB) {
      if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
        continue;
      auto *Cast = dyn_cast<CastInst>(&Inst);
      if (!Cast || !Cast->isNoopCast(DL))
        return nullptr;
    }
  }
  // Validate the rest of constraint #1 by matching on the pred branch.
  Instruction *TI = PredBB->getTerminator();
  BasicBlock *TrueBB, *FalseBB;
  ICmpInst::Predicate Pred;
  if (!match(TI, m_Br(m_ICmp(Pred,
                             m_CombineOr(m_Specific(Op),
                                         m_Specific(Op->stripPointerCasts())),
                             m_Zero()),
                      TrueBB, FalseBB)))
    return nullptr;
  if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
    return nullptr;

  // Validate constraint #3: Ensure the null case just falls through.
  if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
    return nullptr;
  assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
         "Broken CFG: missing edge from predecessor to successor");

  // At this point, we know that everything in FreeInstrBB can be moved
  // before TI.
  for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
       It != End;) {
    Instruction &Instr = *It++;
    if (&Instr == FreeInstrBBTerminator)
      break;
    Instr.moveBefore(TI);
  }
  assert(FreeInstrBB->size() == 1 &&
         "Only the branch instruction should remain");
  return &FI;
}

Instruction *InstCombiner::visitFree(CallInst &FI) {
  Value *Op = FI.getArgOperand(0);

  // free undef -> unreachable.
  if (isa<UndefValue>(Op)) {
    // Leave a marker since we can't modify the CFG here.
    CreateNonTerminatorUnreachable(&FI);
    return eraseInstFromFunction(FI);
  }

  // If we have 'free null' delete the instruction.  This can happen in stl code
  // when lots of inlining happens.
  if (isa<ConstantPointerNull>(Op))
    return eraseInstFromFunction(FI);

  // If we optimize for code size, try to move the call to free before the null
  // test so that simplify cfg can remove the empty block and dead code
  // elimination the branch. I.e., helps to turn something like:
  // if (foo) free(foo);
  // into
  // free(foo);
  if (MinimizeSize)
    if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
      return I;

  return nullptr;
}

Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
  if (RI.getNumOperands() == 0) // ret void
    return nullptr;

  Value *ResultOp = RI.getOperand(0);
  Type *VTy = ResultOp->getType();
  if (!VTy->isIntegerTy())
    return nullptr;

  // There might be assume intrinsics dominating this return that completely
  // determine the value. If so, constant fold it.
  KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
  if (Known.isConstant())
    RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant()));

  return nullptr;
}

Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
  // Change br (not X), label True, label False to: br X, label False, True
  Value *X = nullptr;
  if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
      !isa<Constant>(X)) {
    // Swap Destinations and condition...
    BI.setCondition(X);
    BI.swapSuccessors();
    return &BI;
  }

  // If the condition is irrelevant, remove the use so that other
  // transforms on the condition become more effective.
  if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) &&
      BI.getSuccessor(0) == BI.getSuccessor(1)) {
    BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType()));
    return &BI;
  }

  // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
  CmpInst::Predicate Pred;
  if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())),
                      m_BasicBlock(), m_BasicBlock())) &&
      !isCanonicalPredicate(Pred)) {
    // Swap destinations and condition.
    CmpInst *Cond = cast<CmpInst>(BI.getCondition());
    Cond->setPredicate(CmpInst::getInversePredicate(Pred));
    BI.swapSuccessors();
    Worklist.Add(Cond);
    return &BI;
  }

  return nullptr;
}

Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
  Value *Cond = SI.getCondition();
  Value *Op0;
  ConstantInt *AddRHS;
  if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
    // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
    for (auto Case : SI.cases()) {
      Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
      assert(isa<ConstantInt>(NewCase) &&
             "Result of expression should be constant");
      Case.setValue(cast<ConstantInt>(NewCase));
    }
    SI.setCondition(Op0);
    return &SI;
  }

  KnownBits Known = computeKnownBits(Cond, 0, &SI);
  unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
  unsigned LeadingKnownOnes = Known.countMinLeadingOnes();

  // Compute the number of leading bits we can ignore.
  // TODO: A better way to determine this would use ComputeNumSignBits().
  for (auto &C : SI.cases()) {
    LeadingKnownZeros = std::min(
        LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
    LeadingKnownOnes = std::min(
        LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
  }

  unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);

  // Shrink the condition operand if the new type is smaller than the old type.
  // But do not shrink to a non-standard type, because backend can't generate 
  // good code for that yet.
  // TODO: We can make it aggressive again after fixing PR39569.
  if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
      shouldChangeType(Known.getBitWidth(), NewWidth)) {
    IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
    Builder.SetInsertPoint(&SI);
    Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
    SI.setCondition(NewCond);

    for (auto Case : SI.cases()) {
      APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
      Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
    }
    return &SI;
  }

  return nullptr;
}

Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
  Value *Agg = EV.getAggregateOperand();

  if (!EV.hasIndices())
    return replaceInstUsesWith(EV, Agg);

  if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
                                          SQ.getWithInstruction(&EV)))
    return replaceInstUsesWith(EV, V);

  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
    // We're extracting from an insertvalue instruction, compare the indices
    const unsigned *exti, *exte, *insi, *inse;
    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
         exte = EV.idx_end(), inse = IV->idx_end();
         exti != exte && insi != inse;
         ++exti, ++insi) {
      if (*insi != *exti)
        // The insert and extract both reference distinctly different elements.
        // This means the extract is not influenced by the insert, and we can
        // replace the aggregate operand of the extract with the aggregate
        // operand of the insert. i.e., replace
        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
        // %E = extractvalue { i32, { i32 } } %I, 0
        // with
        // %E = extractvalue { i32, { i32 } } %A, 0
        return ExtractValueInst::Create(IV->getAggregateOperand(),
                                        EV.getIndices());
    }
    if (exti == exte && insi == inse)
      // Both iterators are at the end: Index lists are identical. Replace
      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
      // %C = extractvalue { i32, { i32 } } %B, 1, 0
      // with "i32 42"
      return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
    if (exti == exte) {
      // The extract list is a prefix of the insert list. i.e. replace
      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
      // %E = extractvalue { i32, { i32 } } %I, 1
      // with
      // %X = extractvalue { i32, { i32 } } %A, 1
      // %E = insertvalue { i32 } %X, i32 42, 0
      // by switching the order of the insert and extract (though the
      // insertvalue should be left in, since it may have other uses).
      Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
                                                EV.getIndices());
      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
                                     makeArrayRef(insi, inse));
    }
    if (insi == inse)
      // The insert list is a prefix of the extract list
      // We can simply remove the common indices from the extract and make it
      // operate on the inserted value instead of the insertvalue result.
      // i.e., replace
      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
      // %E = extractvalue { i32, { i32 } } %I, 1, 0
      // with
      // %E extractvalue { i32 } { i32 42 }, 0
      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
                                      makeArrayRef(exti, exte));
  }
  if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
    // We're extracting from an overflow intrinsic, see if we're the only user,
    // which allows us to simplify multiple result intrinsics to simpler
    // things that just get one value.
    if (WO->hasOneUse()) {
      // Check if we're grabbing only the result of a 'with overflow' intrinsic
      // and replace it with a traditional binary instruction.
      if (*EV.idx_begin() == 0) {
        Instruction::BinaryOps BinOp = WO->getBinaryOp();
        Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
        replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
        eraseInstFromFunction(*WO);
        return BinaryOperator::Create(BinOp, LHS, RHS);
      }

      // If the normal result of the add is dead, and the RHS is a constant,
      // we can transform this into a range comparison.
      // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
      if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
        if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
          return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
                              ConstantExpr::getNot(CI));
    }
  }
  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
    // If the (non-volatile) load only has one use, we can rewrite this to a
    // load from a GEP. This reduces the size of the load. If a load is used
    // only by extractvalue instructions then this either must have been
    // optimized before, or it is a struct with padding, in which case we
    // don't want to do the transformation as it loses padding knowledge.
    if (L->isSimple() && L->hasOneUse()) {
      // extractvalue has integer indices, getelementptr has Value*s. Convert.
      SmallVector<Value*, 4> Indices;
      // Prefix an i32 0 since we need the first element.
      Indices.push_back(Builder.getInt32(0));
      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
            I != E; ++I)
        Indices.push_back(Builder.getInt32(*I));

      // We need to insert these at the location of the old load, not at that of
      // the extractvalue.
      Builder.SetInsertPoint(L);
      Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
                                             L->getPointerOperand(), Indices);
      Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
      // Whatever aliasing information we had for the orignal load must also
      // hold for the smaller load, so propagate the annotations.
      AAMDNodes Nodes;
      L->getAAMetadata(Nodes);
      NL->setAAMetadata(Nodes);
      // Returning the load directly will cause the main loop to insert it in
      // the wrong spot, so use replaceInstUsesWith().
      return replaceInstUsesWith(EV, NL);
    }
  // We could simplify extracts from other values. Note that nested extracts may
  // already be simplified implicitly by the above: extract (extract (insert) )
  // will be translated into extract ( insert ( extract ) ) first and then just
  // the value inserted, if appropriate. Similarly for extracts from single-use
  // loads: extract (extract (load)) will be translated to extract (load (gep))
  // and if again single-use then via load (gep (gep)) to load (gep).
  // However, double extracts from e.g. function arguments or return values
  // aren't handled yet.
  return nullptr;
}

/// Return 'true' if the given typeinfo will match anything.
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
  switch (Personality) {
  case EHPersonality::GNU_C:
  case EHPersonality::GNU_C_SjLj:
  case EHPersonality::Rust:
    // The GCC C EH and Rust personality only exists to support cleanups, so
    // it's not clear what the semantics of catch clauses are.
    return false;
  case EHPersonality::Unknown:
    return false;
  case EHPersonality::GNU_Ada:
    // While __gnat_all_others_value will match any Ada exception, it doesn't
    // match foreign exceptions (or didn't, before gcc-4.7).
    return false;
  case EHPersonality::GNU_CXX:
  case EHPersonality::GNU_CXX_SjLj:
  case EHPersonality::GNU_ObjC:
  case EHPersonality::MSVC_X86SEH:
  case EHPersonality::MSVC_Win64SEH:
  case EHPersonality::MSVC_CXX:
  case EHPersonality::CoreCLR:
  case EHPersonality::Wasm_CXX:
    return TypeInfo->isNullValue();
  }
  llvm_unreachable("invalid enum");
}

static bool shorter_filter(const Value *LHS, const Value *RHS) {
  return
    cast<ArrayType>(LHS->getType())->getNumElements()
  <
    cast<ArrayType>(RHS->getType())->getNumElements();
}

Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
  // The logic here should be correct for any real-world personality function.
  // However if that turns out not to be true, the offending logic can always
  // be conditioned on the personality function, like the catch-all logic is.
  EHPersonality Personality =
      classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());

  // Simplify the list of clauses, eg by removing repeated catch clauses
  // (these are often created by inlining).
  bool MakeNewInstruction = false; // If true, recreate using the following:
  SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.

  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
    bool isLastClause = i + 1 == e;
    if (LI.isCatch(i)) {
      // A catch clause.
      Constant *CatchClause = LI.getClause(i);
      Constant *TypeInfo = CatchClause->stripPointerCasts();

      // If we already saw this clause, there is no point in having a second
      // copy of it.
      if (AlreadyCaught.insert(TypeInfo).second) {
        // This catch clause was not already seen.
        NewClauses.push_back(CatchClause);
      } else {
        // Repeated catch clause - drop the redundant copy.
        MakeNewInstruction = true;
      }

      // If this is a catch-all then there is no point in keeping any following
      // clauses or marking the landingpad as having a cleanup.
      if (isCatchAll(Personality, TypeInfo)) {
        if (!isLastClause)
          MakeNewInstruction = true;
        CleanupFlag = false;
        break;
      }
    } else {
      // A filter clause.  If any of the filter elements were already caught
      // then they can be dropped from the filter.  It is tempting to try to
      // exploit the filter further by saying that any typeinfo that does not
      // occur in the filter can't be caught later (and thus can be dropped).
      // However this would be wrong, since typeinfos can match without being
      // equal (for example if one represents a C++ class, and the other some
      // class derived from it).
      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
      Constant *FilterClause = LI.getClause(i);
      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
      unsigned NumTypeInfos = FilterType->getNumElements();

      // An empty filter catches everything, so there is no point in keeping any
      // following clauses or marking the landingpad as having a cleanup.  By
      // dealing with this case here the following code is made a bit simpler.
      if (!NumTypeInfos) {
        NewClauses.push_back(FilterClause);
        if (!isLastClause)
          MakeNewInstruction = true;
        CleanupFlag = false;
        break;
      }

      bool MakeNewFilter = false; // If true, make a new filter.
      SmallVector<Constant *, 16> NewFilterElts; // New elements.
      if (isa<ConstantAggregateZero>(FilterClause)) {
        // Not an empty filter - it contains at least one null typeinfo.
        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
        Constant *TypeInfo =
          Constant::getNullValue(FilterType->getElementType());
        // If this typeinfo is a catch-all then the filter can never match.
        if (isCatchAll(Personality, TypeInfo)) {
          // Throw the filter away.
          MakeNewInstruction = true;
          continue;
        }

        // There is no point in having multiple copies of this typeinfo, so
        // discard all but the first copy if there is more than one.
        NewFilterElts.push_back(TypeInfo);
        if (NumTypeInfos > 1)
          MakeNewFilter = true;
      } else {
        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
        NewFilterElts.reserve(NumTypeInfos);

        // Remove any filter elements that were already caught or that already
        // occurred in the filter.  While there, see if any of the elements are
        // catch-alls.  If so, the filter can be discarded.
        bool SawCatchAll = false;
        for (unsigned j = 0; j != NumTypeInfos; ++j) {
          Constant *Elt = Filter->getOperand(j);
          Constant *TypeInfo = Elt->stripPointerCasts();
          if (isCatchAll(Personality, TypeInfo)) {
            // This element is a catch-all.  Bail out, noting this fact.
            SawCatchAll = true;
            break;
          }

          // Even if we've seen a type in a catch clause, we don't want to
          // remove it from the filter.  An unexpected type handler may be
          // set up for a call site which throws an exception of the same
          // type caught.  In order for the exception thrown by the unexpected
          // handler to propagate correctly, the filter must be correctly
          // described for the call site.
          //
          // Example:
          //
          // void unexpected() { throw 1;}
          // void foo() throw (int) {
          //   std::set_unexpected(unexpected);
          //   try {
          //     throw 2.0;
          //   } catch (int i) {}
          // }

          // There is no point in having multiple copies of the same typeinfo in
          // a filter, so only add it if we didn't already.
          if (SeenInFilter.insert(TypeInfo).second)
            NewFilterElts.push_back(cast<Constant>(Elt));
        }
        // A filter containing a catch-all cannot match anything by definition.
        if (SawCatchAll) {
          // Throw the filter away.
          MakeNewInstruction = true;
          continue;
        }

        // If we dropped something from the filter, make a new one.
        if (NewFilterElts.size() < NumTypeInfos)
          MakeNewFilter = true;
      }
      if (MakeNewFilter) {
        FilterType = ArrayType::get(FilterType->getElementType(),
                                    NewFilterElts.size());
        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
        MakeNewInstruction = true;
      }

      NewClauses.push_back(FilterClause);

      // If the new filter is empty then it will catch everything so there is
      // no point in keeping any following clauses or marking the landingpad
      // as having a cleanup.  The case of the original filter being empty was
      // already handled above.
      if (MakeNewFilter && !NewFilterElts.size()) {
        assert(MakeNewInstruction && "New filter but not a new instruction!");
        CleanupFlag = false;
        break;
      }
    }
  }

  // If several filters occur in a row then reorder them so that the shortest
  // filters come first (those with the smallest number of elements).  This is
  // advantageous because shorter filters are more likely to match, speeding up
  // unwinding, but mostly because it increases the effectiveness of the other
  // filter optimizations below.
  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
    unsigned j;
    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
    for (j = i; j != e; ++j)
      if (!isa<ArrayType>(NewClauses[j]->getType()))
        break;

    // Check whether the filters are already sorted by length.  We need to know
    // if sorting them is actually going to do anything so that we only make a
    // new landingpad instruction if it does.
    for (unsigned k = i; k + 1 < j; ++k)
      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
        // Not sorted, so sort the filters now.  Doing an unstable sort would be
        // correct too but reordering filters pointlessly might confuse users.
        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
                         shorter_filter);
        MakeNewInstruction = true;
        break;
      }

    // Look for the next batch of filters.
    i = j + 1;
  }

  // If typeinfos matched if and only if equal, then the elements of a filter L
  // that occurs later than a filter F could be replaced by the intersection of
  // the elements of F and L.  In reality two typeinfos can match without being
  // equal (for example if one represents a C++ class, and the other some class
  // derived from it) so it would be wrong to perform this transform in general.
  // However the transform is correct and useful if F is a subset of L.  In that
  // case L can be replaced by F, and thus removed altogether since repeating a
  // filter is pointless.  So here we look at all pairs of filters F and L where
  // L follows F in the list of clauses, and remove L if every element of F is
  // an element of L.  This can occur when inlining C++ functions with exception
  // specifications.
  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
    // Examine each filter in turn.
    Value *Filter = NewClauses[i];
    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
    if (!FTy)
      // Not a filter - skip it.
      continue;
    unsigned FElts = FTy->getNumElements();
    // Examine each filter following this one.  Doing this backwards means that
    // we don't have to worry about filters disappearing under us when removed.
    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
      Value *LFilter = NewClauses[j];
      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
      if (!LTy)
        // Not a filter - skip it.
        continue;
      // If Filter is a subset of LFilter, i.e. every element of Filter is also
      // an element of LFilter, then discard LFilter.
      SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
      // If Filter is empty then it is a subset of LFilter.
      if (!FElts) {
        // Discard LFilter.
        NewClauses.erase(J);
        MakeNewInstruction = true;
        // Move on to the next filter.
        continue;
      }
      unsigned LElts = LTy->getNumElements();
      // If Filter is longer than LFilter then it cannot be a subset of it.
      if (FElts > LElts)
        // Move on to the next filter.
        continue;
      // At this point we know that LFilter has at least one element.
      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
        // Filter is a subset of LFilter iff Filter contains only zeros (as we
        // already know that Filter is not longer than LFilter).
        if (isa<ConstantAggregateZero>(Filter)) {
          assert(FElts <= LElts && "Should have handled this case earlier!");
          // Discard LFilter.
          NewClauses.erase(J);
          MakeNewInstruction = true;
        }
        // Move on to the next filter.
        continue;
      }
      ConstantArray *LArray = cast<ConstantArray>(LFilter);
      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
        // Since Filter is non-empty and contains only zeros, it is a subset of
        // LFilter iff LFilter contains a zero.
        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
        for (unsigned l = 0; l != LElts; ++l)
          if (LArray->getOperand(l)->isNullValue()) {
            // LFilter contains a zero - discard it.
            NewClauses.erase(J);
            MakeNewInstruction = true;
            break;
          }
        // Move on to the next filter.
        continue;
      }
      // At this point we know that both filters are ConstantArrays.  Loop over
      // operands to see whether every element of Filter is also an element of
      // LFilter.  Since filters tend to be short this is probably faster than
      // using a method that scales nicely.
      ConstantArray *FArray = cast<ConstantArray>(Filter);
      bool AllFound = true;
      for (unsigned f = 0; f != FElts; ++f) {
        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
        AllFound = false;
        for (unsigned l = 0; l != LElts; ++l) {
          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
          if (LTypeInfo == FTypeInfo) {
            AllFound = true;
            break;
          }
        }
        if (!AllFound)
          break;
      }
      if (AllFound) {
        // Discard LFilter.
        NewClauses.erase(J);
        MakeNewInstruction = true;
      }
      // Move on to the next filter.
    }
  }

  // If we changed any of the clauses, replace the old landingpad instruction
  // with a new one.
  if (MakeNewInstruction) {
    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
                                                 NewClauses.size());
    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
      NLI->addClause(NewClauses[i]);
    // A landing pad with no clauses must have the cleanup flag set.  It is
    // theoretically possible, though highly unlikely, that we eliminated all
    // clauses.  If so, force the cleanup flag to true.
    if (NewClauses.empty())
      CleanupFlag = true;
    NLI->setCleanup(CleanupFlag);
    return NLI;
  }

  // Even if none of the clauses changed, we may nonetheless have understood
  // that the cleanup flag is pointless.  Clear it if so.
  if (LI.isCleanup() != CleanupFlag) {
    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
    LI.setCleanup(CleanupFlag);
    return &LI;
  }

  return nullptr;
}

Instruction *InstCombiner::visitFreeze(FreezeInst &I) {
  Value *Op0 = I.getOperand(0);

  if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  return nullptr;
}

/// Try to move the specified instruction from its current block into the
/// beginning of DestBlock, which can only happen if it's safe to move the
/// instruction past all of the instructions between it and the end of its
/// block.
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
  assert(I->hasOneUse() && "Invariants didn't hold!");
  BasicBlock *SrcBlock = I->getParent();

  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
  if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
      I->isTerminator())
    return false;

  // Do not sink static or dynamic alloca instructions. Static allocas must
  // remain in the entry block, and dynamic allocas must not be sunk in between
  // a stacksave / stackrestore pair, which would incorrectly shorten its
  // lifetime.
  if (isa<AllocaInst>(I))
    return false;

  // Do not sink into catchswitch blocks.
  if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
    return false;

  // Do not sink convergent call instructions.
  if (auto *CI = dyn_cast<CallInst>(I)) {
    if (CI->isConvergent())
      return false;
  }
  // We can only sink load instructions if there is nothing between the load and
  // the end of block that could change the value.
  if (I->mayReadFromMemory()) {
    for (BasicBlock::iterator Scan = I->getIterator(),
                              E = I->getParent()->end();
         Scan != E; ++Scan)
      if (Scan->mayWriteToMemory())
        return false;
  }
  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
  I->moveBefore(&*InsertPos);
  ++NumSunkInst;

  // Also sink all related debug uses from the source basic block. Otherwise we
  // get debug use before the def. Attempt to salvage debug uses first, to
  // maximise the range variables have location for. If we cannot salvage, then
  // mark the location undef: we know it was supposed to receive a new location
  // here, but that computation has been sunk.
  SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
  findDbgUsers(DbgUsers, I);
  for (auto *DII : reverse(DbgUsers)) {
    if (DII->getParent() == SrcBlock) {
      if (isa<DbgDeclareInst>(DII)) {
        // A dbg.declare instruction should not be cloned, since there can only be
        // one per variable fragment. It should be left in the original place since
        // sunk instruction is not an alloca(otherwise we could not be here).
        // But we need to update arguments of dbg.declare instruction, so that it
        // would not point into sunk instruction.
        if (!isa<CastInst>(I))
          continue; // dbg.declare points at something it shouldn't

        DII->setOperand(
            0, MetadataAsValue::get(I->getContext(),
                                    ValueAsMetadata::get(I->getOperand(0))));
        continue;
      }

      // dbg.value is in the same basic block as the sunk inst, see if we can
      // salvage it. Clone a new copy of the instruction: on success we need
      // both salvaged and unsalvaged copies.
      SmallVector<DbgVariableIntrinsic *, 1> TmpUser{
          cast<DbgVariableIntrinsic>(DII->clone())};

      if (!salvageDebugInfoForDbgValues(*I, TmpUser)) {
        // We are unable to salvage: sink the cloned dbg.value, and mark the
        // original as undef, terminating any earlier variable location.
        LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
        TmpUser[0]->insertBefore(&*InsertPos);
        Value *Undef = UndefValue::get(I->getType());
        DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
                                                ValueAsMetadata::get(Undef)));
      } else {
        // We successfully salvaged: place the salvaged dbg.value in the
        // original location, and move the unmodified dbg.value to sink with
        // the sunk inst.
        TmpUser[0]->insertBefore(DII);
        DII->moveBefore(&*InsertPos);
      }
    }
  }
  return true;
}

bool InstCombiner::run() {
  while (!Worklist.isEmpty()) {
    Instruction *I = Worklist.RemoveOne();
    if (I == nullptr) continue;  // skip null values.

    // Check to see if we can DCE the instruction.
    if (isInstructionTriviallyDead(I, &TLI)) {
      LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
      eraseInstFromFunction(*I);
      ++NumDeadInst;
      MadeIRChange = true;
      continue;
    }

    if (!DebugCounter::shouldExecute(VisitCounter))
      continue;

    // Instruction isn't dead, see if we can constant propagate it.
    if (!I->use_empty() &&
        (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
      if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
        LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
                          << '\n');

        // Add operands to the worklist.
        replaceInstUsesWith(*I, C);
        ++NumConstProp;
        if (isInstructionTriviallyDead(I, &TLI))
          eraseInstFromFunction(*I);
        MadeIRChange = true;
        continue;
      }
    }

    // In general, it is possible for computeKnownBits to determine all bits in
    // a value even when the operands are not all constants.
    Type *Ty = I->getType();
    if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
      KnownBits Known = computeKnownBits(I, /*Depth*/0, I);
      if (Known.isConstant()) {
        Constant *C = ConstantInt::get(Ty, Known.getConstant());
        LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
                          << " from: " << *I << '\n');

        // Add operands to the worklist.
        replaceInstUsesWith(*I, C);
        ++NumConstProp;
        if (isInstructionTriviallyDead(I, &TLI))
          eraseInstFromFunction(*I);
        MadeIRChange = true;
        continue;
      }
    }

    // See if we can trivially sink this instruction to a successor basic block.
    if (EnableCodeSinking && I->hasOneUse()) {
      BasicBlock *BB = I->getParent();
      Instruction *UserInst = cast<Instruction>(*I->user_begin());
      BasicBlock *UserParent;

      // Get the block the use occurs in.
      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
        UserParent = PN->getIncomingBlock(*I->use_begin());
      else
        UserParent = UserInst->getParent();

      if (UserParent != BB) {
        bool UserIsSuccessor = false;
        // See if the user is one of our successors.
        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
          if (*SI == UserParent) {
            UserIsSuccessor = true;
            break;
          }

        // If the user is one of our immediate successors, and if that successor
        // only has us as a predecessors (we'd have to split the critical edge
        // otherwise), we can keep going.
        if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
          // Okay, the CFG is simple enough, try to sink this instruction.
          if (TryToSinkInstruction(I, UserParent)) {
            LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
            MadeIRChange = true;
            // We'll add uses of the sunk instruction below, but since sinking
            // can expose opportunities for it's *operands* add them to the
            // worklist
            for (Use &U : I->operands())
              if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
                Worklist.Add(OpI);
          }
        }
      }
    }

    // Now that we have an instruction, try combining it to simplify it.
    Builder.SetInsertPoint(I);
    Builder.SetCurrentDebugLocation(I->getDebugLoc());

#ifndef NDEBUG
    std::string OrigI;
#endif
    LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
    LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');

    if (Instruction *Result = visit(*I)) {
      ++NumCombined;
      // Should we replace the old instruction with a new one?
      if (Result != I) {
        LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
                          << "    New = " << *Result << '\n');

        if (I->getDebugLoc())
          Result->setDebugLoc(I->getDebugLoc());
        // Everything uses the new instruction now.
        I->replaceAllUsesWith(Result);

        // Move the name to the new instruction first.
        Result->takeName(I);

        // Insert the new instruction into the basic block...
        BasicBlock *InstParent = I->getParent();
        BasicBlock::iterator InsertPos = I->getIterator();

        // If we replace a PHI with something that isn't a PHI, fix up the
        // insertion point.
        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
          InsertPos = InstParent->getFirstInsertionPt();

        InstParent->getInstList().insert(InsertPos, Result);

        // Push the new instruction and any users onto the worklist.
        Worklist.AddUsersToWorkList(*Result);
        Worklist.Add(Result);

        eraseInstFromFunction(*I);
      } else {
        LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
                          << "    New = " << *I << '\n');

        // If the instruction was modified, it's possible that it is now dead.
        // if so, remove it.
        if (isInstructionTriviallyDead(I, &TLI)) {
          eraseInstFromFunction(*I);
        } else {
          Worklist.AddUsersToWorkList(*I);
          Worklist.Add(I);
        }
      }
      MadeIRChange = true;
    }
  }

  Worklist.Zap();
  return MadeIRChange;
}

/// Walk the function in depth-first order, adding all reachable code to the
/// worklist.
///
/// This has a couple of tricks to make the code faster and more powerful.  In
/// particular, we constant fold and DCE instructions as we go, to avoid adding
/// them to the worklist (this significantly speeds up instcombine on code where
/// many instructions are dead or constant).  Additionally, if we find a branch
/// whose condition is a known constant, we only visit the reachable successors.
static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
                                       SmallPtrSetImpl<BasicBlock *> &Visited,
                                       InstCombineWorklist &ICWorklist,
                                       const TargetLibraryInfo *TLI) {
  bool MadeIRChange = false;
  SmallVector<BasicBlock*, 256> Worklist;
  Worklist.push_back(BB);

  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
  DenseMap<Constant *, Constant *> FoldedConstants;

  do {
    BB = Worklist.pop_back_val();

    // We have now visited this block!  If we've already been here, ignore it.
    if (!Visited.insert(BB).second)
      continue;

    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
      Instruction *Inst = &*BBI++;

      // DCE instruction if trivially dead.
      if (isInstructionTriviallyDead(Inst, TLI)) {
        ++NumDeadInst;
        LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
        salvageDebugInfoOrMarkUndef(*Inst);
        Inst->eraseFromParent();
        MadeIRChange = true;
        continue;
      }

      // ConstantProp instruction if trivially constant.
      if (!Inst->use_empty() &&
          (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
        if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
          LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
                            << '\n');
          Inst->replaceAllUsesWith(C);
          ++NumConstProp;
          if (isInstructionTriviallyDead(Inst, TLI))
            Inst->eraseFromParent();
          MadeIRChange = true;
          continue;
        }

      // See if we can constant fold its operands.
      for (Use &U : Inst->operands()) {
        if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
          continue;

        auto *C = cast<Constant>(U);
        Constant *&FoldRes = FoldedConstants[C];
        if (!FoldRes)
          FoldRes = ConstantFoldConstant(C, DL, TLI);
        if (!FoldRes)
          FoldRes = C;

        if (FoldRes != C) {
          LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
                            << "\n    Old = " << *C
                            << "\n    New = " << *FoldRes << '\n');
          U = FoldRes;
          MadeIRChange = true;
        }
      }

      // Skip processing debug intrinsics in InstCombine. Processing these call instructions
      // consumes non-trivial amount of time and provides no value for the optimization.
      if (!isa<DbgInfoIntrinsic>(Inst))
        InstrsForInstCombineWorklist.push_back(Inst);
    }

    // Recursively visit successors.  If this is a branch or switch on a
    // constant, only visit the reachable successor.
    Instruction *TI = BB->getTerminator();
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
        Worklist.push_back(ReachableBB);
        continue;
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
        Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
        continue;
      }
    }

    for (BasicBlock *SuccBB : successors(TI))
      Worklist.push_back(SuccBB);
  } while (!Worklist.empty());

  // Once we've found all of the instructions to add to instcombine's worklist,
  // add them in reverse order.  This way instcombine will visit from the top
  // of the function down.  This jives well with the way that it adds all uses
  // of instructions to the worklist after doing a transformation, thus avoiding
  // some N^2 behavior in pathological cases.
  ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);

  return MadeIRChange;
}

/// Populate the IC worklist from a function, and prune any dead basic
/// blocks discovered in the process.
///
/// This also does basic constant propagation and other forward fixing to make
/// the combiner itself run much faster.
static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
                                          TargetLibraryInfo *TLI,
                                          InstCombineWorklist &ICWorklist) {
  bool MadeIRChange = false;

  // Do a depth-first traversal of the function, populate the worklist with
  // the reachable instructions.  Ignore blocks that are not reachable.  Keep
  // track of which blocks we visit.
  SmallPtrSet<BasicBlock *, 32> Visited;
  MadeIRChange |=
      AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);

  // Do a quick scan over the function.  If we find any blocks that are
  // unreachable, remove any instructions inside of them.  This prevents
  // the instcombine code from having to deal with some bad special cases.
  for (BasicBlock &BB : F) {
    if (Visited.count(&BB))
      continue;

    unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
    MadeIRChange |= NumDeadInstInBB > 0;
    NumDeadInst += NumDeadInstInBB;
  }

  return MadeIRChange;
}

static bool combineInstructionsOverFunction(
    Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
    AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
    OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
    ProfileSummaryInfo *PSI, bool ExpensiveCombines, unsigned MaxIterations,
    LoopInfo *LI) {
  auto &DL = F.getParent()->getDataLayout();
  if (EnableExpensiveCombines.getNumOccurrences())
    ExpensiveCombines = EnableExpensiveCombines;
  MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());

  /// Builder - This is an IRBuilder that automatically inserts new
  /// instructions into the worklist when they are created.
  IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
      F.getContext(), TargetFolder(DL),
      IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
        Worklist.Add(I);
        if (match(I, m_Intrinsic<Intrinsic::assume>()))
          AC.registerAssumption(cast<CallInst>(I));
      }));

  // Lower dbg.declare intrinsics otherwise their value may be clobbered
  // by instcombiner.
  bool MadeIRChange = false;
  if (ShouldLowerDbgDeclare)
    MadeIRChange = LowerDbgDeclare(F);

  // Iterate while there is work to do.
  unsigned Iteration = 0;
  while (true) {
    ++Iteration;

    if (Iteration > InfiniteLoopDetectionThreshold) {
      report_fatal_error(
          "Instruction Combining seems stuck in an infinite loop after " +
          Twine(InfiniteLoopDetectionThreshold) + " iterations.");
    }

    if (Iteration > MaxIterations) {
      LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
                        << " on " << F.getName()
                        << " reached; stopping before reaching a fixpoint\n");
      break;
    }

    LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
                      << F.getName() << "\n");

    MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);

    InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA,
                    AC, TLI, DT, ORE, BFI, PSI, DL, LI);
    IC.MaxArraySizeForCombine = MaxArraySize;

    if (!IC.run())
      break;

    MadeIRChange = true;
  }

  return MadeIRChange;
}

InstCombinePass::InstCombinePass(bool ExpensiveCombines)
    : ExpensiveCombines(ExpensiveCombines), MaxIterations(LimitMaxIterations) {}

InstCombinePass::InstCombinePass(bool ExpensiveCombines, unsigned MaxIterations)
    : ExpensiveCombines(ExpensiveCombines), MaxIterations(MaxIterations) {}

PreservedAnalyses InstCombinePass::run(Function &F,
                                       FunctionAnalysisManager &AM) {
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);

  auto *LI = AM.getCachedResult<LoopAnalysis>(F);

  auto *AA = &AM.getResult<AAManager>(F);
  const ModuleAnalysisManager &MAM =
      AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
  ProfileSummaryInfo *PSI =
      MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
  auto *BFI = (PSI && PSI->hasProfileSummary()) ?
      &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;

  if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
                                       PSI, ExpensiveCombines, MaxIterations,
                                       LI))
    // No changes, all analyses are preserved.
    return PreservedAnalyses::all();

  // Mark all the analyses that instcombine updates as preserved.
  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<AAManager>();
  PA.preserve<BasicAA>();
  PA.preserve<GlobalsAA>();
  return PA;
}

void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AAResultsWrapperPass>();
  AU.addRequired<AssumptionCacheTracker>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
  AU.addPreserved<DominatorTreeWrapperPass>();
  AU.addPreserved<AAResultsWrapperPass>();
  AU.addPreserved<BasicAAWrapperPass>();
  AU.addPreserved<GlobalsAAWrapperPass>();
  AU.addRequired<ProfileSummaryInfoWrapperPass>();
  LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
}

bool InstructionCombiningPass::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  // Required analyses.
  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

  // Optional analyses.
  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
  auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
  ProfileSummaryInfo *PSI =
      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  BlockFrequencyInfo *BFI =
      (PSI && PSI->hasProfileSummary()) ?
      &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
      nullptr;

  return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
                                         PSI, ExpensiveCombines, MaxIterations,
                                         LI);
}

char InstructionCombiningPass::ID = 0;

InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines)
    : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines),
      MaxIterations(InstCombineDefaultMaxIterations) {
  initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
}

InstructionCombiningPass::InstructionCombiningPass(bool ExpensiveCombines,
                                                   unsigned MaxIterations)
    : FunctionPass(ID), ExpensiveCombines(ExpensiveCombines),
      MaxIterations(MaxIterations) {
  initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
}

INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
                      "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
                    "Combine redundant instructions", false, false)

// Initialization Routines
void llvm::initializeInstCombine(PassRegistry &Registry) {
  initializeInstructionCombiningPassPass(Registry);
}

void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
  initializeInstructionCombiningPassPass(*unwrap(R));
}

FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
  return new InstructionCombiningPass(ExpensiveCombines);
}

FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines,
                                                   unsigned MaxIterations) {
  return new InstructionCombiningPass(ExpensiveCombines, MaxIterations);
}

void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
  unwrap(PM)->add(createInstructionCombiningPass());
}