LoopFusionUtils.cpp 19.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
//===- LoopFusionUtils.cpp ---- Utilities for loop fusion ----------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop fusion transformation utility functions.
//
//===----------------------------------------------------------------------===//

#include "mlir/Transforms/LoopFusionUtils.h"

#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Operation.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "loop-fusion-utils"

using namespace mlir;

// Gathers all load and store memref accesses in 'opA' into 'values', where
// 'values[memref] == true' for each store operation.
static void getLoadAndStoreMemRefAccesses(Operation *opA,
                                          DenseMap<Value, bool> &values) {
  opA->walk([&](Operation *op) {
    if (auto loadOp = dyn_cast<AffineLoadOp>(op)) {
      if (values.count(loadOp.getMemRef()) == 0)
        values[loadOp.getMemRef()] = false;
    } else if (auto storeOp = dyn_cast<AffineStoreOp>(op)) {
      values[storeOp.getMemRef()] = true;
    }
  });
}

// Returns true if 'op' is a load or store operation which access an memref
// accessed 'values' and at least one of the access is a store operation.
// Returns false otherwise.
static bool isDependentLoadOrStoreOp(Operation *op,
                                     DenseMap<Value, bool> &values) {
  if (auto loadOp = dyn_cast<AffineLoadOp>(op)) {
    return values.count(loadOp.getMemRef()) > 0 &&
           values[loadOp.getMemRef()] == true;
  } else if (auto storeOp = dyn_cast<AffineStoreOp>(op)) {
    return values.count(storeOp.getMemRef()) > 0;
  }
  return false;
}

// Returns the first operation in range ('opA', 'opB') which has a data
// dependence on 'opA'. Returns 'nullptr' of no dependence exists.
static Operation *getFirstDependentOpInRange(Operation *opA, Operation *opB) {
  // Record memref values from all loads/store in loop nest rooted at 'opA'.
  // Map from memref value to bool which is true if store, false otherwise.
  DenseMap<Value, bool> values;
  getLoadAndStoreMemRefAccesses(opA, values);

  // For each 'opX' in block in range ('opA', 'opB'), check if there is a data
  // dependence from 'opA' to 'opX' ('opA' and 'opX' access the same memref
  // and at least one of the accesses is a store).
  Operation *firstDepOp = nullptr;
  for (Block::iterator it = std::next(Block::iterator(opA));
       it != Block::iterator(opB); ++it) {
    Operation *opX = &(*it);
    opX->walk([&](Operation *op) {
      if (!firstDepOp && isDependentLoadOrStoreOp(op, values))
        firstDepOp = opX;
    });
    if (firstDepOp)
      break;
  }
  return firstDepOp;
}

// Returns the last operation 'opX' in range ('opA', 'opB'), for which there
// exists a data dependence from 'opX' to 'opB'.
// Returns 'nullptr' of no dependence exists.
static Operation *getLastDependentOpInRange(Operation *opA, Operation *opB) {
  // Record memref values from all loads/store in loop nest rooted at 'opB'.
  // Map from memref value to bool which is true if store, false otherwise.
  DenseMap<Value, bool> values;
  getLoadAndStoreMemRefAccesses(opB, values);

  // For each 'opX' in block in range ('opA', 'opB') in reverse order,
  // check if there is a data dependence from 'opX' to 'opB':
  // *) 'opX' and 'opB' access the same memref and at least one of the accesses
  //    is a store.
  // *) 'opX' produces an SSA Value which is used by 'opB'.
  Operation *lastDepOp = nullptr;
  for (Block::reverse_iterator it = std::next(Block::reverse_iterator(opB));
       it != Block::reverse_iterator(opA); ++it) {
    Operation *opX = &(*it);
    opX->walk([&](Operation *op) {
      if (isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op)) {
        if (isDependentLoadOrStoreOp(op, values)) {
          lastDepOp = opX;
          return WalkResult::interrupt();
        }
        return WalkResult::advance();
      }
      for (auto value : op->getResults()) {
        for (auto user : value.getUsers()) {
          SmallVector<AffineForOp, 4> loops;
          // Check if any loop in loop nest surrounding 'user' is 'opB'.
          getLoopIVs(*user, &loops);
          if (llvm::is_contained(loops, cast<AffineForOp>(opB))) {
            lastDepOp = opX;
            return WalkResult::interrupt();
          }
        }
      }
      return WalkResult::advance();
    });
    if (lastDepOp)
      break;
  }
  return lastDepOp;
}

// Computes and returns an insertion point operation, before which the
// the fused <srcForOp, dstForOp> loop nest can be inserted while preserving
// dependences. Returns nullptr if no such insertion point is found.
static Operation *getFusedLoopNestInsertionPoint(AffineForOp srcForOp,
                                                 AffineForOp dstForOp) {
  bool isSrcForOpBeforeDstForOp =
      srcForOp.getOperation()->isBeforeInBlock(dstForOp.getOperation());
  auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp;
  auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp;

  auto *firstDepOpA =
      getFirstDependentOpInRange(forOpA.getOperation(), forOpB.getOperation());
  auto *lastDepOpB =
      getLastDependentOpInRange(forOpA.getOperation(), forOpB.getOperation());
  // Block:
  //      ...
  //  |-- opA
  //  |   ...
  //  |   lastDepOpB --|
  //  |   ...          |
  //  |-> firstDepOpA  |
  //      ...          |
  //      opB <---------
  //
  // Valid insertion point range: (lastDepOpB, firstDepOpA)
  //
  if (firstDepOpA != nullptr) {
    if (lastDepOpB != nullptr) {
      if (firstDepOpA->isBeforeInBlock(lastDepOpB) || firstDepOpA == lastDepOpB)
        // No valid insertion point exists which preserves dependences.
        return nullptr;
    }
    // Return insertion point in valid range closest to 'opB'.
    // TODO(andydavis) Consider other insertion points in valid range.
    return firstDepOpA;
  }
  // No dependences from 'opA' to operation in range ('opA', 'opB'), return
  // 'opB' insertion point.
  return forOpB.getOperation();
}

// Gathers all load and store ops in loop nest rooted at 'forOp' into
// 'loadAndStoreOps'.
static bool
gatherLoadsAndStores(AffineForOp forOp,
                     SmallVectorImpl<Operation *> &loadAndStoreOps) {
  bool hasIfOp = false;
  forOp.walk([&](Operation *op) {
    if (isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op))
      loadAndStoreOps.push_back(op);
    else if (isa<AffineIfOp>(op))
      hasIfOp = true;
  });
  return !hasIfOp;
}

// TODO(andydavis) Prevent fusion of loop nests with side-effecting operations.
FusionResult mlir::canFuseLoops(AffineForOp srcForOp, AffineForOp dstForOp,
                                unsigned dstLoopDepth,
                                ComputationSliceState *srcSlice) {
  // Return 'failure' if 'dstLoopDepth == 0'.
  if (dstLoopDepth == 0) {
    LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests at depth 0\n.");
    return FusionResult::FailPrecondition;
  }
  // Return 'failure' if 'srcForOp' and 'dstForOp' are not in the same block.
  auto *block = srcForOp.getOperation()->getBlock();
  if (block != dstForOp.getOperation()->getBlock()) {
    LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests in different blocks\n.");
    return FusionResult::FailPrecondition;
  }

  // Return 'failure' if no valid insertion point for fused loop nest in 'block'
  // exists which would preserve dependences.
  if (!getFusedLoopNestInsertionPoint(srcForOp, dstForOp)) {
    LLVM_DEBUG(llvm::dbgs() << "Fusion would violate dependences in block\n.");
    return FusionResult::FailBlockDependence;
  }

  // Check if 'srcForOp' precedes 'dstForOp' in 'block'.
  bool isSrcForOpBeforeDstForOp =
      srcForOp.getOperation()->isBeforeInBlock(dstForOp.getOperation());
  // 'forOpA' executes before 'forOpB' in 'block'.
  auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp;
  auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp;

  // Gather all load and store from 'forOpA' which precedes 'forOpB' in 'block'.
  SmallVector<Operation *, 4> opsA;
  if (!gatherLoadsAndStores(forOpA, opsA)) {
    LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported.\n.");
    return FusionResult::FailPrecondition;
  }

  // Gather all load and store from 'forOpB' which succeeds 'forOpA' in 'block'.
  SmallVector<Operation *, 4> opsB;
  if (!gatherLoadsAndStores(forOpB, opsB)) {
    LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported.\n.");
    return FusionResult::FailPrecondition;
  }

  // Calculate the number of common loops surrounding 'srcForOp' and 'dstForOp'.
  unsigned numCommonLoops = mlir::getNumCommonSurroundingLoops(
      *srcForOp.getOperation(), *dstForOp.getOperation());

  // Compute union of computation slices computed between all pairs of ops
  // from 'forOpA' and 'forOpB'.
  if (failed(mlir::computeSliceUnion(opsA, opsB, dstLoopDepth, numCommonLoops,
                                     isSrcForOpBeforeDstForOp, srcSlice))) {
    LLVM_DEBUG(llvm::dbgs() << "computeSliceUnion failed\n");
    return FusionResult::FailPrecondition;
  }

  return FusionResult::Success;
}

/// Collect loop nest statistics (eg. loop trip count and operation count)
/// in 'stats' for loop nest rooted at 'forOp'. Returns true on success,
/// returns false otherwise.
bool mlir::getLoopNestStats(AffineForOp forOpRoot, LoopNestStats *stats) {
  auto walkResult = forOpRoot.walk([&](AffineForOp forOp) {
    auto *childForOp = forOp.getOperation();
    auto *parentForOp = forOp.getParentOp();
    if (!llvm::isa<FuncOp>(parentForOp)) {
      if (!isa<AffineForOp>(parentForOp)) {
        LLVM_DEBUG(llvm::dbgs() << "Expected parent AffineForOp");
        return WalkResult::interrupt();
      }
      // Add mapping to 'forOp' from its parent AffineForOp.
      stats->loopMap[parentForOp].push_back(forOp);
    }

    // Record the number of op operations in the body of 'forOp'.
    unsigned count = 0;
    stats->opCountMap[childForOp] = 0;
    for (auto &op : *forOp.getBody()) {
      if (!isa<AffineForOp>(op) && !isa<AffineIfOp>(op))
        ++count;
    }
    stats->opCountMap[childForOp] = count;

    // Record trip count for 'forOp'. Set flag if trip count is not
    // constant.
    Optional<uint64_t> maybeConstTripCount = getConstantTripCount(forOp);
    if (!maybeConstTripCount.hasValue()) {
      // Currently only constant trip count loop nests are supported.
      LLVM_DEBUG(llvm::dbgs() << "Non-constant trip count unsupported");
      return WalkResult::interrupt();
    }

    stats->tripCountMap[childForOp] = maybeConstTripCount.getValue();
    return WalkResult::advance();
  });
  return !walkResult.wasInterrupted();
}

// Computes the total cost of the loop nest rooted at 'forOp'.
// Currently, the total cost is computed by counting the total operation
// instance count (i.e. total number of operations in the loop bodyloop
// operation count * loop trip count) for the entire loop nest.
// If 'tripCountOverrideMap' is non-null, overrides the trip count for loops
// specified in the map when computing the total op instance count.
// NOTEs: 1) This is used to compute the cost of computation slices, which are
// sliced along the iteration dimension, and thus reduce the trip count.
// If 'computeCostMap' is non-null, the total op count for forOps specified
// in the map is increased (not overridden) by adding the op count from the
// map to the existing op count for the for loop. This is done before
// multiplying by the loop's trip count, and is used to model the cost of
// inserting a sliced loop nest of known cost into the loop's body.
// 2) This is also used to compute the cost of fusing a slice of some loop nest
// within another loop.
static int64_t getComputeCostHelper(
    Operation *forOp, LoopNestStats &stats,
    llvm::SmallDenseMap<Operation *, uint64_t, 8> *tripCountOverrideMap,
    DenseMap<Operation *, int64_t> *computeCostMap) {
  // 'opCount' is the total number operations in one iteration of 'forOp' body,
  // minus terminator op which is a no-op.
  int64_t opCount = stats.opCountMap[forOp] - 1;
  if (stats.loopMap.count(forOp) > 0) {
    for (auto childForOp : stats.loopMap[forOp]) {
      opCount += getComputeCostHelper(childForOp.getOperation(), stats,
                                      tripCountOverrideMap, computeCostMap);
    }
  }
  // Add in additional op instances from slice (if specified in map).
  if (computeCostMap != nullptr) {
    auto it = computeCostMap->find(forOp);
    if (it != computeCostMap->end()) {
      opCount += it->second;
    }
  }
  // Override trip count (if specified in map).
  int64_t tripCount = stats.tripCountMap[forOp];
  if (tripCountOverrideMap != nullptr) {
    auto it = tripCountOverrideMap->find(forOp);
    if (it != tripCountOverrideMap->end()) {
      tripCount = it->second;
    }
  }
  // Returns the total number of dynamic instances of operations in loop body.
  return tripCount * opCount;
}

// TODO(andydavis,b/126426796): extend this to handle multiple result maps.
static Optional<uint64_t> getConstDifference(AffineMap lbMap, AffineMap ubMap) {
  assert(lbMap.getNumResults() == 1 && "expected single result bound map");
  assert(ubMap.getNumResults() == 1 && "expected single result bound map");
  assert(lbMap.getNumDims() == ubMap.getNumDims());
  assert(lbMap.getNumSymbols() == ubMap.getNumSymbols());
  AffineExpr lbExpr(lbMap.getResult(0));
  AffineExpr ubExpr(ubMap.getResult(0));
  auto loopSpanExpr = simplifyAffineExpr(ubExpr - lbExpr, lbMap.getNumDims(),
                                         lbMap.getNumSymbols());
  auto cExpr = loopSpanExpr.dyn_cast<AffineConstantExpr>();
  if (!cExpr)
    return None;
  return cExpr.getValue();
}

// Return the number of iterations in the given slice.
static uint64_t getSliceIterationCount(
    const llvm::SmallDenseMap<Operation *, uint64_t, 8> &sliceTripCountMap) {
  uint64_t iterCount = 1;
  for (const auto &count : sliceTripCountMap) {
    iterCount *= count.second;
  }
  return iterCount;
}

// Builds a map 'tripCountMap' from AffineForOp to constant trip count for loop
// nest surrounding represented by slice loop bounds in 'slice'.
// Returns true on success, false otherwise (if a non-constant trip count
// was encountered).
// TODO(andydavis) Make this work with non-unit step loops.
static bool buildSliceTripCountMap(
    ComputationSliceState *slice,
    llvm::SmallDenseMap<Operation *, uint64_t, 8> *tripCountMap) {
  unsigned numSrcLoopIVs = slice->ivs.size();
  // Populate map from AffineForOp -> trip count
  for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
    AffineForOp forOp = getForInductionVarOwner(slice->ivs[i]);
    auto *op = forOp.getOperation();
    AffineMap lbMap = slice->lbs[i];
    AffineMap ubMap = slice->ubs[i];
    if (lbMap == AffineMap() || ubMap == AffineMap()) {
      // The iteration of src loop IV 'i' was not sliced. Use full loop bounds.
      if (forOp.hasConstantLowerBound() && forOp.hasConstantUpperBound()) {
        (*tripCountMap)[op] =
            forOp.getConstantUpperBound() - forOp.getConstantLowerBound();
        continue;
      }
      Optional<uint64_t> maybeConstTripCount = getConstantTripCount(forOp);
      if (maybeConstTripCount.hasValue()) {
        (*tripCountMap)[op] = maybeConstTripCount.getValue();
        continue;
      }
      return false;
    }
    Optional<uint64_t> tripCount = getConstDifference(lbMap, ubMap);
    // Slice bounds are created with a constant ub - lb difference.
    if (!tripCount.hasValue())
      return false;
    (*tripCountMap)[op] = tripCount.getValue();
  }
  return true;
}

/// Computes the total cost of the loop nest rooted at 'forOp' using 'stats'.
/// Currently, the total cost is computed by counting the total operation
/// instance count (i.e. total number of operations in the loop body * loop
/// trip count) for the entire loop nest.
int64_t mlir::getComputeCost(AffineForOp forOp, LoopNestStats &stats) {
  return getComputeCostHelper(forOp.getOperation(), stats,
                              /*tripCountOverrideMap=*/nullptr,
                              /*computeCostMap=*/nullptr);
}

/// Computes and returns in 'computeCost', the total compute cost of fusing the
/// 'slice' of the loop nest rooted at 'srcForOp' into 'dstForOp'. Currently,
/// the total cost is computed by counting the total operation instance count
/// (i.e. total number of operations in the loop body * loop trip count) for
/// the entire loop nest.
bool mlir::getFusionComputeCost(AffineForOp srcForOp, LoopNestStats &srcStats,
                                AffineForOp dstForOp, LoopNestStats &dstStats,
                                ComputationSliceState *slice,
                                int64_t *computeCost) {
  llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap;
  DenseMap<Operation *, int64_t> computeCostMap;

  // Build trip count map for computation slice.
  if (!buildSliceTripCountMap(slice, &sliceTripCountMap))
    return false;
  // Checks whether a store to load forwarding will happen.
  int64_t sliceIterationCount = getSliceIterationCount(sliceTripCountMap);
  assert(sliceIterationCount > 0);
  bool storeLoadFwdGuaranteed = (sliceIterationCount == 1);
  auto *insertPointParent = slice->insertPoint->getParentOp();

  // The store and loads to this memref will disappear.
  // TODO(andydavis) Add load coalescing to memref data flow opt pass.
  if (storeLoadFwdGuaranteed) {
    // Subtract from operation count the loads/store we expect load/store
    // forwarding to remove.
    unsigned storeCount = 0;
    llvm::SmallDenseSet<Value, 4> storeMemrefs;
    srcForOp.walk([&](Operation *op) {
      if (auto storeOp = dyn_cast<AffineStoreOp>(op)) {
        storeMemrefs.insert(storeOp.getMemRef());
        ++storeCount;
      }
    });
    // Subtract out any store ops in single-iteration src slice loop nest.
    if (storeCount > 0)
      computeCostMap[insertPointParent] = -storeCount;
    // Subtract out any load users of 'storeMemrefs' nested below
    // 'insertPointParent'.
    for (auto value : storeMemrefs) {
      for (auto *user : value.getUsers()) {
        if (auto loadOp = dyn_cast<AffineLoadOp>(user)) {
          SmallVector<AffineForOp, 4> loops;
          // Check if any loop in loop nest surrounding 'user' is
          // 'insertPointParent'.
          getLoopIVs(*user, &loops);
          if (llvm::is_contained(loops, cast<AffineForOp>(insertPointParent))) {
            if (auto forOp =
                    dyn_cast_or_null<AffineForOp>(user->getParentOp())) {
              if (computeCostMap.count(forOp) == 0)
                computeCostMap[forOp] = 0;
              computeCostMap[forOp] -= 1;
            }
          }
        }
      }
    }
  }

  // Compute op instance count for the src loop nest with iteration slicing.
  int64_t sliceComputeCost = getComputeCostHelper(
      srcForOp.getOperation(), srcStats, &sliceTripCountMap, &computeCostMap);

  // Compute cost of fusion for this depth.
  computeCostMap[insertPointParent] = sliceComputeCost;

  *computeCost =
      getComputeCostHelper(dstForOp.getOperation(), dstStats,
                           /*tripCountOverrideMap=*/nullptr, &computeCostMap);
  return true;
}