CGRecordLayoutBuilder.cpp 38.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
//===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Builder implementation for CGRecordLayout objects.
//
//===----------------------------------------------------------------------===//

#include "CGRecordLayout.h"
#include "CGCXXABI.h"
#include "CodeGenTypes.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/CodeGenOptions.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace CodeGen;

namespace {
/// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
/// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we
/// detail some of the complexities and weirdnesses here.
/// * LLVM does not have unions - Unions can, in theory be represented by any
///   llvm::Type with correct size.  We choose a field via a specific heuristic
///   and add padding if necessary.
/// * LLVM does not have bitfields - Bitfields are collected into contiguous
///   runs and allocated as a single storage type for the run.  ASTRecordLayout
///   contains enough information to determine where the runs break.  Microsoft
///   and Itanium follow different rules and use different codepaths.
/// * It is desired that, when possible, bitfields use the appropriate iN type
///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to
///   i24.  This isn't always possible because i24 has storage size of 32 bit
///   and if it is possible to use that extra byte of padding we must use
///   [i8 x 3] instead of i24.  The function clipTailPadding does this.
///   C++ examples that require clipping:
///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
///   struct A { int a : 24; }; // a must be clipped because a struct like B
//    could exist: struct B : A { char b; }; // b goes at offset 3
/// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
///   fields.  The existing asserts suggest that LLVM assumes that *every* field
///   has an underlying storage type.  Therefore empty structures containing
///   zero sized subobjects such as empty records or zero sized arrays still get
///   a zero sized (empty struct) storage type.
/// * Clang reads the complete type rather than the base type when generating
///   code to access fields.  Bitfields in tail position with tail padding may
///   be clipped in the base class but not the complete class (we may discover
///   that the tail padding is not used in the complete class.) However,
///   because LLVM reads from the complete type it can generate incorrect code
///   if we do not clip the tail padding off of the bitfield in the complete
///   layout.  This introduces a somewhat awkward extra unnecessary clip stage.
///   The location of the clip is stored internally as a sentinel of type
///   SCISSOR.  If LLVM were updated to read base types (which it probably
///   should because locations of things such as VBases are bogus in the llvm
///   type anyway) then we could eliminate the SCISSOR.
/// * Itanium allows nearly empty primary virtual bases.  These bases don't get
///   get their own storage because they're laid out as part of another base
///   or at the beginning of the structure.  Determining if a VBase actually
///   gets storage awkwardly involves a walk of all bases.
/// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
struct CGRecordLowering {
  // MemberInfo is a helper structure that contains information about a record
  // member.  In additional to the standard member types, there exists a
  // sentinel member type that ensures correct rounding.
  struct MemberInfo {
    CharUnits Offset;
    enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
    llvm::Type *Data;
    union {
      const FieldDecl *FD;
      const CXXRecordDecl *RD;
    };
    MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
               const FieldDecl *FD = nullptr)
      : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
    MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
               const CXXRecordDecl *RD)
      : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
    // MemberInfos are sorted so we define a < operator.
    bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
  };
  // The constructor.
  CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed);
  // Short helper routines.
  /// Constructs a MemberInfo instance from an offset and llvm::Type *.
  MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
    return MemberInfo(Offset, MemberInfo::Field, Data);
  }

  /// The Microsoft bitfield layout rule allocates discrete storage
  /// units of the field's formal type and only combines adjacent
  /// fields of the same formal type.  We want to emit a layout with
  /// these discrete storage units instead of combining them into a
  /// continuous run.
  bool isDiscreteBitFieldABI() {
    return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
           D->isMsStruct(Context);
  }

  /// The Itanium base layout rule allows virtual bases to overlap
  /// other bases, which complicates layout in specific ways.
  ///
  /// Note specifically that the ms_struct attribute doesn't change this.
  bool isOverlappingVBaseABI() {
    return !Context.getTargetInfo().getCXXABI().isMicrosoft();
  }

  /// Wraps llvm::Type::getIntNTy with some implicit arguments.
  llvm::Type *getIntNType(uint64_t NumBits) {
    return llvm::Type::getIntNTy(Types.getLLVMContext(),
                                 (unsigned)llvm::alignTo(NumBits, 8));
  }
  /// Gets an llvm type of size NumBytes and alignment 1.
  llvm::Type *getByteArrayType(CharUnits NumBytes) {
    assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
    llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
    return NumBytes == CharUnits::One() ? Type :
        (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
  }
  /// Gets the storage type for a field decl and handles storage
  /// for itanium bitfields that are smaller than their declared type.
  llvm::Type *getStorageType(const FieldDecl *FD) {
    llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
    if (!FD->isBitField()) return Type;
    if (isDiscreteBitFieldABI()) return Type;
    return getIntNType(std::min(FD->getBitWidthValue(Context),
                             (unsigned)Context.toBits(getSize(Type))));
  }
  /// Gets the llvm Basesubobject type from a CXXRecordDecl.
  llvm::Type *getStorageType(const CXXRecordDecl *RD) {
    return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
  }
  CharUnits bitsToCharUnits(uint64_t BitOffset) {
    return Context.toCharUnitsFromBits(BitOffset);
  }
  CharUnits getSize(llvm::Type *Type) {
    return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
  }
  CharUnits getAlignment(llvm::Type *Type) {
    return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
  }
  bool isZeroInitializable(const FieldDecl *FD) {
    return Types.isZeroInitializable(FD->getType());
  }
  bool isZeroInitializable(const RecordDecl *RD) {
    return Types.isZeroInitializable(RD);
  }
  void appendPaddingBytes(CharUnits Size) {
    if (!Size.isZero())
      FieldTypes.push_back(getByteArrayType(Size));
  }
  uint64_t getFieldBitOffset(const FieldDecl *FD) {
    return Layout.getFieldOffset(FD->getFieldIndex());
  }
  // Layout routines.
  void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
                       llvm::Type *StorageType);
  /// Lowers an ASTRecordLayout to a llvm type.
  void lower(bool NonVirtualBaseType);
  void lowerUnion();
  void accumulateFields();
  void accumulateBitFields(RecordDecl::field_iterator Field,
                        RecordDecl::field_iterator FieldEnd);
  void accumulateBases();
  void accumulateVPtrs();
  void accumulateVBases();
  /// Recursively searches all of the bases to find out if a vbase is
  /// not the primary vbase of some base class.
  bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
  void calculateZeroInit();
  /// Lowers bitfield storage types to I8 arrays for bitfields with tail
  /// padding that is or can potentially be used.
  void clipTailPadding();
  /// Determines if we need a packed llvm struct.
  void determinePacked(bool NVBaseType);
  /// Inserts padding everywhere it's needed.
  void insertPadding();
  /// Fills out the structures that are ultimately consumed.
  void fillOutputFields();
  // Input memoization fields.
  CodeGenTypes &Types;
  const ASTContext &Context;
  const RecordDecl *D;
  const CXXRecordDecl *RD;
  const ASTRecordLayout &Layout;
  const llvm::DataLayout &DataLayout;
  // Helpful intermediate data-structures.
  std::vector<MemberInfo> Members;
  // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
  SmallVector<llvm::Type *, 16> FieldTypes;
  llvm::DenseMap<const FieldDecl *, unsigned> Fields;
  llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
  llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
  llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
  bool IsZeroInitializable : 1;
  bool IsZeroInitializableAsBase : 1;
  bool Packed : 1;
private:
  CGRecordLowering(const CGRecordLowering &) = delete;
  void operator =(const CGRecordLowering &) = delete;
};
} // namespace {

CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,
                                   bool Packed)
    : Types(Types), Context(Types.getContext()), D(D),
      RD(dyn_cast<CXXRecordDecl>(D)),
      Layout(Types.getContext().getASTRecordLayout(D)),
      DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
      IsZeroInitializableAsBase(true), Packed(Packed) {}

void CGRecordLowering::setBitFieldInfo(
    const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
  CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
  Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
  Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
  Info.Size = FD->getBitWidthValue(Context);
  Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
  Info.StorageOffset = StartOffset;
  if (Info.Size > Info.StorageSize)
    Info.Size = Info.StorageSize;
  // Reverse the bit offsets for big endian machines. Because we represent
  // a bitfield as a single large integer load, we can imagine the bits
  // counting from the most-significant-bit instead of the
  // least-significant-bit.
  if (DataLayout.isBigEndian())
    Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
}

void CGRecordLowering::lower(bool NVBaseType) {
  // The lowering process implemented in this function takes a variety of
  // carefully ordered phases.
  // 1) Store all members (fields and bases) in a list and sort them by offset.
  // 2) Add a 1-byte capstone member at the Size of the structure.
  // 3) Clip bitfield storages members if their tail padding is or might be
  //    used by another field or base.  The clipping process uses the capstone
  //    by treating it as another object that occurs after the record.
  // 4) Determine if the llvm-struct requires packing.  It's important that this
  //    phase occur after clipping, because clipping changes the llvm type.
  //    This phase reads the offset of the capstone when determining packedness
  //    and updates the alignment of the capstone to be equal of the alignment
  //    of the record after doing so.
  // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to
  //    have been computed and needs to know the alignment of the record in
  //    order to understand if explicit tail padding is needed.
  // 6) Remove the capstone, we don't need it anymore.
  // 7) Determine if this record can be zero-initialized.  This phase could have
  //    been placed anywhere after phase 1.
  // 8) Format the complete list of members in a way that can be consumed by
  //    CodeGenTypes::ComputeRecordLayout.
  CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
  if (D->isUnion())
    return lowerUnion();
  accumulateFields();
  // RD implies C++.
  if (RD) {
    accumulateVPtrs();
    accumulateBases();
    if (Members.empty())
      return appendPaddingBytes(Size);
    if (!NVBaseType)
      accumulateVBases();
  }
  llvm::stable_sort(Members);
  Members.push_back(StorageInfo(Size, getIntNType(8)));
  clipTailPadding();
  determinePacked(NVBaseType);
  insertPadding();
  Members.pop_back();
  calculateZeroInit();
  fillOutputFields();
}

void CGRecordLowering::lowerUnion() {
  CharUnits LayoutSize = Layout.getSize();
  llvm::Type *StorageType = nullptr;
  bool SeenNamedMember = false;
  // Iterate through the fields setting bitFieldInfo and the Fields array. Also
  // locate the "most appropriate" storage type.  The heuristic for finding the
  // storage type isn't necessary, the first (non-0-length-bitfield) field's
  // type would work fine and be simpler but would be different than what we've
  // been doing and cause lit tests to change.
  for (const auto *Field : D->fields()) {
    if (Field->isBitField()) {
      if (Field->isZeroLengthBitField(Context))
        continue;
      llvm::Type *FieldType = getStorageType(Field);
      if (LayoutSize < getSize(FieldType))
        FieldType = getByteArrayType(LayoutSize);
      setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
    }
    Fields[Field->getCanonicalDecl()] = 0;
    llvm::Type *FieldType = getStorageType(Field);
    // Compute zero-initializable status.
    // This union might not be zero initialized: it may contain a pointer to
    // data member which might have some exotic initialization sequence.
    // If this is the case, then we aught not to try and come up with a "better"
    // type, it might not be very easy to come up with a Constant which
    // correctly initializes it.
    if (!SeenNamedMember) {
      SeenNamedMember = Field->getIdentifier();
      if (!SeenNamedMember)
        if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
          SeenNamedMember = FieldRD->findFirstNamedDataMember();
      if (SeenNamedMember && !isZeroInitializable(Field)) {
        IsZeroInitializable = IsZeroInitializableAsBase = false;
        StorageType = FieldType;
      }
    }
    // Because our union isn't zero initializable, we won't be getting a better
    // storage type.
    if (!IsZeroInitializable)
      continue;
    // Conditionally update our storage type if we've got a new "better" one.
    if (!StorageType ||
        getAlignment(FieldType) >  getAlignment(StorageType) ||
        (getAlignment(FieldType) == getAlignment(StorageType) &&
        getSize(FieldType) > getSize(StorageType)))
      StorageType = FieldType;
  }
  // If we have no storage type just pad to the appropriate size and return.
  if (!StorageType)
    return appendPaddingBytes(LayoutSize);
  // If our storage size was bigger than our required size (can happen in the
  // case of packed bitfields on Itanium) then just use an I8 array.
  if (LayoutSize < getSize(StorageType))
    StorageType = getByteArrayType(LayoutSize);
  FieldTypes.push_back(StorageType);
  appendPaddingBytes(LayoutSize - getSize(StorageType));
  // Set packed if we need it.
  if (LayoutSize % getAlignment(StorageType))
    Packed = true;
}

void CGRecordLowering::accumulateFields() {
  for (RecordDecl::field_iterator Field = D->field_begin(),
                                  FieldEnd = D->field_end();
    Field != FieldEnd;) {
    if (Field->isBitField()) {
      RecordDecl::field_iterator Start = Field;
      // Iterate to gather the list of bitfields.
      for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
      accumulateBitFields(Start, Field);
    } else if (!Field->isZeroSize(Context)) {
      Members.push_back(MemberInfo(
          bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
          getStorageType(*Field), *Field));
      ++Field;
    } else {
      ++Field;
    }
  }
}

void
CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
                                      RecordDecl::field_iterator FieldEnd) {
  // Run stores the first element of the current run of bitfields.  FieldEnd is
  // used as a special value to note that we don't have a current run.  A
  // bitfield run is a contiguous collection of bitfields that can be stored in
  // the same storage block.  Zero-sized bitfields and bitfields that would
  // cross an alignment boundary break a run and start a new one.
  RecordDecl::field_iterator Run = FieldEnd;
  // Tail is the offset of the first bit off the end of the current run.  It's
  // used to determine if the ASTRecordLayout is treating these two bitfields as
  // contiguous.  StartBitOffset is offset of the beginning of the Run.
  uint64_t StartBitOffset, Tail = 0;
  if (isDiscreteBitFieldABI()) {
    for (; Field != FieldEnd; ++Field) {
      uint64_t BitOffset = getFieldBitOffset(*Field);
      // Zero-width bitfields end runs.
      if (Field->isZeroLengthBitField(Context)) {
        Run = FieldEnd;
        continue;
      }
      llvm::Type *Type = Types.ConvertTypeForMem(Field->getType());
      // If we don't have a run yet, or don't live within the previous run's
      // allocated storage then we allocate some storage and start a new run.
      if (Run == FieldEnd || BitOffset >= Tail) {
        Run = Field;
        StartBitOffset = BitOffset;
        Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
        // Add the storage member to the record.  This must be added to the
        // record before the bitfield members so that it gets laid out before
        // the bitfields it contains get laid out.
        Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
      }
      // Bitfields get the offset of their storage but come afterward and remain
      // there after a stable sort.
      Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
                                   MemberInfo::Field, nullptr, *Field));
    }
    return;
  }

  // Check if OffsetInRecord is better as a single field run. When OffsetInRecord
  // has legal integer width, and its bitfield offset is naturally aligned, it
  // is better to make the bitfield a separate storage component so as it can be
  // accessed directly with lower cost.
  auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord,
                                      uint64_t StartBitOffset) {
    if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses)
      return false;
    if (!DataLayout.isLegalInteger(OffsetInRecord))
      return false;
    // Make sure StartBitOffset is natually aligned if it is treated as an
    // IType integer.
     if (StartBitOffset %
            Context.toBits(getAlignment(getIntNType(OffsetInRecord))) !=
        0)
      return false;
    return true;
  };

  // The start field is better as a single field run.
  bool StartFieldAsSingleRun = false;
  for (;;) {
    // Check to see if we need to start a new run.
    if (Run == FieldEnd) {
      // If we're out of fields, return.
      if (Field == FieldEnd)
        break;
      // Any non-zero-length bitfield can start a new run.
      if (!Field->isZeroLengthBitField(Context)) {
        Run = Field;
        StartBitOffset = getFieldBitOffset(*Field);
        Tail = StartBitOffset + Field->getBitWidthValue(Context);
        StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset,
                                                         StartBitOffset);
      }
      ++Field;
      continue;
    }

    // If the start field of a new run is better as a single run, or
    // if current field (or consecutive fields) is better as a single run, or
    // if current field has zero width bitfield and either
    // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to
    // true, or
    // if the offset of current field is inconsistent with the offset of
    // previous field plus its offset,
    // skip the block below and go ahead to emit the storage.
    // Otherwise, try to add bitfields to the run.
    if (!StartFieldAsSingleRun && Field != FieldEnd &&
        !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) &&
        (!Field->isZeroLengthBitField(Context) ||
         (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
          !Context.getTargetInfo().useBitFieldTypeAlignment())) &&
        Tail == getFieldBitOffset(*Field)) {
      Tail += Field->getBitWidthValue(Context);
      ++Field;
      continue;
    }

    // We've hit a break-point in the run and need to emit a storage field.
    llvm::Type *Type = getIntNType(Tail - StartBitOffset);
    // Add the storage member to the record and set the bitfield info for all of
    // the bitfields in the run.  Bitfields get the offset of their storage but
    // come afterward and remain there after a stable sort.
    Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
    for (; Run != Field; ++Run)
      Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
                                   MemberInfo::Field, nullptr, *Run));
    Run = FieldEnd;
    StartFieldAsSingleRun = false;
  }
}

void CGRecordLowering::accumulateBases() {
  // If we've got a primary virtual base, we need to add it with the bases.
  if (Layout.isPrimaryBaseVirtual()) {
    const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
    Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
                                 getStorageType(BaseDecl), BaseDecl));
  }
  // Accumulate the non-virtual bases.
  for (const auto &Base : RD->bases()) {
    if (Base.isVirtual())
      continue;

    // Bases can be zero-sized even if not technically empty if they
    // contain only a trailing array member.
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    if (!BaseDecl->isEmpty() &&
        !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
      Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
          MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
  }
}

void CGRecordLowering::accumulateVPtrs() {
  if (Layout.hasOwnVFPtr())
    Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
        llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
            getPointerTo()->getPointerTo()));
  if (Layout.hasOwnVBPtr())
    Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
        llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
}

void CGRecordLowering::accumulateVBases() {
  CharUnits ScissorOffset = Layout.getNonVirtualSize();
  // In the itanium ABI, it's possible to place a vbase at a dsize that is
  // smaller than the nvsize.  Here we check to see if such a base is placed
  // before the nvsize and set the scissor offset to that, instead of the
  // nvsize.
  if (isOverlappingVBaseABI())
    for (const auto &Base : RD->vbases()) {
      const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
      if (BaseDecl->isEmpty())
        continue;
      // If the vbase is a primary virtual base of some base, then it doesn't
      // get its own storage location but instead lives inside of that base.
      if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
        continue;
      ScissorOffset = std::min(ScissorOffset,
                               Layout.getVBaseClassOffset(BaseDecl));
    }
  Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
                               RD));
  for (const auto &Base : RD->vbases()) {
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    if (BaseDecl->isEmpty())
      continue;
    CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
    // If the vbase is a primary virtual base of some base, then it doesn't
    // get its own storage location but instead lives inside of that base.
    if (isOverlappingVBaseABI() &&
        Context.isNearlyEmpty(BaseDecl) &&
        !hasOwnStorage(RD, BaseDecl)) {
      Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
                                   BaseDecl));
      continue;
    }
    // If we've got a vtordisp, add it as a storage type.
    if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
      Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
                                    getIntNType(32)));
    Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
                                 getStorageType(BaseDecl), BaseDecl));
  }
}

bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
                                     const CXXRecordDecl *Query) {
  const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
  if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
    return false;
  for (const auto &Base : Decl->bases())
    if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
      return false;
  return true;
}

void CGRecordLowering::calculateZeroInit() {
  for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
                                               MemberEnd = Members.end();
       IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
    if (Member->Kind == MemberInfo::Field) {
      if (!Member->FD || isZeroInitializable(Member->FD))
        continue;
      IsZeroInitializable = IsZeroInitializableAsBase = false;
    } else if (Member->Kind == MemberInfo::Base ||
               Member->Kind == MemberInfo::VBase) {
      if (isZeroInitializable(Member->RD))
        continue;
      IsZeroInitializable = false;
      if (Member->Kind == MemberInfo::Base)
        IsZeroInitializableAsBase = false;
    }
  }
}

void CGRecordLowering::clipTailPadding() {
  std::vector<MemberInfo>::iterator Prior = Members.begin();
  CharUnits Tail = getSize(Prior->Data);
  for (std::vector<MemberInfo>::iterator Member = Prior + 1,
                                         MemberEnd = Members.end();
       Member != MemberEnd; ++Member) {
    // Only members with data and the scissor can cut into tail padding.
    if (!Member->Data && Member->Kind != MemberInfo::Scissor)
      continue;
    if (Member->Offset < Tail) {
      assert(Prior->Kind == MemberInfo::Field &&
             "Only storage fields have tail padding!");
      if (!Prior->FD || Prior->FD->isBitField())
        Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo(
            cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
      else {
        assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() &&
               "should not have reused this field's tail padding");
        Prior->Data = getByteArrayType(
            Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).first);
      }
    }
    if (Member->Data)
      Prior = Member;
    Tail = Prior->Offset + getSize(Prior->Data);
  }
}

void CGRecordLowering::determinePacked(bool NVBaseType) {
  if (Packed)
    return;
  CharUnits Alignment = CharUnits::One();
  CharUnits NVAlignment = CharUnits::One();
  CharUnits NVSize =
      !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero();
  for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
                                               MemberEnd = Members.end();
       Member != MemberEnd; ++Member) {
    if (!Member->Data)
      continue;
    // If any member falls at an offset that it not a multiple of its alignment,
    // then the entire record must be packed.
    if (Member->Offset % getAlignment(Member->Data))
      Packed = true;
    if (Member->Offset < NVSize)
      NVAlignment = std::max(NVAlignment, getAlignment(Member->Data));
    Alignment = std::max(Alignment, getAlignment(Member->Data));
  }
  // If the size of the record (the capstone's offset) is not a multiple of the
  // record's alignment, it must be packed.
  if (Members.back().Offset % Alignment)
    Packed = true;
  // If the non-virtual sub-object is not a multiple of the non-virtual
  // sub-object's alignment, it must be packed.  We cannot have a packed
  // non-virtual sub-object and an unpacked complete object or vise versa.
  if (NVSize % NVAlignment)
    Packed = true;
  // Update the alignment of the sentinel.
  if (!Packed)
    Members.back().Data = getIntNType(Context.toBits(Alignment));
}

void CGRecordLowering::insertPadding() {
  std::vector<std::pair<CharUnits, CharUnits> > Padding;
  CharUnits Size = CharUnits::Zero();
  for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
                                               MemberEnd = Members.end();
       Member != MemberEnd; ++Member) {
    if (!Member->Data)
      continue;
    CharUnits Offset = Member->Offset;
    assert(Offset >= Size);
    // Insert padding if we need to.
    if (Offset !=
        Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data)))
      Padding.push_back(std::make_pair(Size, Offset - Size));
    Size = Offset + getSize(Member->Data);
  }
  if (Padding.empty())
    return;
  // Add the padding to the Members list and sort it.
  for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
        Pad = Padding.begin(), PadEnd = Padding.end();
        Pad != PadEnd; ++Pad)
    Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
  llvm::stable_sort(Members);
}

void CGRecordLowering::fillOutputFields() {
  for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
                                               MemberEnd = Members.end();
       Member != MemberEnd; ++Member) {
    if (Member->Data)
      FieldTypes.push_back(Member->Data);
    if (Member->Kind == MemberInfo::Field) {
      if (Member->FD)
        Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
      // A field without storage must be a bitfield.
      if (!Member->Data)
        setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
    } else if (Member->Kind == MemberInfo::Base)
      NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
    else if (Member->Kind == MemberInfo::VBase)
      VirtualBases[Member->RD] = FieldTypes.size() - 1;
  }
}

CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
                                        const FieldDecl *FD,
                                        uint64_t Offset, uint64_t Size,
                                        uint64_t StorageSize,
                                        CharUnits StorageOffset) {
  // This function is vestigial from CGRecordLayoutBuilder days but is still
  // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that
  // when addressed will allow for the removal of this function.
  llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
  CharUnits TypeSizeInBytes =
    CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
  uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);

  bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();

  if (Size > TypeSizeInBits) {
    // We have a wide bit-field. The extra bits are only used for padding, so
    // if we have a bitfield of type T, with size N:
    //
    // T t : N;
    //
    // We can just assume that it's:
    //
    // T t : sizeof(T);
    //
    Size = TypeSizeInBits;
  }

  // Reverse the bit offsets for big endian machines. Because we represent
  // a bitfield as a single large integer load, we can imagine the bits
  // counting from the most-significant-bit instead of the
  // least-significant-bit.
  if (Types.getDataLayout().isBigEndian()) {
    Offset = StorageSize - (Offset + Size);
  }

  return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset);
}

CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
                                                  llvm::StructType *Ty) {
  CGRecordLowering Builder(*this, D, /*Packed=*/false);

  Builder.lower(/*NonVirtualBaseType=*/false);

  // If we're in C++, compute the base subobject type.
  llvm::StructType *BaseTy = nullptr;
  if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
    BaseTy = Ty;
    if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
      CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed);
      BaseBuilder.lower(/*NonVirtualBaseType=*/true);
      BaseTy = llvm::StructType::create(
          getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
      addRecordTypeName(D, BaseTy, ".base");
      // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
      // on both of them with the same index.
      assert(Builder.Packed == BaseBuilder.Packed &&
             "Non-virtual and complete types must agree on packedness");
    }
  }

  // Fill in the struct *after* computing the base type.  Filling in the body
  // signifies that the type is no longer opaque and record layout is complete,
  // but we may need to recursively layout D while laying D out as a base type.
  Ty->setBody(Builder.FieldTypes, Builder.Packed);

  CGRecordLayout *RL =
    new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
                        Builder.IsZeroInitializableAsBase);

  RL->NonVirtualBases.swap(Builder.NonVirtualBases);
  RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);

  // Add all the field numbers.
  RL->FieldInfo.swap(Builder.Fields);

  // Add bitfield info.
  RL->BitFields.swap(Builder.BitFields);

  // Dump the layout, if requested.
  if (getContext().getLangOpts().DumpRecordLayouts) {
    llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
    llvm::outs() << "Record: ";
    D->dump(llvm::outs());
    llvm::outs() << "\nLayout: ";
    RL->print(llvm::outs());
  }

#ifndef NDEBUG
  // Verify that the computed LLVM struct size matches the AST layout size.
  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);

  uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
  assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
         "Type size mismatch!");

  if (BaseTy) {
    CharUnits NonVirtualSize  = Layout.getNonVirtualSize();

    uint64_t AlignedNonVirtualTypeSizeInBits =
      getContext().toBits(NonVirtualSize);

    assert(AlignedNonVirtualTypeSizeInBits ==
           getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
           "Type size mismatch!");
  }

  // Verify that the LLVM and AST field offsets agree.
  llvm::StructType *ST = RL->getLLVMType();
  const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);

  const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
  RecordDecl::field_iterator it = D->field_begin();
  for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
    const FieldDecl *FD = *it;

    // Ignore zero-sized fields.
    if (FD->isZeroSize(getContext()))
      continue;

    // For non-bit-fields, just check that the LLVM struct offset matches the
    // AST offset.
    if (!FD->isBitField()) {
      unsigned FieldNo = RL->getLLVMFieldNo(FD);
      assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
             "Invalid field offset!");
      continue;
    }

    // Ignore unnamed bit-fields.
    if (!FD->getDeclName())
      continue;

    const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
    llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));

    // Unions have overlapping elements dictating their layout, but for
    // non-unions we can verify that this section of the layout is the exact
    // expected size.
    if (D->isUnion()) {
      // For unions we verify that the start is zero and the size
      // is in-bounds. However, on BE systems, the offset may be non-zero, but
      // the size + offset should match the storage size in that case as it
      // "starts" at the back.
      if (getDataLayout().isBigEndian())
        assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
               Info.StorageSize &&
               "Big endian union bitfield does not end at the back");
      else
        assert(Info.Offset == 0 &&
               "Little endian union bitfield with a non-zero offset");
      assert(Info.StorageSize <= SL->getSizeInBits() &&
             "Union not large enough for bitfield storage");
    } else {
      assert(Info.StorageSize ==
             getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
             "Storage size does not match the element type size");
    }
    assert(Info.Size > 0 && "Empty bitfield!");
    assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
           "Bitfield outside of its allocated storage");
  }
#endif

  return RL;
}

void CGRecordLayout::print(raw_ostream &OS) const {
  OS << "<CGRecordLayout\n";
  OS << "  LLVMType:" << *CompleteObjectType << "\n";
  if (BaseSubobjectType)
    OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
  OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
  OS << "  BitFields:[\n";

  // Print bit-field infos in declaration order.
  std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
  for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
         it = BitFields.begin(), ie = BitFields.end();
       it != ie; ++it) {
    const RecordDecl *RD = it->first->getParent();
    unsigned Index = 0;
    for (RecordDecl::field_iterator
           it2 = RD->field_begin(); *it2 != it->first; ++it2)
      ++Index;
    BFIs.push_back(std::make_pair(Index, &it->second));
  }
  llvm::array_pod_sort(BFIs.begin(), BFIs.end());
  for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
    OS.indent(4);
    BFIs[i].second->print(OS);
    OS << "\n";
  }

  OS << "]>\n";
}

LLVM_DUMP_METHOD void CGRecordLayout::dump() const {
  print(llvm::errs());
}

void CGBitFieldInfo::print(raw_ostream &OS) const {
  OS << "<CGBitFieldInfo"
     << " Offset:" << Offset
     << " Size:" << Size
     << " IsSigned:" << IsSigned
     << " StorageSize:" << StorageSize
     << " StorageOffset:" << StorageOffset.getQuantity() << ">";
}

LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const {
  print(llvm::errs());
}