VectorTransforms.cpp 29.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
//===- VectorToLoops.cpp - Conversion within the Vector dialect -----------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites as 1->N patterns.
//
//===----------------------------------------------------------------------===//

#include <type_traits>

#include "mlir/Dialect/VectorOps/Utils.h"
#include "mlir/Dialect/VectorOps/VectorOps.h"
#include "mlir/Dialect/VectorOps/VectorTransforms.h"
#include "mlir/EDSC/Builders.h"
#include "mlir/EDSC/Helpers.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/Types.h"
#include "mlir/Support/Functional.h"
#include "mlir/Support/STLExtras.h"

#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "vector-to-vector"

using namespace mlir;
using llvm::dbgs;
using mlir::functional::zipMap;

/// Given a shape with sizes greater than 0 along all dimensions,
/// returns the distance, in number of elements, between a slice in a dimension
/// and the next slice in the same dimension.
///   e.g. shape[3, 4, 5] -> linearization_basis[20, 5, 1]
static SmallVector<int64_t, 8> computeStrides(ArrayRef<int64_t> shape) {
  if (shape.empty())
    return {};
  SmallVector<int64_t, 8> tmp;
  tmp.reserve(shape.size());
  int64_t running = 1;
  for (auto size : llvm::reverse(shape)) {
    assert(size > 0 && "size must be nonnegative");
    tmp.push_back(running);
    running *= size;
  }
  return SmallVector<int64_t, 8>(tmp.rbegin(), tmp.rend());
}

static int64_t computeMaxLinearIndex(ArrayRef<int64_t> basis) {
  if (basis.empty())
    return 0;
  int64_t res = 1;
  for (auto b : basis)
    res *= b;
  return res;
}

/// Computes and returns the linearized index of 'offsets' w.r.t. 'basis'.
static int64_t linearize(ArrayRef<int64_t> offsets, ArrayRef<int64_t> basis) {
  assert(offsets.size() == basis.size());
  int64_t linearIndex = 0;
  for (unsigned idx = 0, e = basis.size(); idx < e; ++idx)
    linearIndex += offsets[idx] * basis[idx];
  return linearIndex;
}

/// Given a shape with sizes greater than 0 along all dimensions, returns the
/// delinearized components of linearIndex along shape.
static SmallVector<int64_t, 8> delinearize(int64_t linearIndex,
                                           ArrayRef<int64_t> basis) {
  SmallVector<int64_t, 8> res;
  res.reserve(basis.size());
  for (unsigned idx = 0, e = basis.size(); idx < e; ++idx) {
    assert(basis[idx] > 0);
    res.push_back(linearIndex / basis[idx]);
    linearIndex %= basis[idx];
  }
  // Sanity check.
  assert(linearIndex == 0 && "linear index remainder must be 0");
  return res;
}

// Clones `op` into a new operations that takes `operands` and returns
// `resultTypes`.
static Operation *cloneOpWithOperandsAndTypes(PatternRewriter &builder,
                                              Location loc, Operation *op,
                                              ArrayRef<Value> operands,
                                              ArrayRef<Type> resultTypes) {
  OperationState res(loc, op->getName().getStringRef(), operands, resultTypes,
                     op->getAttrs());
  return builder.createOperation(res);
}

// Populates 'resultElements[indexMap[i]]' with elements from 'inputElements[i]'
// for each index 'i' in inputElements with a valid mapping in 'indexMap'.
static void getMappedElements(const DenseMap<int64_t, int64_t> &indexMap,
                              ArrayRef<int64_t> inputElements,
                              SmallVectorImpl<int64_t> &resultElements) {
  assert(indexMap.size() == resultElements.size());
  assert(inputElements.size() >= resultElements.size());
  for (unsigned i = 0, e = inputElements.size(); i < e; ++i) {
    auto it = indexMap.find(i);
    if (it != indexMap.end())
      resultElements[it->second] = inputElements[i];
  }
}

// Returns a tuple type with vector element types for each resulting slice
// of 'vectorType' unrolled by 'sizes' and 'strides'.
// TODO(andydavis) Move this to a utility function and share it with
// Extract/InsertSlicesOp verification.
static TupleType generateExtractSlicesOpResultType(VectorType vectorType,
                                                   ArrayRef<int64_t> sizes,
                                                   ArrayRef<int64_t> strides,
                                                   PatternRewriter &builder) {
  assert(llvm::all_of(strides, [](int64_t s) { return s == 1; }));
  unsigned rank = vectorType.getRank();
  assert(sizes.size() == rank);
  assert(strides.size() == rank);

  // Compute shape ratio of 'shape' and 'sizes'.
  auto shape = vectorType.getShape();
  auto maybeDimSliceCounts = shapeRatio(shape, sizes);
  assert(maybeDimSliceCounts.hasValue());
  auto sliceDimCounts = *maybeDimSliceCounts;

  // Compute strides w.r.t number of slices in each dimension.
  auto basis = computeStrides(sliceDimCounts);
  int64_t sliceCount = computeMaxLinearIndex(sliceDimCounts);
  SmallVector<Type, 4> vectorTypes(sliceCount);
  for (unsigned i = 0; i < sliceCount; ++i) {
    // De-linearize w.r.t. 'basis'.
    auto vectorOffsets = delinearize(i, basis);
    // Convert from unrolled vector-space offsets to element-space offsets.
    auto offsets = zipMap([](int64_t v1, int64_t v2) { return v1 * v2; },
                          vectorOffsets, sizes);
    // Initialize 'sliceSizes' to target 'sizes'
    SmallVector<int64_t, 4> sliceSizes(sizes.begin(), sizes.end());
    for (unsigned j = 0; j < rank; ++j) {
      // Based on 'offsets' and 'shape' clip some dim sizes for partial tiles.
      sliceSizes[j] = std::min(sliceSizes[j], shape[j] - offsets[j]);
    }
    // Create Vector type and add to 'vectorTypes[i]'.
    vectorTypes[i] = VectorType::get(sliceSizes, vectorType.getElementType());
  }
  return TupleType::get(vectorTypes, builder.getContext());
}

// UnrolledVectorState aggregates per-operand/result vector state required for
// unrolling.
struct UnrolledVectorState {
  SmallVector<int64_t, 4> unrolledShape;
  SmallVector<int64_t, 4> unrollFactors;
  SmallVector<int64_t, 8> basis;
  int64_t numInstances;
  Value slicesTuple;
};

// Populates 'state' with unrolled shape, unroll factors, basis and
// num unrolled instances for 'vectorType'.
static void initUnrolledVectorState(VectorType vectorType, Value initValue,
                                    const DenseMap<int64_t, int64_t> &indexMap,
                                    ArrayRef<int64_t> targetShape,
                                    UnrolledVectorState &state,
                                    PatternRewriter &builder) {
  // Compute unrolled shape of 'vectorType'.
  state.unrolledShape.resize(vectorType.getRank());
  getMappedElements(indexMap, targetShape, state.unrolledShape);
  // Compute unroll factors for unrolled shape.
  auto maybeUnrollFactors =
      shapeRatio(vectorType.getShape(), state.unrolledShape);
  assert(maybeUnrollFactors.hasValue());
  state.unrollFactors = *maybeUnrollFactors;
  // Compute 'basis' and 'numInstances' based on 'state.unrollFactors'.
  state.basis = computeStrides(state.unrollFactors);
  state.numInstances = computeMaxLinearIndex(state.unrollFactors);
  state.slicesTuple = nullptr;
  if (initValue != nullptr) {
    // Create ExtractSlicesOp.
    SmallVector<int64_t, 4> sizes(state.unrolledShape);
    SmallVector<int64_t, 4> strides(state.unrollFactors.size(), 1);
    auto tupleType =
        generateExtractSlicesOpResultType(vectorType, sizes, strides, builder);
    state.slicesTuple = builder.create<vector::ExtractSlicesOp>(
        initValue.getLoc(), tupleType, initValue, sizes, strides);
  }
}

// Computes and returns the linear index of the unrolled vector at
// 'vectorOffsets' within the vector represented by 'state'.
static int64_t
getUnrolledVectorLinearIndex(UnrolledVectorState &state,
                             ArrayRef<int64_t> vectorOffsets,
                             DenseMap<int64_t, int64_t> &indexMap) {
  // Compute vector offsets.
  SmallVector<int64_t, 4> sliceOffsets(state.unrolledShape.size());
  getMappedElements(indexMap, vectorOffsets, sliceOffsets);
  // Compute and return linear index of 'sliceOffsets' w.r.t 'state.basis'.
  return linearize(sliceOffsets, state.basis);
}

// Returns an unrolled vector at 'vectorOffsets' within the vector
// represented by 'state'. The vector is created from a slice of 'initValue'
// if not present in 'cache'.
static Value getOrCreateUnrolledVectorSlice(
    Location loc, UnrolledVectorState &state, ArrayRef<int64_t> vectorOffsets,
    ArrayRef<int64_t> offsets, DenseMap<int64_t, int64_t> &indexMap,
    Value initValue, SmallVectorImpl<Value> &cache, PatternRewriter &builder) {
  // Compute slice offsets.
  SmallVector<int64_t, 4> sliceOffsets(state.unrolledShape.size());
  getMappedElements(indexMap, offsets, sliceOffsets);
  // TODO(b/144845578) Support non-1 strides.
  SmallVector<int64_t, 4> sliceStrides(state.unrolledShape.size(), 1);
  // Compute linear index of 'sliceOffsets' w.r.t 'state.basis'.
  int64_t sliceLinearIndex =
      getUnrolledVectorLinearIndex(state, vectorOffsets, indexMap);
  assert(sliceLinearIndex < static_cast<int64_t>(cache.size()));
  auto valueSlice = cache[sliceLinearIndex];
  if (valueSlice == nullptr) {
    // Return tuple element at 'sliceLinearIndex'.
    auto tupleIndex = builder.getI64IntegerAttr(sliceLinearIndex);
    auto initValueType = initValue.getType().cast<VectorType>();
    auto vectorType =
        VectorType::get(state.unrolledShape, initValueType.getElementType());
    // Initialize 'cache' with slice from 'initValue'.
    valueSlice = builder.create<vector::TupleGetOp>(
        loc, vectorType, state.slicesTuple, tupleIndex);
    // Store value back to 'cache'.
    cache[sliceLinearIndex] = valueSlice;
  }
  return valueSlice;
}

// VectorState aggregates per-operand/result vector state required for
// creating slices of vector operands, and clones of the operation being
// unrolled.
struct VectorState {
  // The type of this vector.
  VectorType type;
  // Map from iteration space index to vector dimension index.
  DenseMap<int64_t, int64_t> indexMap;
  // Index of this value in operation's operand list (-1 if not an operand).
  int64_t operandIndex = -1;
  // Accumulator iterator flag.
  bool isAcc = false;
};

//
// unrollSingleResultStructuredOp
//
// Returns a value representing the result of structured operation 'op'
// with iteration bounds 'iterationBounds' unrolled to 'targetShape'.
// A list of VectorState objects must be specified in 'vectors', where
// each VectorState in the list represents a vector operand or vector result
// (if the operation does not have an accumulator operand).
// The VectorState at index 'resultIndex' in the list must be the state
// associated with the operations single result (i.e. either its accumulator
// operand or vector result value).
//
// Example:
//
//  // Before unrolling
//
//   operand0                operand1                operand2
//       \                      |                      /
//        -------------------- opA --------------------
//
//  // After unrolling by 2
//
//   operand0                operand1                operand2
//   /      \                /      \                /      \
// slice00  slice01       slice10  slice11        slice20  slice21
//   \         |            |          |            /          |
//    -------------------- opA0 --------------------           |
//             |            |          |                       |
//              \           |          |                      /
//               -------------------- opA1 -------------------
//                          |          |
//                           \        /
//                           insertslice
//                                |

// TODO(andydavis) Add the following canonicalization/simplifcation patterns:
// *) Add pattern which matches InsertStridedSlice -> StridedSlice and forwards
//    InsertStridedSlice operand to StridedSlice.
// *) Add pattern which matches SourceOp -> StridedSlice -> UserOp which checks
//    if there are duplicate identical StridedSlice ops from SourceOp, and
//    rewrites itself to use the first duplicate. This transformation should
//    cause users of identifical StridedSlice ops to reuse the same StridedSlice
//    operation, and leave the duplicate StridedSlice ops with no users
//    (removable with DCE).

// TODO(andydavis) Generalize this to support structured ops beyond
// vector ContractionOp, and merge it with 'unrollSingleResultOpMatchingType'
static Value unrollSingleResultStructuredOp(Operation *op,
                                            ArrayRef<int64_t> iterationBounds,
                                            std::vector<VectorState> &vectors,
                                            unsigned resultIndex,
                                            ArrayRef<int64_t> targetShape,
                                            PatternRewriter &builder) {
  auto shapedType = op->getResult(0).getType().dyn_cast_or_null<ShapedType>();
  if (!shapedType || !shapedType.hasStaticShape())
    assert(false && "Expected a statically shaped result type");

  // Compute unroll factors for 'iterationBounds' based on 'targetShape'
  auto maybeUnrollFactors = shapeRatio(iterationBounds, targetShape);
  if (!maybeUnrollFactors.hasValue())
    assert(false && "Failed to compute unroll factors for target shape");
  auto unrollFactors = *maybeUnrollFactors;

  // Compute unrolled vector state for each vector in 'vectors'.
  unsigned numVectors = vectors.size();
  SmallVector<UnrolledVectorState, 3> unrolledVectorState(numVectors);
  for (unsigned i = 0; i < numVectors; ++i) {
    int64_t operandIndex = vectors[i].operandIndex;
    auto operand = operandIndex >= 0 ? op->getOperand(operandIndex) : nullptr;
    initUnrolledVectorState(vectors[i].type, operand, vectors[i].indexMap,
                            targetShape, unrolledVectorState[i], builder);
  }
  // Compute number of total unrolled instances.
  auto numUnrolledInstances = computeMaxLinearIndex(unrollFactors);
  auto basis = computeStrides(unrollFactors);

  auto &resultValueState = unrolledVectorState[resultIndex];
  auto unrolledResultType = VectorType::get(resultValueState.unrolledShape,
                                            shapedType.getElementType());

  // Initialize caches for intermediate vector results.
  std::vector<SmallVector<Value, 4>> caches(numVectors);
  for (unsigned i = 0; i < numVectors; ++i)
    caches[i].resize(unrolledVectorState[i].numInstances);

  // Unroll 'numUnrolledInstances' of 'op', storing results in 'caches'.
  for (unsigned i = 0; i < numUnrolledInstances; ++i) {
    // De-linearize w.r.t. 'basis'.
    auto vectorOffsets = delinearize(i, basis);
    // Convert from unrolled vector-space offsets to element-space offsets.
    auto offsets = zipMap([](int64_t v1, int64_t v2) { return v1 * v2; },
                          vectorOffsets, targetShape);
    // Get cached slice (or create slice) for each operand at 'offsets'.
    SmallVector<Value, 3> operands;
    operands.resize(op->getNumOperands());
    for (unsigned i = 0; i < numVectors; ++i) {
      int64_t operandIndex = vectors[i].operandIndex;
      if (operandIndex < 0)
        continue; // Output
      auto operand = op->getOperand(operandIndex);
      operands[operandIndex] = getOrCreateUnrolledVectorSlice(
          op->getLoc(), unrolledVectorState[i], vectorOffsets, offsets,
          vectors[i].indexMap, operand, caches[i], builder);
    }
    // Create op on sliced vector arguments.
    auto resultVector =
        cloneOpWithOperandsAndTypes(builder, op->getLoc(), op, operands,
                                    unrolledResultType)
            ->getResult(0);

    // Compute linear result index.
    int64_t linearIndex = getUnrolledVectorLinearIndex(
        resultValueState, vectorOffsets, vectors[resultIndex].indexMap);
    // Update result cache at 'linearIndex'.
    caches[resultIndex][linearIndex] = resultVector;
  }

  // Create TupleOp of unrolled result vectors.
  SmallVector<Type, 4> vectorTupleTypes(resultValueState.numInstances);
  SmallVector<Value, 4> vectorTupleValues(resultValueState.numInstances);
  for (unsigned i = 0; i < resultValueState.numInstances; ++i) {
    vectorTupleTypes[i] = caches[resultIndex][i].getType().cast<VectorType>();
    vectorTupleValues[i] = caches[resultIndex][i];
  }
  TupleType tupleType = builder.getTupleType(vectorTupleTypes);
  Value tupleOp = builder.create<vector::TupleOp>(op->getLoc(), tupleType,
                                                  vectorTupleValues);

  // Create InsertSlicesOp(Tuple(result_vectors)).
  auto resultVectorType = op->getResult(0).getType().cast<VectorType>();
  SmallVector<int64_t, 4> sizes(resultValueState.unrolledShape);
  SmallVector<int64_t, 4> strides(resultValueState.unrollFactors.size(), 1);

  Value insertSlicesOp = builder.create<vector::InsertSlicesOp>(
      op->getLoc(), resultVectorType, tupleOp, builder.getI64ArrayAttr(sizes),
      builder.getI64ArrayAttr(strides));
  return insertSlicesOp;
}

static void getVectorContractionOpUnrollState(
    vector::ContractionOp contractionOp, ArrayRef<int64_t> targetShape,
    SmallVectorImpl<int64_t> &iterationBounds,
    std::vector<VectorState> &vectors, unsigned &resultIndex) {
  // Get contraction op iteration bounds.
  contractionOp.getIterationBounds(iterationBounds);
  assert(iterationBounds.size() == targetShape.size());
  // Get map from iteration space index to lhs/rhs/result shape index.
  std::vector<DenseMap<int64_t, int64_t>> iterationIndexMapList;
  contractionOp.getIterationIndexMap(iterationIndexMapList);
  unsigned numIterators = iterationIndexMapList.size();
  vectors.resize(numIterators);
  unsigned accOperandIndex = vector::ContractionOp::getAccOperandIndex();
  for (unsigned i = 0; i < numIterators; ++i) {
    vectors[i].type = contractionOp.getOperand(i).getType().cast<VectorType>();
    vectors[i].indexMap = iterationIndexMapList[i];
    vectors[i].operandIndex = i;
    vectors[i].isAcc = i == accOperandIndex ? true : false;
  }

  if (llvm::size(contractionOp.masks()) == 2) {
    // Add vectors for lhs/rhs vector mask arguments. Masks have the
    // same vector shape lhs/rhs args, so copy their index maps.
    vectors.push_back({contractionOp.getLHSVectorMaskType(),
                       vectors[0].indexMap, accOperandIndex + 1, false});
    vectors.push_back({contractionOp.getRHSVectorMaskType(),
                       vectors[1].indexMap, accOperandIndex + 2, false});
  }
  // Unroll 'op' 'iterationBounds' to 'targetShape'.
  // TODO(andydavis) Use linalg style 'args_in'/'args_out' to partition
  // 'vectors' instead of 'resultIndex'.
  resultIndex = accOperandIndex;
}

static void
getVectorElementwiseOpUnrollState(Operation *op, ArrayRef<int64_t> targetShape,
                                  SmallVectorImpl<int64_t> &iterationBounds,
                                  std::vector<VectorState> &vectors,
                                  unsigned &resultIndex) {
  // Verify that operation and operands all have the same vector shape.
  auto resultType = op->getResult(0).getType().dyn_cast_or_null<VectorType>();
  assert(resultType && "Expected op with vector result type");
  auto resultShape = resultType.getShape();
  // Verify that all operands have the same vector type as result.
  assert(llvm::all_of(op->getOperandTypes(),
                      [=](Type type) { return type == resultType; }));
  // Populate 'iterationBounds' with 'resultShape' for elementwise operations.
  iterationBounds.assign(resultShape.begin(), resultShape.end());

  // Create trivial elementwise identity index map based on 'resultShape'.
  DenseMap<int64_t, int64_t> indexMap;
  indexMap.reserve(resultShape.size());
  for (unsigned i = 0; i < resultShape.size(); ++i)
    indexMap[i] = i;

  // Create VectorState each operand and single result.
  unsigned numVectors = op->getNumOperands() + op->getNumResults();
  vectors.resize(numVectors);
  for (unsigned i = 0; i < op->getNumOperands(); ++i)
    vectors[i] = {resultType, indexMap, i, false};
  vectors[numVectors - 1] = {resultType, indexMap, -1, false};
  resultIndex = numVectors - 1;
}

// Entry point for unrolling declarative pattern rewrites.
SmallVector<Value, 1> mlir::vector::unrollSingleResultOpMatchingType(
    PatternRewriter &builder, Operation *op, ArrayRef<int64_t> targetShape) {
  assert(op->getNumResults() == 1 && "Expected single result operation");

  // Populate 'iterationBounds', 'vectors' and 'resultIndex' to unroll 'op'.
  SmallVector<int64_t, 6> iterationBounds;
  std::vector<VectorState> vectors;
  unsigned resultIndex;

  if (auto contractionOp = dyn_cast<vector::ContractionOp>(op)) {
    // Popultate state for vector ContractionOp.
    getVectorContractionOpUnrollState(contractionOp, targetShape,
                                      iterationBounds, vectors, resultIndex);
  } else {
    // Populate state for vector elementwise op.
    getVectorElementwiseOpUnrollState(op, targetShape, iterationBounds, vectors,
                                      resultIndex);
  }

  // Unroll 'op' with 'iterationBounds' to 'targetShape'.
  return SmallVector<Value, 1>{unrollSingleResultStructuredOp(
      op, iterationBounds, vectors, resultIndex, targetShape, builder)};
}

// Generates slices of 'vectorType' according to 'sizes' and 'strides, and
// calls 'fn' with linear index and indices for each slice.
static void
generateTransferOpSlices(VectorType vectorType, TupleType tupleType,
                         ArrayRef<int64_t> sizes, ArrayRef<int64_t> strides,
                         ArrayRef<Value> indices, PatternRewriter &rewriter,
                         function_ref<void(unsigned, ArrayRef<Value>)> fn) {
  // Compute strides w.r.t. to slice counts in each dimension.
  auto maybeDimSliceCounts = shapeRatio(vectorType.getShape(), sizes);
  assert(maybeDimSliceCounts.hasValue());
  auto sliceDimCounts = *maybeDimSliceCounts;
  auto basis = computeStrides(sliceDimCounts);

  int64_t numSlices = tupleType.size();
  unsigned numSliceIndices = indices.size();
  auto *ctx = rewriter.getContext();
  for (unsigned i = 0; i < numSlices; ++i) {
    // De-linearize w.r.t. 'basis'.
    auto vectorOffsets = delinearize(i, basis);
    // Convert from unrolled vector-space offsets to element-space offsets.
    auto offsets = zipMap([](int64_t v1, int64_t v2) { return v1 * v2; },
                          vectorOffsets, sizes);
    // Compute 'sliceIndices' by adding 'sliceOffsets[i]' to 'indices[i]'.
    SmallVector<Value, 4> sliceIndices(numSliceIndices);
    for (auto it : llvm::enumerate(indices)) {
      auto expr = getAffineDimExpr(0, ctx) +
                  getAffineConstantExpr(offsets[it.index()], ctx);
      auto map = AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, expr);
      sliceIndices[it.index()] = rewriter.create<AffineApplyOp>(
          it.value().getLoc(), map, ArrayRef<Value>(it.value()));
    }
    // Call 'fn' to generate slice 'i' at 'sliceIndices'.
    fn(i, sliceIndices);
  }
}

namespace {
// Splits vector TransferReadOp into smaller TransferReadOps based on slicing
// scheme of its unique ExtractSlicesOp user.
struct SplitTransferReadOp : public OpRewritePattern<vector::TransferReadOp> {
  using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;

  PatternMatchResult matchAndRewrite(vector::TransferReadOp xferReadOp,
                                     PatternRewriter &rewriter) const override {
    // TODO(andydavis, ntv) Support spliting TransferReadOp with non-identity
    // permutation maps. Repurpose code from MaterializeVectors transformation.
    if (!xferReadOp.permutation_map().isIdentity())
      return matchFailure();
    // Return unless the unique 'xferReadOp' user is an ExtractSlicesOp.
    Value xferReadResult = xferReadOp.getResult();
    auto extractSlicesOp =
        dyn_cast<vector::ExtractSlicesOp>(*xferReadResult.getUsers().begin());
    if (!xferReadResult.hasOneUse() || !extractSlicesOp)
      return matchFailure();

    // Get 'sizes' and 'strides' parameters from ExtractSlicesOp user.
    auto sourceVectorType = extractSlicesOp.getSourceVectorType();
    auto resultTupleType = extractSlicesOp.getResultTupleType();
    SmallVector<int64_t, 4> sizes;
    extractSlicesOp.getSizes(sizes);
    SmallVector<int64_t, 4> strides;
    extractSlicesOp.getStrides(strides);
    assert(llvm::all_of(strides, [](int64_t s) { return s == 1; }));

    Location loc = xferReadOp.getLoc();
    int64_t numSlices = resultTupleType.size();
    SmallVector<Value, 4> vectorTupleValues(numSlices);
    SmallVector<Value, 4> indices(xferReadOp.indices().begin(),
                                  xferReadOp.indices().end());
    auto createSlice = [&](unsigned index, ArrayRef<Value> sliceIndices) {
      // Get VectorType for slice 'i'.
      auto sliceVectorType = resultTupleType.getType(index);
      // Create split TransferReadOp for 'sliceUser'.
      vectorTupleValues[index] = rewriter.create<vector::TransferReadOp>(
          loc, sliceVectorType, xferReadOp.memref(), sliceIndices,
          xferReadOp.permutation_map(), xferReadOp.padding());
    };
    generateTransferOpSlices(sourceVectorType, resultTupleType, sizes, strides,
                             indices, rewriter, createSlice);

    // Create tuple of splice xfer read operations.
    Value tupleOp = rewriter.create<vector::TupleOp>(loc, resultTupleType,
                                                     vectorTupleValues);
    // Replace 'xferReadOp' with result 'insertSlicesResult'.
    rewriter.replaceOpWithNewOp<vector::InsertSlicesOp>(
        xferReadOp, sourceVectorType, tupleOp, extractSlicesOp.sizes(),
        extractSlicesOp.strides());
    return matchSuccess();
  }
};

// Splits vector TransferWriteOp into smaller TransferWriteOps for each source.
struct SplitTransferWriteOp : public OpRewritePattern<vector::TransferWriteOp> {
  using OpRewritePattern<vector::TransferWriteOp>::OpRewritePattern;

  PatternMatchResult matchAndRewrite(vector::TransferWriteOp xferWriteOp,
                                     PatternRewriter &rewriter) const override {
    // TODO(andydavis, ntv) Support spliting TransferWriteOp with non-identity
    // permutation maps. Repurpose code from MaterializeVectors transformation.
    if (!xferWriteOp.permutation_map().isIdentity())
      return matchFailure();
    // Return unless the 'xferWriteOp' 'vector' operand is an 'InsertSlicesOp'.
    auto *vectorDefOp = xferWriteOp.vector().getDefiningOp();
    auto insertSlicesOp = dyn_cast_or_null<vector::InsertSlicesOp>(vectorDefOp);
    if (!insertSlicesOp)
      return matchFailure();

    // Get TupleOp operand of 'insertSlicesOp'.
    auto tupleOp = dyn_cast_or_null<vector::TupleOp>(
        insertSlicesOp.vectors().getDefiningOp());
    if (!tupleOp)
      return matchFailure();

    // Get 'sizes' and 'strides' parameters from InsertSlicesOp user.
    auto sourceTupleType = insertSlicesOp.getSourceTupleType();
    auto resultVectorType = insertSlicesOp.getResultVectorType();
    SmallVector<int64_t, 4> sizes;
    insertSlicesOp.getSizes(sizes);
    SmallVector<int64_t, 4> strides;
    insertSlicesOp.getStrides(strides);

    Location loc = xferWriteOp.getLoc();
    SmallVector<Value, 4> indices(xferWriteOp.indices().begin(),
                                  xferWriteOp.indices().end());
    auto createSlice = [&](unsigned index, ArrayRef<Value> sliceIndices) {
      // Create split TransferWriteOp for source vector 'tupleOp.operand[i]'.
      rewriter.create<vector::TransferWriteOp>(
          loc, tupleOp.getOperand(index), xferWriteOp.memref(), sliceIndices,
          xferWriteOp.permutation_map());
    };
    generateTransferOpSlices(resultVectorType, sourceTupleType, sizes, strides,
                             indices, rewriter, createSlice);

    // Erase old 'xferWriteOp'.
    rewriter.eraseOp(xferWriteOp);
    return matchSuccess();
  }
};

// Patter rewrite which forward tuple elements to their users.
// User(TupleGetOp(ExtractSlicesOp(InsertSlicesOp(TupleOp(Producer)))))
//   -> User(Producer)
struct TupleGetFolderOp : public OpRewritePattern<vector::TupleGetOp> {
  using OpRewritePattern<vector::TupleGetOp>::OpRewritePattern;

  PatternMatchResult matchAndRewrite(vector::TupleGetOp tupleGetOp,
                                     PatternRewriter &rewriter) const override {
    // Return if 'tupleGetOp.vectors' arg was not defined by ExtractSlicesOp.
    auto extractSlicesOp = dyn_cast_or_null<vector::ExtractSlicesOp>(
        tupleGetOp.vectors().getDefiningOp());
    if (!extractSlicesOp)
      return matchFailure();

    // Return if 'extractSlicesOp.vector' arg was not defined by InsertSlicesOp.
    auto insertSlicesOp = dyn_cast_or_null<vector::InsertSlicesOp>(
        extractSlicesOp.vector().getDefiningOp());
    if (!insertSlicesOp)
      return matchFailure();

    // Return if 'insertSlicesOp.vectors' arg was not defined by TupleOp.
    auto tupleOp = dyn_cast_or_null<vector::TupleOp>(
        insertSlicesOp.vectors().getDefiningOp());
    if (!tupleOp)
      return matchFailure();

    // Forward Value from 'tupleOp' at 'tupleGetOp.index'.
    Value tupleValue = tupleOp.getOperand(tupleGetOp.getIndex());
    rewriter.replaceOp(tupleGetOp, tupleValue);
    return matchSuccess();
  }
};

} // namespace

// TODO(andydavis) Add pattern to rewrite ExtractSlices(ConstantMaskOp).
// TODO(andydavis) Add this as DRR pattern.
void mlir::vector::populateVectorToVectorTransformationPatterns(
    OwningRewritePatternList &patterns, MLIRContext *context) {
  patterns.insert<SplitTransferReadOp, SplitTransferWriteOp, TupleGetFolderOp>(
      context);
}