TestPatterns.cpp 20.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
//===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "TestDialect.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;

// Native function for testing NativeCodeCall
static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
  return choice.getValue() ? input1 : input2;
}

static void createOpI(PatternRewriter &rewriter, Value input) {
  rewriter.create<OpI>(rewriter.getUnknownLoc(), input);
}

static void handleNoResultOp(PatternRewriter &rewriter,
                             OpSymbolBindingNoResult op) {
  // Turn the no result op to a one-result op.
  rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(),
                                    op.operand());
}

namespace {
#include "TestPatterns.inc"
} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Canonicalizer Driver.
//===----------------------------------------------------------------------===//

namespace {
struct TestPatternDriver : public FunctionPass<TestPatternDriver> {
  void runOnFunction() override {
    mlir::OwningRewritePatternList patterns;
    populateWithGenerated(&getContext(), &patterns);

    // Verify named pattern is generated with expected name.
    patterns.insert<TestNamedPatternRule>(&getContext());

    applyPatternsGreedily(getFunction(), patterns);
  }
};
} // end anonymous namespace

static mlir::PassRegistration<TestPatternDriver>
    pass("test-patterns", "Run test dialect patterns");

//===----------------------------------------------------------------------===//
// ReturnType Driver.
//===----------------------------------------------------------------------===//

namespace {
struct ReturnTypeOpMatch : public RewritePattern {
  ReturnTypeOpMatch(MLIRContext *ctx)
      : RewritePattern(OpWithInferTypeInterfaceOp::getOperationName(), 1, ctx) {
  }

  PatternMatchResult matchAndRewrite(Operation *op,
                                     PatternRewriter &rewriter) const final {
    if (auto retTypeFn = dyn_cast<InferTypeOpInterface>(op)) {
      SmallVector<Value, 4> values(op->getOperands());
      SmallVector<Type, 2> inferedReturnTypes;
      if (failed(retTypeFn.inferReturnTypes(op->getLoc(), values,
                                            op->getAttrs(), op->getRegions(),
                                            inferedReturnTypes)))
        return matchFailure();
      SmallVector<Type, 1> resultTypes(op->getResultTypes());
      if (!retTypeFn.isCompatibleReturnTypes(inferedReturnTypes, resultTypes))
        return op->emitOpError(
                   "inferred type incompatible with return type of operation"),
               matchFailure();

      // TODO(jpienaar): Split this out to make the test more focused.
      // Create new op with unknown location to verify building with
      // InferTypeOpInterface is triggered.
      auto fop = op->getParentOfType<FuncOp>();
      if (values[0] == fop.getArgument(0)) {
        // Use the 2nd function argument if the first function argument is used
        // when constructing the new op so that a new return type is inferred.
        values[0] = fop.getArgument(1);
        values[1] = fop.getArgument(1);
        // TODO(jpienaar): Expand to regions.
        rewriter.create<OpWithInferTypeInterfaceOp>(
            UnknownLoc::get(op->getContext()), values, op->getAttrs());
      }
    }
    return matchFailure();
  }
};

struct TestReturnTypeDriver : public FunctionPass<TestReturnTypeDriver> {
  void runOnFunction() override {
    mlir::OwningRewritePatternList patterns;
    populateWithGenerated(&getContext(), &patterns);
    patterns.insert<ReturnTypeOpMatch>(&getContext());
    applyPatternsGreedily(getFunction(), patterns);
  }
};
} // end anonymous namespace

static mlir::PassRegistration<TestReturnTypeDriver>
    rt_pass("test-return-type", "Run return type functions");

//===----------------------------------------------------------------------===//
// Legalization Driver.
//===----------------------------------------------------------------------===//

namespace {
//===----------------------------------------------------------------------===//
// Region-Block Rewrite Testing

/// This pattern is a simple pattern that inlines the first region of a given
/// operation into the parent region.
struct TestRegionRewriteBlockMovement : public ConversionPattern {
  TestRegionRewriteBlockMovement(MLIRContext *ctx)
      : ConversionPattern("test.region", 1, ctx) {}

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const final {
    // Inline this region into the parent region.
    auto &parentRegion = *op->getParentRegion();
    if (op->getAttr("legalizer.should_clone"))
      rewriter.cloneRegionBefore(op->getRegion(0), parentRegion,
                                 parentRegion.end());
    else
      rewriter.inlineRegionBefore(op->getRegion(0), parentRegion,
                                  parentRegion.end());

    // Drop this operation.
    rewriter.eraseOp(op);
    return matchSuccess();
  }
};
/// This pattern is a simple pattern that generates a region containing an
/// illegal operation.
struct TestRegionRewriteUndo : public RewritePattern {
  TestRegionRewriteUndo(MLIRContext *ctx)
      : RewritePattern("test.region_builder", 1, ctx) {}

  PatternMatchResult matchAndRewrite(Operation *op,
                                     PatternRewriter &rewriter) const final {
    // Create the region operation with an entry block containing arguments.
    OperationState newRegion(op->getLoc(), "test.region");
    newRegion.addRegion();
    auto *regionOp = rewriter.createOperation(newRegion);
    auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
    entryBlock->addArgument(rewriter.getIntegerType(64));

    // Add an explicitly illegal operation to ensure the conversion fails.
    rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
    rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());

    // Drop this operation.
    rewriter.eraseOp(op);
    return matchSuccess();
  }
};

//===----------------------------------------------------------------------===//
// Type-Conversion Rewrite Testing

/// This patterns erases a region operation that has had a type conversion.
struct TestDropOpSignatureConversion : public ConversionPattern {
  TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
      : ConversionPattern("test.drop_region_op", 1, ctx), converter(converter) {
  }
  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    Region &region = op->getRegion(0);
    Block *entry = &region.front();

    // Convert the original entry arguments.
    TypeConverter::SignatureConversion result(entry->getNumArguments());
    for (unsigned i = 0, e = entry->getNumArguments(); i != e; ++i)
      if (failed(converter.convertSignatureArg(
              i, entry->getArgument(i).getType(), result)))
        return matchFailure();

    // Convert the region signature and just drop the operation.
    rewriter.applySignatureConversion(&region, result);
    rewriter.eraseOp(op);
    return matchSuccess();
  }

  /// The type converter to use when rewriting the signature.
  TypeConverter &converter;
};
/// This pattern simply updates the operands of the given operation.
struct TestPassthroughInvalidOp : public ConversionPattern {
  TestPassthroughInvalidOp(MLIRContext *ctx)
      : ConversionPattern("test.invalid", 1, ctx) {}
  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const final {
    rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
                                             llvm::None);
    return matchSuccess();
  }
};
/// This pattern handles the case of a split return value.
struct TestSplitReturnType : public ConversionPattern {
  TestSplitReturnType(MLIRContext *ctx)
      : ConversionPattern("test.return", 1, ctx) {}
  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const final {
    // Check for a return of F32.
    if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
      return matchFailure();

    // Check if the first operation is a cast operation, if it is we use the
    // results directly.
    auto *defOp = operands[0].getDefiningOp();
    if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
      rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
      return matchSuccess();
    }

    // Otherwise, fail to match.
    return matchFailure();
  }
};

//===----------------------------------------------------------------------===//
// Multi-Level Type-Conversion Rewrite Testing
struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
  TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
      : ConversionPattern("test.type_producer", 1, ctx) {}
  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const final {
    // If the type is I32, change the type to F32.
    if (!(*op->result_type_begin()).isInteger(32))
      return matchFailure();
    rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
    return matchSuccess();
  }
};
struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
  TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
      : ConversionPattern("test.type_producer", 1, ctx) {}
  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const final {
    // If the type is F32, change the type to F64.
    if (!(*op->result_type_begin()).isF32())
      return matchFailure();
    rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
    return matchSuccess();
  }
};
struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
  TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
      : ConversionPattern("test.type_producer", 10, ctx) {}
  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const final {
    // Always convert to B16, even though it is not a legal type. This tests
    // that values are unmapped correctly.
    rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
    return matchSuccess();
  }
};
struct TestUpdateConsumerType : public ConversionPattern {
  TestUpdateConsumerType(MLIRContext *ctx)
      : ConversionPattern("test.type_consumer", 1, ctx) {}
  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const final {
    // Verify that the incoming operand has been successfully remapped to F64.
    if (!operands[0].getType().isF64())
      return matchFailure();
    rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
    return matchSuccess();
  }
};

//===----------------------------------------------------------------------===//
// Non-Root Replacement Rewrite Testing
/// This pattern generates an invalid operation, but replaces it before the
/// pattern is finished. This checks that we don't need to legalize the
/// temporary op.
struct TestNonRootReplacement : public RewritePattern {
  TestNonRootReplacement(MLIRContext *ctx)
      : RewritePattern("test.replace_non_root", 1, ctx) {}

  PatternMatchResult matchAndRewrite(Operation *op,
                                     PatternRewriter &rewriter) const final {
    auto resultType = *op->result_type_begin();
    auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
    auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);

    rewriter.replaceOp(illegalOp, {legalOp});
    rewriter.replaceOp(op, {illegalOp});
    return matchSuccess();
  }
};
} // namespace

namespace {
struct TestTypeConverter : public TypeConverter {
  using TypeConverter::TypeConverter;

  LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) override {
    // Drop I16 types.
    if (t.isInteger(16))
      return success();

    // Convert I64 to F64.
    if (t.isInteger(64)) {
      results.push_back(FloatType::getF64(t.getContext()));
      return success();
    }

    // Split F32 into F16,F16.
    if (t.isF32()) {
      results.assign(2, FloatType::getF16(t.getContext()));
      return success();
    }

    // Otherwise, convert the type directly.
    results.push_back(t);
    return success();
  }

  /// Override the hook to materialize a conversion. This is necessary because
  /// we generate 1->N type mappings.
  Operation *materializeConversion(PatternRewriter &rewriter, Type resultType,
                                   ArrayRef<Value> inputs,
                                   Location loc) override {
    return rewriter.create<TestCastOp>(loc, resultType, inputs);
  }
};

struct TestLegalizePatternDriver
    : public ModulePass<TestLegalizePatternDriver> {
  /// The mode of conversion to use with the driver.
  enum class ConversionMode { Analysis, Full, Partial };

  TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}

  void runOnModule() override {
    TestTypeConverter converter;
    mlir::OwningRewritePatternList patterns;
    populateWithGenerated(&getContext(), &patterns);
    patterns
        .insert<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
                TestPassthroughInvalidOp, TestSplitReturnType,
                TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
                TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
                TestNonRootReplacement>(&getContext());
    patterns.insert<TestDropOpSignatureConversion>(&getContext(), converter);
    mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(),
                                              converter);

    // Define the conversion target used for the test.
    ConversionTarget target(getContext());
    target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
    target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp>();
    target
        .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
    target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
      // Don't allow F32 operands.
      return llvm::none_of(op.getOperandTypes(),
                           [](Type type) { return type.isF32(); });
    });
    target.addDynamicallyLegalOp<FuncOp>(
        [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });

    // Expect the type_producer/type_consumer operations to only operate on f64.
    target.addDynamicallyLegalOp<TestTypeProducerOp>(
        [](TestTypeProducerOp op) { return op.getType().isF64(); });
    target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
      return op.getOperand().getType().isF64();
    });

    // Check support for marking certain operations as recursively legal.
    target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
      return static_cast<bool>(
          op->getAttrOfType<UnitAttr>("test.recursively_legal"));
    });

    // Handle a partial conversion.
    if (mode == ConversionMode::Partial) {
      (void)applyPartialConversion(getModule(), target, patterns, &converter);
      return;
    }

    // Handle a full conversion.
    if (mode == ConversionMode::Full) {
      (void)applyFullConversion(getModule(), target, patterns, &converter);
      return;
    }

    // Otherwise, handle an analysis conversion.
    assert(mode == ConversionMode::Analysis);

    // Analyze the convertible operations.
    DenseSet<Operation *> legalizedOps;
    if (failed(applyAnalysisConversion(getModule(), target, patterns,
                                       legalizedOps, &converter)))
      return signalPassFailure();

    // Emit remarks for each legalizable operation.
    for (auto *op : legalizedOps)
      op->emitRemark() << "op '" << op->getName() << "' is legalizable";
  }

  /// The mode of conversion to use.
  ConversionMode mode;
};
} // end anonymous namespace

static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
    legalizerConversionMode(
        "test-legalize-mode",
        llvm::cl::desc("The legalization mode to use with the test driver"),
        llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
        llvm::cl::values(
            clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
                       "analysis", "Perform an analysis conversion"),
            clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
                       "Perform a full conversion"),
            clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
                       "partial", "Perform a partial conversion")));

static mlir::PassRegistration<TestLegalizePatternDriver>
    legalizer_pass("test-legalize-patterns",
                   "Run test dialect legalization patterns", [] {
                     return std::make_unique<TestLegalizePatternDriver>(
                         legalizerConversionMode);
                   });

//===----------------------------------------------------------------------===//
// ConversionPatternRewriter::getRemappedValue testing. This method is used
// to get the remapped value of a original value that was replaced using
// ConversionPatternRewriter.
namespace {
/// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
/// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
/// operand twice.
///
/// Example:
///   %1 = test.one_variadic_out_one_variadic_in1"(%0)
/// is replaced with:
///   %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
struct OneVResOneVOperandOp1Converter
    : public OpConversionPattern<OneVResOneVOperandOp1> {
  using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;

  PatternMatchResult
  matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto origOps = op.getOperands();
    assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
           "One operand expected");
    Value origOp = *origOps.begin();
    SmallVector<Value, 2> remappedOperands;
    // Replicate the remapped original operand twice. Note that we don't used
    // the remapped 'operand' since the goal is testing 'getRemappedValue'.
    remappedOperands.push_back(rewriter.getRemappedValue(origOp));
    remappedOperands.push_back(rewriter.getRemappedValue(origOp));

    SmallVector<Type, 1> resultTypes(op.getResultTypes());
    rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, resultTypes,
                                                       remappedOperands);
    return matchSuccess();
  }
};

struct TestRemappedValue : public mlir::FunctionPass<TestRemappedValue> {
  void runOnFunction() override {
    mlir::OwningRewritePatternList patterns;
    patterns.insert<OneVResOneVOperandOp1Converter>(&getContext());

    mlir::ConversionTarget target(getContext());
    target.addLegalOp<ModuleOp, ModuleTerminatorOp, FuncOp, TestReturnOp>();
    // We make OneVResOneVOperandOp1 legal only when it has more that one
    // operand. This will trigger the conversion that will replace one-operand
    // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
    target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
        [](Operation *op) -> bool {
          return std::distance(op->operand_begin(), op->operand_end()) > 1;
        });

    if (failed(mlir::applyFullConversion(getFunction(), target, patterns))) {
      signalPassFailure();
    }
  }
};
} // end anonymous namespace

static PassRegistration<TestRemappedValue> remapped_value_pass(
    "test-remapped-value",
    "Test public remapped value mechanism in ConversionPatternRewriter");