UniformConstraints.cpp
9.15 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
//===- UniformConstraints.cpp - Constraints for uniform quant -------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Quantizer/Support/UniformConstraints.h"
#include "mlir/Dialect/QuantOps/QuantTypes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/Quantizer/Support/Configuration.h"
#include "mlir/Quantizer/Support/ConstraintAnalysisGraph.h"
#include "mlir/Quantizer/Support/Metadata.h"
#include "mlir/Quantizer/Support/Rules.h"
#include "mlir/Quantizer/Support/TypeUtils.h"
#include "mlir/Quantizer/Support/UniformSolvers.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
using namespace mlir::quantizer;
using namespace mlir::quant;
namespace {
struct ClusteredFacts {
ExpandingMinMaxFact requiredRange;
DiscreteScaleZeroPointFact explicitScaleZeroPoint;
};
} // end anonymous namespace
static QuantizedType solveUniformType(SolverContext &solverContext,
const ClusteredFacts &clusteredFacts,
const CandidateQuantizedType &ct,
Type originalElementType, Location loc) {
switch (ct.scheme) {
default:
emitError(loc, "unsupported scheme for uniform type conversion");
return nullptr;
case CandidateQuantizedType::Scheme::UniformPerLayer: {
if (!clusteredFacts.requiredRange.hasValue()) {
// TODO: Issue some kind of diagnostic. This is not an error.
return nullptr;
}
uint64_t numLevels = ct.quantizedType.getStorageTypeMax() -
ct.quantizedType.getStorageTypeMin();
UniformStorageParams params{numLevels,
ct.quantizedType.getStorageTypeMin()};
UniformParamsFromMinMaxSolver solver(
params, clusteredFacts.requiredRange.getValue().first,
clusteredFacts.requiredRange.getValue().second);
if (!solver.compute()) {
emitWarning(loc) << "unable to solve uniform type with "
<< "UniformParamsFromMinMaxSolver";
return nullptr;
}
return UniformQuantizedType::getChecked(
ct.quantizedType.getFlags(), ct.quantizedType.getStorageType(),
originalElementType, solver.getScale(), solver.getZp(),
ct.quantizedType.getStorageTypeMin(),
ct.quantizedType.getStorageTypeMax(), loc);
}
case CandidateQuantizedType::Scheme::UniformExplicitFixedPointScale: {
if (!clusteredFacts.explicitScaleZeroPoint.hasValue()) {
emitRemark(loc)
<< "unable to solve uniform type with UniformExplicitFixedPointScale "
<< "(no explicitScaleZeroPoint)";
return nullptr;
}
const auto &scaleZp = clusteredFacts.explicitScaleZeroPoint.getValue();
assert(scaleZp.value && "optional value not set on fact");
if (scaleZp.conflict) {
emitWarning(loc)
<< "conflicting explicit scale/zeroPoint on node cluster: "
<< "an arbitrary scale/zeroPoint will be used";
}
return UniformQuantizedType::getChecked(
ct.quantizedType.getFlags(), ct.quantizedType.getStorageType(),
originalElementType,
scaleZp.value->first, // scale
0, // zeroPoint (fixed point solutions only for this scheme)
ct.quantizedType.getStorageTypeMin(),
ct.quantizedType.getStorageTypeMax(), loc);
return nullptr;
}
}
}
namespace {
class PropagateExplicitScale : public CAGConstraintNode {
public:
PropagateExplicitScale()
: CAGConstraintNode(Kind::UniformPropagateExplicitScale) {}
static bool classof(const CAGNode *n) {
return n->getKind() == Kind::Constraint ||
n->getKind() == Kind::UniformPropagateExplicitScale;
}
private:
void printLabel(raw_ostream &os) const override {
os << "PropagateExplicitScale";
}
void propagate(SolverContext &solverContext,
const TargetConfiguration &config) override {
DiscreteScaleZeroPointFact scaleZp;
// Get scale/zp from all parents.
for (auto it = incoming_begin(), e = incoming_end(); it != e; ++it) {
auto parentAnchor = cast<CAGAnchorNode>(*it);
auto selectedType = parentAnchor->getUniformMetadata().selectedType;
if (auto uqType = selectedType.dyn_cast_or_null<UniformQuantizedType>()) {
scaleZp.assertValue(
CAGUniformMetadata::SalienceRequired,
std::make_pair(uqType.getScale(), static_cast<int64_t>(0)));
}
}
// Propagate to children.
if (scaleZp.hasValue()) {
for (auto it = begin(), e = end(); it != e; ++it) {
auto childAnchor = cast<CAGAnchorNode>(*it);
if (modified(childAnchor->getUniformMetadata()
.explicitScaleZeroPoint.mergeFrom(scaleZp))) {
childAnchor->markDirty();
}
}
}
}
};
/// A constraint node which will solve uniform quantization for all parents
/// of the constraint, assuming that they are coupled.
class SolveUniformConstraintNode : public CAGConstraintNode {
public:
SolveUniformConstraintNode()
: CAGConstraintNode(Kind::SolveUniformConstraint) {
markDirty();
}
static bool classof(const CAGNode *n) {
return n->getKind() == Kind::Constraint ||
n->getKind() == Kind::SolveUniformConstraint;
}
private:
void printLabel(raw_ostream &os) const override { os << "SolveUniform"; }
void propagate(SolverContext &solverContext,
const TargetConfiguration &config) override {
// First determine the required min/max range and type constraints.
Location fusedLoc = UnknownLoc::get(&solverContext.getMlirContext());
llvm::SmallBitVector enabledCandidateTypesMask(
config.getAllCandidateTypesMask());
ClusteredFacts clusteredFacts;
Type originalElementType;
for (auto it = incoming_begin(), e = incoming_end(); it != e; ++it) {
auto parentAnchor = cast<CAGAnchorNode>(*it);
auto metadata = parentAnchor->getUniformMetadata();
// TODO: Possibly use a location that fuses all involved parents.
fusedLoc = parentAnchor->getOp()->getLoc();
// Shared element type.
auto parentOriginalElementType =
getElementOrPrimitiveType(parentAnchor->getOriginalType());
if (!originalElementType) {
originalElementType = parentOriginalElementType;
} else {
if (originalElementType != parentOriginalElementType) {
parentAnchor->getOp()->emitError()
<< "cannot compute uniform type: parent element types mismatch";
return;
}
}
// Range.
clusteredFacts.requiredRange.mergeFrom(metadata.requiredRange);
// Explicit scale and zero point.
clusteredFacts.explicitScaleZeroPoint.mergeFrom(
metadata.explicitScaleZeroPoint);
// Shared candidate types.
enabledCandidateTypesMask.reset(metadata.disabledCandidateTypes);
}
// Find the first enabled candidate type.
const CandidateQuantizedType *bestCandidateType = nullptr;
for (auto &ct : config.getCandidateTypes()) {
if (enabledCandidateTypesMask.test(ct.ordinal)) {
bestCandidateType = &ct;
break;
}
}
if (!bestCandidateType || !originalElementType) {
emitRemark(fusedLoc)
<< "not solving uniform type (no viable candidate type)";
return;
}
// Solve for the type.
QuantizedType selectedType =
solveUniformType(solverContext, clusteredFacts, *bestCandidateType,
originalElementType, fusedLoc);
// Apply it to all parents.
for (auto it = incoming_begin(), e = incoming_end(); it != e; ++it) {
auto parentAnchor = cast<CAGAnchorNode>(*it);
auto &metadata = parentAnchor->getUniformMetadata();
if (metadata.selectedType != selectedType) {
metadata.selectedType = selectedType;
// And mark all children of the parent dirty (except us).
for (auto child : *parentAnchor) {
if (child != this) {
child->markDirty();
}
}
}
}
}
};
} // end anonymous namespace
void UniformConstraintsBuilder::coupleAnchors(CAGAnchorNode *a,
CAGAnchorNode *b) {
slice.addClusteredConstraint<SolveUniformConstraintNode>({a, b});
}
void UniformConstraintsBuilder::applyStats(CAGAnchorNode *a,
TensorAxisStatistics stats) {
a->getUniformMetadata().requiredRange.assertValue(
CAGUniformMetadata::SalienceDefault, {stats.minValue, stats.maxValue});
}
void UniformConstraintsBuilder::clamp(CAGAnchorNode *a, APFloat minValue,
APFloat maxValue) {
a->getUniformMetadata().requiredRange.assertValue(
CAGUniformMetadata::SalienceDefault,
{minValue.convertToDouble(), maxValue.convertToDouble()});
}
void UniformConstraintsBuilder::propagateExplicitScale(CAGAnchorNode *from,
CAGAnchorNode *to) {
slice.addUnidirectionalConstraint<PropagateExplicitScale>(from, {to});
}