FlattenAlgo.cpp
13.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
//===------ FlattenAlgo.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Main algorithm of the FlattenSchedulePass. This is a separate file to avoid
// the unittest for this requiring linking against LLVM.
//
//===----------------------------------------------------------------------===//
#include "polly/FlattenAlgo.h"
#include "polly/Support/ISLOStream.h"
#include "polly/Support/ISLTools.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "polly-flatten-algo"
using namespace polly;
using namespace llvm;
namespace {
/// Whether a dimension of a set is bounded (lower and upper) by a constant,
/// i.e. there are two constants Min and Max, such that every value x of the
/// chosen dimensions is Min <= x <= Max.
bool isDimBoundedByConstant(isl::set Set, unsigned dim) {
auto ParamDims = Set.dim(isl::dim::param);
Set = Set.project_out(isl::dim::param, 0, ParamDims);
Set = Set.project_out(isl::dim::set, 0, dim);
auto SetDims = Set.dim(isl::dim::set);
Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
return bool(Set.is_bounded());
}
/// Whether a dimension of a set is (lower and upper) bounded by a constant or
/// parameters, i.e. there are two expressions Min_p and Max_p of the parameters
/// p, such that every value x of the chosen dimensions is
/// Min_p <= x <= Max_p.
bool isDimBoundedByParameter(isl::set Set, unsigned dim) {
Set = Set.project_out(isl::dim::set, 0, dim);
auto SetDims = Set.dim(isl::dim::set);
Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
return bool(Set.is_bounded());
}
/// Whether BMap's first out-dimension is not a constant.
bool isVariableDim(const isl::basic_map &BMap) {
auto FixedVal = BMap.plain_get_val_if_fixed(isl::dim::out, 0);
return !FixedVal || FixedVal.is_nan();
}
/// Whether Map's first out dimension is no constant nor piecewise constant.
bool isVariableDim(const isl::map &Map) {
for (isl::basic_map BMap : Map.get_basic_map_list())
if (isVariableDim(BMap))
return false;
return true;
}
/// Whether UMap's first out dimension is no (piecewise) constant.
bool isVariableDim(const isl::union_map &UMap) {
for (isl::map Map : UMap.get_map_list())
if (isVariableDim(Map))
return false;
return true;
}
/// Compute @p UPwAff - @p Val.
isl::union_pw_aff subtract(isl::union_pw_aff UPwAff, isl::val Val) {
if (Val.is_zero())
return UPwAff;
auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
isl::stat Stat =
UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
auto ValAff =
isl::pw_aff(isl::set::universe(PwAff.get_space().domain()), Val);
auto Subtracted = PwAff.sub(ValAff);
Result = Result.union_add(isl::union_pw_aff(Subtracted));
return isl::stat::ok();
});
if (Stat.is_error())
return {};
return Result;
}
/// Compute @UPwAff * @p Val.
isl::union_pw_aff multiply(isl::union_pw_aff UPwAff, isl::val Val) {
if (Val.is_one())
return UPwAff;
auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
isl::stat Stat =
UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
auto ValAff =
isl::pw_aff(isl::set::universe(PwAff.get_space().domain()), Val);
auto Multiplied = PwAff.mul(ValAff);
Result = Result.union_add(Multiplied);
return isl::stat::ok();
});
if (Stat.is_error())
return {};
return Result;
}
/// Remove @p n dimensions from @p UMap's range, starting at @p first.
///
/// It is assumed that all maps in the maps have at least the necessary number
/// of out dimensions.
isl::union_map scheduleProjectOut(const isl::union_map &UMap, unsigned first,
unsigned n) {
if (n == 0)
return UMap; /* isl_map_project_out would also reset the tuple, which should
have no effect on schedule ranges */
auto Result = isl::union_map::empty(UMap.get_space());
for (isl::map Map : UMap.get_map_list()) {
auto Outprojected = Map.project_out(isl::dim::out, first, n);
Result = Result.add_map(Outprojected);
}
return Result;
}
/// Return the number of dimensions in the input map's range.
///
/// Because this function takes an isl_union_map, the out dimensions could be
/// different. We return the maximum number in this case. However, a different
/// number of dimensions is not supported by the other code in this file.
size_t scheduleScatterDims(const isl::union_map &Schedule) {
unsigned Dims = 0;
for (isl::map Map : Schedule.get_map_list())
Dims = std::max(Dims, Map.dim(isl::dim::out));
return Dims;
}
/// Return the @p pos' range dimension, converted to an isl_union_pw_aff.
isl::union_pw_aff scheduleExtractDimAff(isl::union_map UMap, unsigned pos) {
auto SingleUMap = isl::union_map::empty(UMap.get_space());
for (isl::map Map : UMap.get_map_list()) {
unsigned MapDims = Map.dim(isl::dim::out);
isl::map SingleMap = Map.project_out(isl::dim::out, 0, pos);
SingleMap = SingleMap.project_out(isl::dim::out, 1, MapDims - pos - 1);
SingleUMap = SingleUMap.add_map(SingleMap);
};
auto UAff = isl::union_pw_multi_aff(SingleUMap);
auto FirstMAff = isl::multi_union_pw_aff(UAff);
return FirstMAff.get_union_pw_aff(0);
}
/// Flatten a sequence-like first dimension.
///
/// A sequence-like scatter dimension is constant, or at least only small
/// variation, typically the result of ordering a sequence of different
/// statements. An example would be:
/// { Stmt_A[] -> [0, X, ...]; Stmt_B[] -> [1, Y, ...] }
/// to schedule all instances of Stmt_A before any instance of Stmt_B.
///
/// To flatten, first begin with an offset of zero. Then determine the lowest
/// possible value of the dimension, call it "i" [In the example we start at 0].
/// Considering only schedules with that value, consider only instances with
/// that value and determine the extent of the next dimension. Let l_X(i) and
/// u_X(i) its minimum (lower bound) and maximum (upper bound) value. Add them
/// as "Offset + X - l_X(i)" to the new schedule, then add "u_X(i) - l_X(i) + 1"
/// to Offset and remove all i-instances from the old schedule. Repeat with the
/// remaining lowest value i' until there are no instances in the old schedule
/// left.
/// The example schedule would be transformed to:
/// { Stmt_X[] -> [X - l_X, ...]; Stmt_B -> [l_X - u_X + 1 + Y - l_Y, ...] }
isl::union_map tryFlattenSequence(isl::union_map Schedule) {
auto IslCtx = Schedule.get_ctx();
auto ScatterSet = isl::set(Schedule.range());
auto ParamSpace = Schedule.get_space().params();
auto Dims = ScatterSet.dim(isl::dim::set);
assert(Dims >= 2);
// Would cause an infinite loop.
if (!isDimBoundedByConstant(ScatterSet, 0)) {
LLVM_DEBUG(dbgs() << "Abort; dimension is not of fixed size\n");
return nullptr;
}
auto AllDomains = Schedule.domain();
auto AllDomainsToNull = isl::union_pw_multi_aff(AllDomains);
auto NewSchedule = isl::union_map::empty(ParamSpace);
auto Counter = isl::pw_aff(isl::local_space(ParamSpace.set_from_params()));
while (!ScatterSet.is_empty()) {
LLVM_DEBUG(dbgs() << "Next counter:\n " << Counter << "\n");
LLVM_DEBUG(dbgs() << "Remaining scatter set:\n " << ScatterSet << "\n");
auto ThisSet = ScatterSet.project_out(isl::dim::set, 1, Dims - 1);
auto ThisFirst = ThisSet.lexmin();
auto ScatterFirst = ThisFirst.add_dims(isl::dim::set, Dims - 1);
auto SubSchedule = Schedule.intersect_range(ScatterFirst);
SubSchedule = scheduleProjectOut(SubSchedule, 0, 1);
SubSchedule = flattenSchedule(SubSchedule);
auto SubDims = scheduleScatterDims(SubSchedule);
auto FirstSubSchedule = scheduleProjectOut(SubSchedule, 1, SubDims - 1);
auto FirstScheduleAff = scheduleExtractDimAff(FirstSubSchedule, 0);
auto RemainingSubSchedule = scheduleProjectOut(SubSchedule, 0, 1);
auto FirstSubScatter = isl::set(FirstSubSchedule.range());
LLVM_DEBUG(dbgs() << "Next step in sequence is:\n " << FirstSubScatter
<< "\n");
if (!isDimBoundedByParameter(FirstSubScatter, 0)) {
LLVM_DEBUG(dbgs() << "Abort; sequence step is not bounded\n");
return nullptr;
}
auto FirstSubScatterMap = isl::map::from_range(FirstSubScatter);
// isl_set_dim_max returns a strange isl_pw_aff with domain tuple_id of
// 'none'. It doesn't match with any space including a 0-dimensional
// anonymous tuple.
// Interesting, one can create such a set using
// isl_set_universe(ParamSpace). Bug?
auto PartMin = FirstSubScatterMap.dim_min(0);
auto PartMax = FirstSubScatterMap.dim_max(0);
auto One = isl::pw_aff(isl::set::universe(ParamSpace.set_from_params()),
isl::val::one(IslCtx));
auto PartLen = PartMax.add(PartMin.neg()).add(One);
auto AllPartMin = isl::union_pw_aff(PartMin).pullback(AllDomainsToNull);
auto FirstScheduleAffNormalized = FirstScheduleAff.sub(AllPartMin);
auto AllCounter = isl::union_pw_aff(Counter).pullback(AllDomainsToNull);
auto FirstScheduleAffWithOffset =
FirstScheduleAffNormalized.add(AllCounter);
auto ScheduleWithOffset = isl::union_map(FirstScheduleAffWithOffset)
.flat_range_product(RemainingSubSchedule);
NewSchedule = NewSchedule.unite(ScheduleWithOffset);
ScatterSet = ScatterSet.subtract(ScatterFirst);
Counter = Counter.add(PartLen);
}
LLVM_DEBUG(dbgs() << "Sequence-flatten result is:\n " << NewSchedule
<< "\n");
return NewSchedule;
}
/// Flatten a loop-like first dimension.
///
/// A loop-like dimension is one that depends on a variable (usually a loop's
/// induction variable). Let the input schedule look like this:
/// { Stmt[i] -> [i, X, ...] }
///
/// To flatten, we determine the largest extent of X which may not depend on the
/// actual value of i. Let l_X() the smallest possible value of X and u_X() its
/// largest value. Then, construct a new schedule
/// { Stmt[i] -> [i * (u_X() - l_X() + 1), ...] }
isl::union_map tryFlattenLoop(isl::union_map Schedule) {
assert(scheduleScatterDims(Schedule) >= 2);
auto Remaining = scheduleProjectOut(Schedule, 0, 1);
auto SubSchedule = flattenSchedule(Remaining);
auto SubDims = scheduleScatterDims(SubSchedule);
auto SubExtent = isl::set(SubSchedule.range());
auto SubExtentDims = SubExtent.dim(isl::dim::param);
SubExtent = SubExtent.project_out(isl::dim::param, 0, SubExtentDims);
SubExtent = SubExtent.project_out(isl::dim::set, 1, SubDims - 1);
if (!isDimBoundedByConstant(SubExtent, 0)) {
LLVM_DEBUG(dbgs() << "Abort; dimension not bounded by constant\n");
return nullptr;
}
auto Min = SubExtent.dim_min(0);
LLVM_DEBUG(dbgs() << "Min bound:\n " << Min << "\n");
auto MinVal = getConstant(Min, false, true);
auto Max = SubExtent.dim_max(0);
LLVM_DEBUG(dbgs() << "Max bound:\n " << Max << "\n");
auto MaxVal = getConstant(Max, true, false);
if (!MinVal || !MaxVal || MinVal.is_nan() || MaxVal.is_nan()) {
LLVM_DEBUG(dbgs() << "Abort; dimension bounds could not be determined\n");
return nullptr;
}
auto FirstSubScheduleAff = scheduleExtractDimAff(SubSchedule, 0);
auto RemainingSubSchedule = scheduleProjectOut(std::move(SubSchedule), 0, 1);
auto LenVal = MaxVal.sub(MinVal).add_ui(1);
auto FirstSubScheduleNormalized = subtract(FirstSubScheduleAff, MinVal);
// TODO: Normalize FirstAff to zero (convert to isl_map, determine minimum,
// subtract it)
auto FirstAff = scheduleExtractDimAff(Schedule, 0);
auto Offset = multiply(FirstAff, LenVal);
auto Index = FirstSubScheduleNormalized.add(Offset);
auto IndexMap = isl::union_map(Index);
auto Result = IndexMap.flat_range_product(RemainingSubSchedule);
LLVM_DEBUG(dbgs() << "Loop-flatten result is:\n " << Result << "\n");
return Result;
}
} // anonymous namespace
isl::union_map polly::flattenSchedule(isl::union_map Schedule) {
auto Dims = scheduleScatterDims(Schedule);
LLVM_DEBUG(dbgs() << "Recursive schedule to process:\n " << Schedule
<< "\n");
// Base case; no dimensions left
if (Dims == 0) {
// TODO: Add one dimension?
return Schedule;
}
// Base case; already one-dimensional
if (Dims == 1)
return Schedule;
// Fixed dimension; no need to preserve variabledness.
if (!isVariableDim(Schedule)) {
LLVM_DEBUG(dbgs() << "Fixed dimension; try sequence flattening\n");
auto NewScheduleSequence = tryFlattenSequence(Schedule);
if (NewScheduleSequence)
return NewScheduleSequence;
}
// Constant stride
LLVM_DEBUG(dbgs() << "Try loop flattening\n");
auto NewScheduleLoop = tryFlattenLoop(Schedule);
if (NewScheduleLoop)
return NewScheduleLoop;
// Try again without loop condition (may blow up the number of pieces!!)
LLVM_DEBUG(dbgs() << "Try sequence flattening again\n");
auto NewScheduleSequence = tryFlattenSequence(Schedule);
if (NewScheduleSequence)
return NewScheduleSequence;
// Cannot flatten
return Schedule;
}