LinalgToLLVM.cpp
23.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
//===- LinalgToLLVM.cpp - conversion from Linalg to LLVM dialect ----------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LinalgToLLVM/LinalgToLLVM.h"
#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
#include "mlir/Conversion/LoopToStandard/ConvertLoopToStandard.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Utils/Intrinsics.h"
#include "mlir/EDSC/Builders.h"
#include "mlir/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::LLVM;
using namespace mlir::linalg;
using namespace mlir::linalg::intrinsics;
using add = ValueBuilder<mlir::LLVM::AddOp>;
using addi = ValueBuilder<mlir::AddIOp>;
using bitcast = ValueBuilder<mlir::LLVM::BitcastOp>;
using cmpi = ValueBuilder<mlir::CmpIOp>;
using constant = ValueBuilder<mlir::LLVM::ConstantOp>;
using extractvalue = ValueBuilder<mlir::LLVM::ExtractValueOp>;
using gep = ValueBuilder<mlir::LLVM::GEPOp>;
using insertvalue = ValueBuilder<mlir::LLVM::InsertValueOp>;
using llvm_call = OperationBuilder<mlir::LLVM::CallOp>;
using llvm_icmp = ValueBuilder<LLVM::ICmpOp>;
using llvm_load = ValueBuilder<LLVM::LoadOp>;
using llvm_store = OperationBuilder<LLVM::StoreOp>;
using llvm_select = ValueBuilder<LLVM::SelectOp>;
using mul = ValueBuilder<mlir::LLVM::MulOp>;
using ptrtoint = ValueBuilder<mlir::LLVM::PtrToIntOp>;
using sub = ValueBuilder<mlir::LLVM::SubOp>;
using llvm_undef = ValueBuilder<mlir::LLVM::UndefOp>;
using urem = ValueBuilder<mlir::LLVM::URemOp>;
using llvm_alloca = ValueBuilder<LLVM::AllocaOp>;
using llvm_return = OperationBuilder<LLVM::ReturnOp>;
namespace {
template <typename T>
static LLVMType getPtrToElementType(T containerType,
LLVMTypeConverter &lowering) {
return lowering.convertType(containerType.getElementType())
.template cast<LLVMType>()
.getPointerTo();
}
// Convert the given type to the LLVM IR Dialect type. The following
// conversions are supported:
// - an Index type is converted into an LLVM integer type with pointer
// bitwidth (analogous to intptr_t in C);
// - an Integer type is converted into an LLVM integer type of the same width;
// - an F32 type is converted into an LLVM float type
// - a Buffer, Range or View is converted into an LLVM structure type
// containing the respective dynamic values.
static Type convertLinalgType(Type t, LLVMTypeConverter &lowering) {
auto *context = t.getContext();
auto int64Ty = lowering.convertType(IntegerType::get(64, context))
.cast<LLVM::LLVMType>();
// Range descriptor contains the range bounds and the step as 64-bit integers.
//
// struct {
// int64_t min;
// int64_t max;
// int64_t step;
// };
if (t.isa<RangeType>())
return LLVMType::getStructTy(int64Ty, int64Ty, int64Ty);
return Type();
}
/// EDSC-compatible wrapper for MemRefDescriptor.
class BaseViewConversionHelper {
public:
BaseViewConversionHelper(Type type)
: d(MemRefDescriptor::undef(rewriter(), loc(), type)) {}
BaseViewConversionHelper(Value v) : d(v) {}
/// Wrappers around MemRefDescriptor that use EDSC builder and location.
Value allocatedPtr() { return d.allocatedPtr(rewriter(), loc()); }
void setAllocatedPtr(Value v) { d.setAllocatedPtr(rewriter(), loc(), v); }
Value alignedPtr() { return d.alignedPtr(rewriter(), loc()); }
void setAlignedPtr(Value v) { d.setAlignedPtr(rewriter(), loc(), v); }
Value offset() { return d.offset(rewriter(), loc()); }
void setOffset(Value v) { d.setOffset(rewriter(), loc(), v); }
Value size(unsigned i) { return d.size(rewriter(), loc(), i); }
void setSize(unsigned i, Value v) { d.setSize(rewriter(), loc(), i, v); }
void setConstantSize(unsigned i, int64_t v) {
d.setConstantSize(rewriter(), loc(), i, v);
}
Value stride(unsigned i) { return d.stride(rewriter(), loc(), i); }
void setStride(unsigned i, Value v) { d.setStride(rewriter(), loc(), i, v); }
void setConstantStride(unsigned i, int64_t v) {
d.setConstantStride(rewriter(), loc(), i, v);
}
operator Value() { return d; }
private:
OpBuilder &rewriter() { return ScopedContext::getBuilder(); }
Location loc() { return ScopedContext::getLocation(); }
MemRefDescriptor d;
};
// RangeOp creates a new range descriptor.
class RangeOpConversion : public LLVMOpLowering {
public:
explicit RangeOpConversion(MLIRContext *context, LLVMTypeConverter &lowering_)
: LLVMOpLowering(RangeOp::getOperationName(), context, lowering_) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto rangeOp = cast<RangeOp>(op);
auto rangeDescriptorTy =
convertLinalgType(rangeOp.getResult().getType(), lowering);
edsc::ScopedContext context(rewriter, op->getLoc());
// Fill in an aggregate value of the descriptor.
RangeOpOperandAdaptor adaptor(operands);
Value desc = llvm_undef(rangeDescriptorTy);
desc = insertvalue(desc, adaptor.min(), rewriter.getI64ArrayAttr(0));
desc = insertvalue(desc, adaptor.max(), rewriter.getI64ArrayAttr(1));
desc = insertvalue(desc, adaptor.step(), rewriter.getI64ArrayAttr(2));
rewriter.replaceOp(op, desc);
return matchSuccess();
}
};
// ReshapeOp creates a new view descriptor of the proper rank.
// For now, the only conversion supported is for target MemRef with static sizes
// and strides.
class ReshapeOpConversion : public LLVMOpLowering {
public:
explicit ReshapeOpConversion(MLIRContext *context,
LLVMTypeConverter &lowering_)
: LLVMOpLowering(ReshapeOp::getOperationName(), context, lowering_) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto reshapeOp = cast<ReshapeOp>(op);
MemRefType dstType = reshapeOp.getResult().getType().cast<MemRefType>();
if (!dstType.hasStaticShape())
return matchFailure();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto res = getStridesAndOffset(dstType, strides, offset);
if (failed(res) || llvm::any_of(strides, [](int64_t val) {
return ShapedType::isDynamicStrideOrOffset(val);
}))
return matchFailure();
edsc::ScopedContext context(rewriter, op->getLoc());
ReshapeOpOperandAdaptor adaptor(operands);
BaseViewConversionHelper baseDesc(adaptor.view());
BaseViewConversionHelper desc(lowering.convertType(dstType));
desc.setAllocatedPtr(baseDesc.allocatedPtr());
desc.setAlignedPtr(baseDesc.alignedPtr());
desc.setOffset(baseDesc.offset());
for (auto en : llvm::enumerate(dstType.getShape()))
desc.setConstantSize(en.index(), en.value());
for (auto en : llvm::enumerate(strides))
desc.setConstantStride(en.index(), en.value());
rewriter.replaceOp(op, {desc});
return matchSuccess();
}
};
/// Conversion pattern that transforms a linalg.slice op into:
/// 1. A function entry `alloca` operation to allocate a ViewDescriptor.
/// 2. A load of the ViewDescriptor from the pointer allocated in 1.
/// 3. Updates to the ViewDescriptor to introduce the data ptr, offset, size
/// and stride corresponding to the region of memory within the bounds of
/// the parent view.
/// 4. A store of the resulting ViewDescriptor to the alloca'ed pointer.
/// The linalg.slice op is replaced by the alloca'ed pointer.
class SliceOpConversion : public LLVMOpLowering {
public:
explicit SliceOpConversion(MLIRContext *context, LLVMTypeConverter &lowering_)
: LLVMOpLowering(SliceOp::getOperationName(), context, lowering_) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
edsc::ScopedContext context(rewriter, op->getLoc());
SliceOpOperandAdaptor adaptor(operands);
BaseViewConversionHelper baseDesc(adaptor.view());
auto sliceOp = cast<SliceOp>(op);
auto memRefType = sliceOp.getBaseViewType();
auto int64Ty = lowering.convertType(rewriter.getIntegerType(64))
.cast<LLVM::LLVMType>();
BaseViewConversionHelper desc(
lowering.convertType(sliceOp.getShapedType()));
// TODO(ntv): extract sizes and emit asserts.
SmallVector<Value, 4> strides(memRefType.getRank());
for (int i = 0, e = memRefType.getRank(); i < e; ++i)
strides[i] = baseDesc.stride(i);
auto pos = [&rewriter](ArrayRef<int64_t> values) {
return rewriter.getI64ArrayAttr(values);
};
// Compute base offset.
Value baseOffset = baseDesc.offset();
for (int i = 0, e = memRefType.getRank(); i < e; ++i) {
Value indexing = adaptor.indexings()[i];
Value min = indexing;
if (sliceOp.indexing(i).getType().isa<RangeType>())
min = extractvalue(int64Ty, indexing, pos(0));
baseOffset = add(baseOffset, mul(min, strides[i]));
}
// Insert the base and aligned pointers.
desc.setAllocatedPtr(baseDesc.allocatedPtr());
desc.setAlignedPtr(baseDesc.alignedPtr());
// Insert base offset.
desc.setOffset(baseOffset);
// Corner case, no sizes or strides: early return the descriptor.
if (sliceOp.getShapedType().getRank() == 0)
return rewriter.replaceOp(op, {desc}), matchSuccess();
Value zero =
constant(int64Ty, rewriter.getIntegerAttr(rewriter.getIndexType(), 0));
// Compute and insert view sizes (max - min along the range) and strides.
// Skip the non-range operands as they will be projected away from the view.
int numNewDims = 0;
for (auto en : llvm::enumerate(sliceOp.indexings())) {
Value indexing = en.value();
if (indexing.getType().isa<RangeType>()) {
int rank = en.index();
Value rangeDescriptor = adaptor.indexings()[rank];
Value min = extractvalue(int64Ty, rangeDescriptor, pos(0));
Value max = extractvalue(int64Ty, rangeDescriptor, pos(1));
Value step = extractvalue(int64Ty, rangeDescriptor, pos(2));
Value baseSize = baseDesc.size(rank);
// Bound upper by base view upper bound.
max = llvm_select(llvm_icmp(ICmpPredicate::slt, max, baseSize), max,
baseSize);
Value size = sub(max, min);
// Bound lower by zero.
size =
llvm_select(llvm_icmp(ICmpPredicate::slt, size, zero), zero, size);
Value stride = mul(strides[rank], step);
desc.setSize(numNewDims, size);
desc.setStride(numNewDims, stride);
++numNewDims;
}
}
rewriter.replaceOp(op, {desc});
return matchSuccess();
}
};
/// Conversion pattern that transforms a linalg.transpose op into:
/// 1. A function entry `alloca` operation to allocate a ViewDescriptor.
/// 2. A load of the ViewDescriptor from the pointer allocated in 1.
/// 3. Updates to the ViewDescriptor to introduce the data ptr, offset, size
/// and stride. Size and stride are permutations of the original values.
/// 4. A store of the resulting ViewDescriptor to the alloca'ed pointer.
/// The linalg.transpose op is replaced by the alloca'ed pointer.
class TransposeOpConversion : public LLVMOpLowering {
public:
explicit TransposeOpConversion(MLIRContext *context,
LLVMTypeConverter &lowering_)
: LLVMOpLowering(TransposeOp::getOperationName(), context, lowering_) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
// Initialize the common boilerplate and alloca at the top of the FuncOp.
edsc::ScopedContext context(rewriter, op->getLoc());
TransposeOpOperandAdaptor adaptor(operands);
BaseViewConversionHelper baseDesc(adaptor.view());
auto transposeOp = cast<TransposeOp>(op);
// No permutation, early exit.
if (transposeOp.permutation().isIdentity())
return rewriter.replaceOp(op, {baseDesc}), matchSuccess();
BaseViewConversionHelper desc(
lowering.convertType(transposeOp.getShapedType()));
// Copy the base and aligned pointers from the old descriptor to the new
// one.
desc.setAllocatedPtr(baseDesc.allocatedPtr());
desc.setAlignedPtr(baseDesc.alignedPtr());
// Copy the offset pointer from the old descriptor to the new one.
desc.setOffset(baseDesc.offset());
// Iterate over the dimensions and apply size/stride permutation.
for (auto en : llvm::enumerate(transposeOp.permutation().getResults())) {
int sourcePos = en.index();
int targetPos = en.value().cast<AffineDimExpr>().getPosition();
desc.setSize(targetPos, baseDesc.size(sourcePos));
desc.setStride(targetPos, baseDesc.stride(sourcePos));
}
rewriter.replaceOp(op, {desc});
return matchSuccess();
}
};
// YieldOp produces and LLVM::ReturnOp.
class YieldOpConversion : public LLVMOpLowering {
public:
explicit YieldOpConversion(MLIRContext *context, LLVMTypeConverter &lowering_)
: LLVMOpLowering(YieldOp::getOperationName(), context, lowering_) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, operands);
return matchSuccess();
}
};
template <typename LinalgOp>
static SmallVector<Type, 4> ExtractOperandTypes(Operation *op) {
return SmallVector<Type, 4>{op->getOperandTypes()};
}
template <>
SmallVector<Type, 4> ExtractOperandTypes<IndexedGenericOp>(Operation *op) {
auto ctx = op->getContext();
auto indexedGenericOp = cast<IndexedGenericOp>(op);
auto numLoops = indexedGenericOp.getNumLoops();
SmallVector<Type, 4> result;
result.reserve(numLoops + op->getNumOperands());
for (unsigned i = 0; i < numLoops; ++i) {
result.push_back(IndexType::get(ctx));
}
for (auto type : op->getOperandTypes()) {
result.push_back(type);
}
return result;
}
// Get a SymbolRefAttr containing the library function name for the LinalgOp.
// If the library function does not exist, insert a declaration.
template <typename LinalgOp>
static FlatSymbolRefAttr getLibraryCallSymbolRef(Operation *op,
PatternRewriter &rewriter) {
auto linalgOp = cast<LinalgOp>(op);
auto fnName = linalgOp.getLibraryCallName();
if (fnName.empty()) {
op->emitWarning("No library call defined for: ") << *op;
return {};
}
// fnName is a dynamic std::String, unique it via a SymbolRefAttr.
FlatSymbolRefAttr fnNameAttr = rewriter.getSymbolRefAttr(fnName);
auto module = op->getParentOfType<ModuleOp>();
if (module.lookupSymbol(fnName)) {
return fnNameAttr;
}
SmallVector<Type, 4> inputTypes(ExtractOperandTypes<LinalgOp>(op));
assert(op->getNumResults() == 0 &&
"Library call for linalg operation can be generated only for ops that "
"have void return types");
auto libFnType = FunctionType::get(inputTypes, {}, rewriter.getContext());
OpBuilder::InsertionGuard guard(rewriter);
// Insert before module terminator.
rewriter.setInsertionPoint(module.getBody(),
std::prev(module.getBody()->end()));
rewriter.create<FuncOp>(op->getLoc(), fnNameAttr.getValue(), libFnType,
ArrayRef<NamedAttribute>{});
return fnNameAttr;
}
} // namespace
Type LinalgTypeConverter::convertType(Type t) {
if (auto result = LLVMTypeConverter::convertType(t))
return result;
return convertLinalgType(t, *this);
}
namespace {
// LinalgOpConversion<LinalgOp> creates a new call to the
// `LinalgOp::getLibraryCallName()` function.
// The implementation of the function can be either in the same module or in an
// externally linked library.
template <typename LinalgOp>
class LinalgOpConversion : public OpRewritePattern<LinalgOp> {
public:
using OpRewritePattern<LinalgOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(LinalgOp op,
PatternRewriter &rewriter) const override {
auto libraryCallName = getLibraryCallSymbolRef<LinalgOp>(op, rewriter);
if (!libraryCallName)
return this->matchFailure();
rewriter.replaceOpWithNewOp<mlir::CallOp>(
op, libraryCallName.getValue(), ArrayRef<Type>{}, op.getOperands());
return this->matchSuccess();
}
};
/// Conversion pattern specialization for CopyOp. This kicks in when both input
/// and output permutations are left unspecified or are the identity.
template <> class LinalgOpConversion<CopyOp> : public OpRewritePattern<CopyOp> {
public:
using OpRewritePattern<CopyOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(CopyOp op,
PatternRewriter &rewriter) const override {
auto inputPerm = op.inputPermutation();
if (inputPerm.hasValue() && !inputPerm->isIdentity())
return matchFailure();
auto outputPerm = op.outputPermutation();
if (outputPerm.hasValue() && !outputPerm->isIdentity())
return matchFailure();
auto libraryCallName = getLibraryCallSymbolRef<CopyOp>(op, rewriter);
if (!libraryCallName)
return matchFailure();
rewriter.replaceOpWithNewOp<mlir::CallOp>(
op, libraryCallName.getValue(), ArrayRef<Type>{}, op.getOperands());
return matchSuccess();
}
};
/// Conversion pattern specialization for IndexedGenericOp.
template <>
class LinalgOpConversion<IndexedGenericOp>
: public OpRewritePattern<IndexedGenericOp> {
public:
using OpRewritePattern<IndexedGenericOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(IndexedGenericOp op,
PatternRewriter &rewriter) const override {
auto libraryCallName =
getLibraryCallSymbolRef<IndexedGenericOp>(op, rewriter);
if (!libraryCallName)
return this->matchFailure();
// TODO(pifon, ntv): Use induction variables values instead of zeros, when
// IndexedGenericOp is tiled.
auto zero = rewriter.create<mlir::ConstantOp>(
op.getLoc(), rewriter.getIntegerAttr(rewriter.getIndexType(), 0));
auto indexedGenericOp = cast<IndexedGenericOp>(op);
auto numLoops = indexedGenericOp.getNumLoops();
SmallVector<Value, 4> operands;
operands.reserve(numLoops + op.getNumOperands());
for (unsigned i = 0; i < numLoops; ++i) {
operands.push_back(zero);
}
for (auto operand : op.getOperands()) {
operands.push_back(operand);
}
rewriter.replaceOpWithNewOp<mlir::CallOp>(op, libraryCallName.getValue(),
ArrayRef<Type>{}, operands);
return this->matchSuccess();
}
};
/// A non-conversion rewrite pattern kicks in to convert CopyOp with
/// permutations into a sequence of TransposeOp and permutation-free CopyOp.
/// This interplays together with TransposeOpConversion and
/// LinalgConversion<CopyOp> to create a path to the LLVM dialect.
class CopyTransposeConversion : public OpRewritePattern<CopyOp> {
public:
using OpRewritePattern<CopyOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(CopyOp op,
PatternRewriter &rewriter) const override {
Value in = op.input(), out = op.output();
// If either inputPerm or outputPerm are non-identities, insert transposes.
auto inputPerm = op.inputPermutation();
if (inputPerm.hasValue() && !inputPerm->isIdentity())
in = rewriter.create<linalg::TransposeOp>(op.getLoc(), in,
AffineMapAttr::get(*inputPerm));
auto outputPerm = op.outputPermutation();
if (outputPerm.hasValue() && !outputPerm->isIdentity())
out = rewriter.create<linalg::TransposeOp>(
op.getLoc(), out, AffineMapAttr::get(*outputPerm));
// If nothing was transposed, fail and let the conversion kick in.
if (in == op.input() && out == op.output())
return matchFailure();
rewriter.replaceOpWithNewOp<CopyOp>(op, in, out);
return matchSuccess();
}
};
/// Populate the given list with patterns that convert from Linalg to Standard.
static void
populateLinalgToStandardConversionPatterns(OwningRewritePatternList &patterns,
MLIRContext *ctx) {
// TODO(ntv) ConvOp conversion needs to export a descriptor with relevant
// attribute values such as kernel striding and dilation.
patterns.insert<CopyTransposeConversion, LinalgOpConversion<ConvOp>,
LinalgOpConversion<CopyOp>, LinalgOpConversion<DotOp>,
LinalgOpConversion<FillOp>, LinalgOpConversion<GenericOp>,
LinalgOpConversion<IndexedGenericOp>,
LinalgOpConversion<MatmulOp>, LinalgOpConversion<MatvecOp>>(
ctx);
}
} // namespace
/// Populate the given list with patterns that convert from Linalg to LLVM.
void mlir::populateLinalgToLLVMConversionPatterns(
LinalgTypeConverter &converter, OwningRewritePatternList &patterns,
MLIRContext *ctx) {
patterns.insert<RangeOpConversion, ReshapeOpConversion, SliceOpConversion,
TransposeOpConversion, YieldOpConversion>(ctx, converter);
}
namespace {
struct ConvertLinalgToLLVMPass : public ModulePass<ConvertLinalgToLLVMPass> {
void runOnModule() override;
};
} // namespace
void ConvertLinalgToLLVMPass::runOnModule() {
auto module = getModule();
// Convert to the LLVM IR dialect using the converter defined above.
OwningRewritePatternList patterns;
LinalgTypeConverter converter(&getContext());
populateAffineToStdConversionPatterns(patterns, &getContext());
populateLoopToStdConversionPatterns(patterns, &getContext());
populateStdToLLVMConversionPatterns(converter, patterns);
populateVectorToLLVMConversionPatterns(converter, patterns);
populateLinalgToStandardConversionPatterns(patterns, &getContext());
populateLinalgToLLVMConversionPatterns(converter, patterns, &getContext());
ConversionTarget target(getContext());
target.addLegalDialect<LLVM::LLVMDialect>();
target.addDynamicallyLegalOp<FuncOp>(
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
if (failed(applyFullConversion(module, target, patterns, &converter)))
signalPassFailure();
}
std::unique_ptr<OpPassBase<ModuleOp>>
mlir::linalg::createConvertLinalgToLLVMPass() {
return std::make_unique<ConvertLinalgToLLVMPass>();
}
static PassRegistration<ConvertLinalgToLLVMPass> pass(
"convert-linalg-to-llvm",
"Convert the operations from the linalg dialect into the LLVM dialect");