MaximalStaticExpansion.cpp 16.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
//===- MaximalStaticExpansion.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass fully expand the memory accesses of a Scop to get rid of
// dependencies.
//
//===----------------------------------------------------------------------===//

#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Support/ISLTools.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/InitializePasses.h"
#include "isl/isl-noexceptions.h"
#include "isl/union_map.h"
#include <cassert>
#include <limits>
#include <string>
#include <vector>

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-mse"

namespace {

class MaximalStaticExpander : public ScopPass {
public:
  static char ID;

  explicit MaximalStaticExpander() : ScopPass(ID) {}

  ~MaximalStaticExpander() override = default;

  /// Expand the accesses of the SCoP.
  ///
  /// @param S The SCoP that must be expanded.
  bool runOnScop(Scop &S) override;

  /// Print the SCoP.
  ///
  /// @param OS The stream where to print.
  /// @param S The SCop that must be printed.
  void printScop(raw_ostream &OS, Scop &S) const override;

  /// Register all analyses and transformations required.
  void getAnalysisUsage(AnalysisUsage &AU) const override;

private:
  /// OptimizationRemarkEmitter object for displaying diagnostic remarks.
  OptimizationRemarkEmitter *ORE;

  /// Emit remark
  void emitRemark(StringRef Msg, Instruction *Inst);

  /// Return true if the SAI in parameter is expandable.
  ///
  /// @param SAI the SAI that need to be checked.
  /// @param Writes A set that will contains all the write accesses.
  /// @param Reads A set that will contains all the read accesses.
  /// @param S The SCop in which the SAI is in.
  /// @param Dependences The RAW dependences of the SCop.
  bool isExpandable(const ScopArrayInfo *SAI,
                    SmallPtrSetImpl<MemoryAccess *> &Writes,
                    SmallPtrSetImpl<MemoryAccess *> &Reads, Scop &S,
                    const isl::union_map &Dependences);

  /// Expand the MemoryAccess according to its domain.
  ///
  /// @param S The SCop in which the memory access appears in.
  /// @param MA The memory access that need to be expanded.
  ScopArrayInfo *expandAccess(Scop &S, MemoryAccess *MA);

  /// Filter the dependences to have only one related to current memory access.
  ///
  /// @param S The SCop in which the memory access appears in.
  /// @param MapDependences The dependences to filter.
  /// @param MA The memory access that need to be expanded.
  isl::union_map filterDependences(Scop &S,
                                   const isl::union_map &MapDependences,
                                   MemoryAccess *MA);

  /// Expand the MemoryAccess according to Dependences and already expanded
  /// MemoryAccesses.
  ///
  /// @param The SCop in which the memory access appears in.
  /// @param The memory access that need to be expanded.
  /// @param Dependences The RAW dependences of the SCop.
  /// @param ExpandedSAI The expanded SAI created during write expansion.
  /// @param Reverse if true, the Dependences union_map is reversed before
  /// intersection.
  void mapAccess(Scop &S, SmallPtrSetImpl<MemoryAccess *> &Accesses,
                 const isl::union_map &Dependences, ScopArrayInfo *ExpandedSAI,
                 bool Reverse);

  /// Expand PHI memory accesses.
  ///
  /// @param The SCop in which the memory access appears in.
  /// @param The ScopArrayInfo representing the PHI accesses to expand.
  /// @param Dependences The RAW dependences of the SCop.
  void expandPhi(Scop &S, const ScopArrayInfo *SAI,
                 const isl::union_map &Dependences);
};
} // namespace

#ifndef NDEBUG
/// Whether a dimension of a set is bounded (lower and upper) by a constant,
/// i.e. there are two constants Min and Max, such that every value x of the
/// chosen dimensions is Min <= x <= Max.
static bool isDimBoundedByConstant(isl::set Set, unsigned dim) {
  auto ParamDims = Set.dim(isl::dim::param);
  Set = Set.project_out(isl::dim::param, 0, ParamDims);
  Set = Set.project_out(isl::dim::set, 0, dim);
  auto SetDims = Set.dim(isl::dim::set);
  Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
  return bool(Set.is_bounded());
}
#endif

char MaximalStaticExpander::ID = 0;

isl::union_map MaximalStaticExpander::filterDependences(
    Scop &S, const isl::union_map &Dependences, MemoryAccess *MA) {
  auto SAI = MA->getLatestScopArrayInfo();

  auto AccessDomainSet = MA->getAccessRelation().domain();
  auto AccessDomainId = AccessDomainSet.get_tuple_id();

  isl::union_map MapDependences = isl::union_map::empty(S.getParamSpace());

  for (isl::map Map : Dependences.get_map_list()) {
    // Filter out Statement to Statement dependences.
    if (!Map.can_curry())
      continue;

    // Intersect with the relevant SAI.
    auto TmpMapDomainId =
        Map.get_space().domain().unwrap().range().get_tuple_id(isl::dim::set);

    ScopArrayInfo *UserSAI =
        static_cast<ScopArrayInfo *>(TmpMapDomainId.get_user());

    if (SAI != UserSAI)
      continue;

    // Get the correct S1[] -> S2[] dependence.
    auto NewMap = Map.factor_domain();
    auto NewMapDomainId = NewMap.domain().get_tuple_id();

    if (AccessDomainId.get() != NewMapDomainId.get())
      continue;

    // Add the corresponding map to MapDependences.
    MapDependences = MapDependences.add_map(NewMap);
  }

  return MapDependences;
}

bool MaximalStaticExpander::isExpandable(
    const ScopArrayInfo *SAI, SmallPtrSetImpl<MemoryAccess *> &Writes,
    SmallPtrSetImpl<MemoryAccess *> &Reads, Scop &S,
    const isl::union_map &Dependences) {
  if (SAI->isValueKind()) {
    Writes.insert(S.getValueDef(SAI));
    for (auto MA : S.getValueUses(SAI))
      Reads.insert(MA);
    return true;
  } else if (SAI->isPHIKind()) {
    auto Read = S.getPHIRead(SAI);

    auto StmtDomain = isl::union_set(Read->getStatement()->getDomain());

    auto Writes = S.getPHIIncomings(SAI);

    // Get the domain where all the writes are writing to.
    auto WriteDomain = isl::union_set::empty(S.getParamSpace());

    for (auto Write : Writes) {
      auto MapDeps = filterDependences(S, Dependences, Write);
      for (isl::map Map : MapDeps.get_map_list())
        WriteDomain = WriteDomain.add_set(Map.range());
    }

    // For now, read from original scalar is not possible.
    if (!StmtDomain.is_equal(WriteDomain)) {
      emitRemark(SAI->getName() + " read from its original value.",
                 Read->getAccessInstruction());
      return false;
    }

    return true;
  } else if (SAI->isExitPHIKind()) {
    // For now, we are not able to expand ExitPhi.
    emitRemark(SAI->getName() + " is a ExitPhi node.",
               S.getEnteringBlock()->getFirstNonPHI());
    return false;
  }

  int NumberWrites = 0;
  for (ScopStmt &Stmt : S) {
    auto StmtReads = isl::union_map::empty(S.getParamSpace());
    auto StmtWrites = isl::union_map::empty(S.getParamSpace());

    for (MemoryAccess *MA : Stmt) {
      // Check if the current MemoryAccess involved the current SAI.
      if (SAI != MA->getLatestScopArrayInfo())
        continue;

      // For now, we are not able to expand array where read come after write
      // (to the same location) in a same statement.
      auto AccRel = isl::union_map(MA->getAccessRelation());
      if (MA->isRead()) {
        // Reject load after store to same location.
        if (!StmtWrites.is_disjoint(AccRel)) {
          emitRemark(SAI->getName() + " has read after write to the same "
                                      "element in same statement. The "
                                      "dependences found during analysis may "
                                      "be wrong because Polly is not able to "
                                      "handle such case for now.",
                     MA->getAccessInstruction());
          return false;
        }

        StmtReads = StmtReads.unite(AccRel);
      } else {
        StmtWrites = StmtWrites.unite(AccRel);
      }

      // For now, we are not able to expand MayWrite.
      if (MA->isMayWrite()) {
        emitRemark(SAI->getName() + " has a maywrite access.",
                   MA->getAccessInstruction());
        return false;
      }

      // For now, we are not able to expand SAI with more than one write.
      if (MA->isMustWrite()) {
        Writes.insert(MA);
        NumberWrites++;
        if (NumberWrites > 1) {
          emitRemark(SAI->getName() + " has more than 1 write access.",
                     MA->getAccessInstruction());
          return false;
        }
      }

      // Check if it is possible to expand this read.
      if (MA->isRead()) {
        // Get the domain of the current ScopStmt.
        auto StmtDomain = Stmt.getDomain();

        // Get the domain of the future Read access.
        auto ReadDomainSet = MA->getAccessRelation().domain();
        auto ReadDomain = isl::union_set(ReadDomainSet);

        // Get the dependences relevant for this MA
        auto MapDependences = filterDependences(S, Dependences.reverse(), MA);
        unsigned NumberElementMap = isl_union_map_n_map(MapDependences.get());

        if (NumberElementMap == 0) {
          emitRemark("The expansion of " + SAI->getName() +
                         " would lead to a read from the original array.",
                     MA->getAccessInstruction());
          return false;
        }

        auto DepsDomain = MapDependences.domain();

        // If there are multiple maps in the Deps, we cannot handle this case
        // for now.
        if (NumberElementMap != 1) {
          emitRemark(SAI->getName() +
                         " has too many dependences to be handle for now.",
                     MA->getAccessInstruction());
          return false;
        }

        auto DepsDomainSet = isl::set(DepsDomain);

        // For now, read from the original array is not possible.
        if (!StmtDomain.is_subset(DepsDomainSet)) {
          emitRemark("The expansion of " + SAI->getName() +
                         " would lead to a read from the original array.",
                     MA->getAccessInstruction());
          return false;
        }

        Reads.insert(MA);
      }
    }
  }

  // No need to expand SAI with no write.
  if (NumberWrites == 0) {
    emitRemark(SAI->getName() + " has 0 write access.",
               S.getEnteringBlock()->getFirstNonPHI());
    return false;
  }

  return true;
}

void MaximalStaticExpander::mapAccess(Scop &S,
                                      SmallPtrSetImpl<MemoryAccess *> &Accesses,
                                      const isl::union_map &Dependences,
                                      ScopArrayInfo *ExpandedSAI,
                                      bool Reverse) {
  for (auto MA : Accesses) {
    // Get the current AM.
    auto CurrentAccessMap = MA->getAccessRelation();

    // Get RAW dependences for the current WA.
    auto DomainSet = MA->getAccessRelation().domain();
    auto Domain = isl::union_set(DomainSet);

    // Get the dependences relevant for this MA.
    isl::union_map MapDependences =
        filterDependences(S, Reverse ? Dependences.reverse() : Dependences, MA);

    // If no dependences, no need to modify anything.
    if (MapDependences.is_empty())
      return;

    assert(isl_union_map_n_map(MapDependences.get()) == 1 &&
           "There are more than one RAW dependencies in the union map.");
    auto NewAccessMap = isl::map::from_union_map(MapDependences);

    auto Id = ExpandedSAI->getBasePtrId();

    // Replace the out tuple id with the one of the access array.
    NewAccessMap = NewAccessMap.set_tuple_id(isl::dim::out, Id);

    // Set the new access relation.
    MA->setNewAccessRelation(NewAccessMap);
  }
}

ScopArrayInfo *MaximalStaticExpander::expandAccess(Scop &S, MemoryAccess *MA) {
  // Get the current AM.
  auto CurrentAccessMap = MA->getAccessRelation();

  unsigned in_dimensions = CurrentAccessMap.dim(isl::dim::in);

  // Get domain from the current AM.
  auto Domain = CurrentAccessMap.domain();

  // Create a new AM from the domain.
  auto NewAccessMap = isl::map::from_domain(Domain);

  // Add dimensions to the new AM according to the current in_dim.
  NewAccessMap = NewAccessMap.add_dims(isl::dim::out, in_dimensions);

  // Create the string representing the name of the new SAI.
  // One new SAI for each statement so that each write go to a different memory
  // cell.
  auto CurrentStmtDomain = MA->getStatement()->getDomain();
  auto CurrentStmtName = CurrentStmtDomain.get_tuple_name();
  auto CurrentOutId = CurrentAccessMap.get_tuple_id(isl::dim::out);
  std::string CurrentOutIdString =
      MA->getScopArrayInfo()->getName() + "_" + CurrentStmtName + "_expanded";

  // Set the tuple id for the out dimension.
  NewAccessMap = NewAccessMap.set_tuple_id(isl::dim::out, CurrentOutId);

  // Create the size vector.
  std::vector<unsigned> Sizes;
  for (unsigned i = 0; i < in_dimensions; i++) {
    assert(isDimBoundedByConstant(CurrentStmtDomain, i) &&
           "Domain boundary are not constant.");
    auto UpperBound = getConstant(CurrentStmtDomain.dim_max(i), true, false);
    assert(!UpperBound.is_null() && UpperBound.is_pos() &&
           !UpperBound.is_nan() &&
           "The upper bound is not a positive integer.");
    assert(UpperBound.le(isl::val(CurrentAccessMap.get_ctx(),
                                  std::numeric_limits<int>::max() - 1)) &&
           "The upper bound overflow a int.");
    Sizes.push_back(UpperBound.get_num_si() + 1);
  }

  // Get the ElementType of the current SAI.
  auto ElementType = MA->getLatestScopArrayInfo()->getElementType();

  // Create (or get if already existing) the new expanded SAI.
  auto ExpandedSAI =
      S.createScopArrayInfo(ElementType, CurrentOutIdString, Sizes);
  ExpandedSAI->setIsOnHeap(true);

  // Get the out Id of the expanded Array.
  auto NewOutId = ExpandedSAI->getBasePtrId();

  // Set the out id of the new AM to the new SAI id.
  NewAccessMap = NewAccessMap.set_tuple_id(isl::dim::out, NewOutId);

  // Add constraints to linked output with input id.
  auto SpaceMap = NewAccessMap.get_space();
  auto ConstraintBasicMap =
      isl::basic_map::equal(SpaceMap, SpaceMap.dim(isl::dim::in));
  NewAccessMap = isl::map(ConstraintBasicMap);

  // Set the new access relation map.
  MA->setNewAccessRelation(NewAccessMap);

  return ExpandedSAI;
}

void MaximalStaticExpander::expandPhi(Scop &S, const ScopArrayInfo *SAI,
                                      const isl::union_map &Dependences) {
  SmallPtrSet<MemoryAccess *, 4> Writes;
  for (auto MA : S.getPHIIncomings(SAI))
    Writes.insert(MA);
  auto Read = S.getPHIRead(SAI);
  auto ExpandedSAI = expandAccess(S, Read);

  mapAccess(S, Writes, Dependences, ExpandedSAI, false);
}

void MaximalStaticExpander::emitRemark(StringRef Msg, Instruction *Inst) {
  ORE->emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ExpansionRejection", Inst)
            << Msg);
}

bool MaximalStaticExpander::runOnScop(Scop &S) {
  // Get the ORE from OptimizationRemarkEmitterWrapperPass.
  ORE = &(getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());

  // Get the RAW Dependences.
  auto &DI = getAnalysis<DependenceInfo>();
  auto &D = DI.getDependences(Dependences::AL_Reference);
  isl::union_map Dependences = D.getDependences(Dependences::TYPE_RAW);

  SmallVector<ScopArrayInfo *, 4> CurrentSAI(S.arrays().begin(),
                                             S.arrays().end());

  for (auto SAI : CurrentSAI) {
    SmallPtrSet<MemoryAccess *, 4> AllWrites;
    SmallPtrSet<MemoryAccess *, 4> AllReads;
    if (!isExpandable(SAI, AllWrites, AllReads, S, Dependences))
      continue;

    if (SAI->isValueKind() || SAI->isArrayKind()) {
      assert(AllWrites.size() == 1 || SAI->isValueKind());

      auto TheWrite = *(AllWrites.begin());
      ScopArrayInfo *ExpandedArray = expandAccess(S, TheWrite);

      mapAccess(S, AllReads, Dependences, ExpandedArray, true);
    } else if (SAI->isPHIKind()) {
      expandPhi(S, SAI, Dependences);
    }
  }

  return false;
}

void MaximalStaticExpander::printScop(raw_ostream &OS, Scop &S) const {
  S.print(OS, false);
}

void MaximalStaticExpander::getAnalysisUsage(AnalysisUsage &AU) const {
  ScopPass::getAnalysisUsage(AU);
  AU.addRequired<DependenceInfo>();
  AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
}

Pass *polly::createMaximalStaticExpansionPass() {
  return new MaximalStaticExpander();
}

INITIALIZE_PASS_BEGIN(MaximalStaticExpander, "polly-mse",
                      "Polly - Maximal static expansion of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass);
INITIALIZE_PASS_END(MaximalStaticExpander, "polly-mse",
                    "Polly - Maximal static expansion of SCoP", false, false)