SwiftCallingConv.cpp 29.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
//===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the abstract lowering for the Swift calling convention.
//
//===----------------------------------------------------------------------===//

#include "clang/CodeGen/SwiftCallingConv.h"
#include "clang/Basic/TargetInfo.h"
#include "CodeGenModule.h"
#include "TargetInfo.h"

using namespace clang;
using namespace CodeGen;
using namespace swiftcall;

static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
  return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
}

static bool isPowerOf2(unsigned n) {
  return n == (n & -n);
}

/// Given two types with the same size, try to find a common type.
static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
  assert(first != second);

  // Allow pointers to merge with integers, but prefer the integer type.
  if (first->isIntegerTy()) {
    if (second->isPointerTy()) return first;
  } else if (first->isPointerTy()) {
    if (second->isIntegerTy()) return second;
    if (second->isPointerTy()) return first;

  // Allow two vectors to be merged (given that they have the same size).
  // This assumes that we never have two different vector register sets.
  } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
    if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
      if (auto commonTy = getCommonType(firstVecTy->getElementType(),
                                        secondVecTy->getElementType())) {
        return (commonTy == firstVecTy->getElementType() ? first : second);
      }
    }
  }

  return nullptr;
}

static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
}

static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
}

void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
  // Deal with various aggregate types as special cases:

  // Record types.
  if (auto recType = type->getAs<RecordType>()) {
    addTypedData(recType->getDecl(), begin);

  // Array types.
  } else if (type->isArrayType()) {
    // Incomplete array types (flexible array members?) don't provide
    // data to lay out, and the other cases shouldn't be possible.
    auto arrayType = CGM.getContext().getAsConstantArrayType(type);
    if (!arrayType) return;

    QualType eltType = arrayType->getElementType();
    auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
    for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
      addTypedData(eltType, begin + i * eltSize);
    }

  // Complex types.
  } else if (auto complexType = type->getAs<ComplexType>()) {
    auto eltType = complexType->getElementType();
    auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
    auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
    addTypedData(eltLLVMType, begin, begin + eltSize);
    addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);

  // Member pointer types.
  } else if (type->getAs<MemberPointerType>()) {
    // Just add it all as opaque.
    addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));

  // Everything else is scalar and should not convert as an LLVM aggregate.
  } else {
    // We intentionally convert as !ForMem because we want to preserve
    // that a type was an i1.
    auto llvmType = CGM.getTypes().ConvertType(type);
    addTypedData(llvmType, begin);
  }
}

void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
  addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
}

void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
                                    const ASTRecordLayout &layout) {
  // Unions are a special case.
  if (record->isUnion()) {
    for (auto field : record->fields()) {
      if (field->isBitField()) {
        addBitFieldData(field, begin, 0);
      } else {
        addTypedData(field->getType(), begin);
      }
    }
    return;
  }

  // Note that correctness does not rely on us adding things in
  // their actual order of layout; it's just somewhat more efficient
  // for the builder.

  // With that in mind, add "early" C++ data.
  auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
  if (cxxRecord) {
    //   - a v-table pointer, if the class adds its own
    if (layout.hasOwnVFPtr()) {
      addTypedData(CGM.Int8PtrTy, begin);
    }

    //   - non-virtual bases
    for (auto &baseSpecifier : cxxRecord->bases()) {
      if (baseSpecifier.isVirtual()) continue;

      auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
      addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
    }

    //   - a vbptr if the class adds its own
    if (layout.hasOwnVBPtr()) {
      addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
    }
  }

  // Add fields.
  for (auto field : record->fields()) {
    auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
    if (field->isBitField()) {
      addBitFieldData(field, begin, fieldOffsetInBits);
    } else {
      addTypedData(field->getType(),
              begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
    }
  }

  // Add "late" C++ data:
  if (cxxRecord) {
    //   - virtual bases
    for (auto &vbaseSpecifier : cxxRecord->vbases()) {
      auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
      addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
    }
  }
}

void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
                                       CharUnits recordBegin,
                                       uint64_t bitfieldBitBegin) {
  assert(bitfield->isBitField());
  auto &ctx = CGM.getContext();
  auto width = bitfield->getBitWidthValue(ctx);

  // We can ignore zero-width bit-fields.
  if (width == 0) return;

  // toCharUnitsFromBits rounds down.
  CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);

  // Find the offset of the last byte that is partially occupied by the
  // bit-field; since we otherwise expect exclusive ends, the end is the
  // next byte.
  uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
  CharUnits bitfieldByteEnd =
    ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
  addOpaqueData(recordBegin + bitfieldByteBegin,
                recordBegin + bitfieldByteEnd);
}

void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
  assert(type && "didn't provide type for typed data");
  addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
}

void SwiftAggLowering::addTypedData(llvm::Type *type,
                                    CharUnits begin, CharUnits end) {
  assert(type && "didn't provide type for typed data");
  assert(getTypeStoreSize(CGM, type) == end - begin);

  // Legalize vector types.
  if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
    SmallVector<llvm::Type*, 4> componentTys;
    legalizeVectorType(CGM, end - begin, vecTy, componentTys);
    assert(componentTys.size() >= 1);

    // Walk the initial components.
    for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
      llvm::Type *componentTy = componentTys[i];
      auto componentSize = getTypeStoreSize(CGM, componentTy);
      assert(componentSize < end - begin);
      addLegalTypedData(componentTy, begin, begin + componentSize);
      begin += componentSize;
    }

    return addLegalTypedData(componentTys.back(), begin, end);
  }

  // Legalize integer types.
  if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
    if (!isLegalIntegerType(CGM, intTy))
      return addOpaqueData(begin, end);
  }

  // All other types should be legal.
  return addLegalTypedData(type, begin, end);
}

void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
                                         CharUnits begin, CharUnits end) {
  // Require the type to be naturally aligned.
  if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {

    // Try splitting vector types.
    if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
      auto split = splitLegalVectorType(CGM, end - begin, vecTy);
      auto eltTy = split.first;
      auto numElts = split.second;

      auto eltSize = (end - begin) / numElts;
      assert(eltSize == getTypeStoreSize(CGM, eltTy));
      for (size_t i = 0, e = numElts; i != e; ++i) {
        addLegalTypedData(eltTy, begin, begin + eltSize);
        begin += eltSize;
      }
      assert(begin == end);
      return;
    }

    return addOpaqueData(begin, end);
  }

  addEntry(type, begin, end);
}

void SwiftAggLowering::addEntry(llvm::Type *type,
                                CharUnits begin, CharUnits end) {
  assert((!type ||
          (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
         "cannot add aggregate-typed data");
  assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));

  // Fast path: we can just add entries to the end.
  if (Entries.empty() || Entries.back().End <= begin) {
    Entries.push_back({begin, end, type});
    return;
  }

  // Find the first existing entry that ends after the start of the new data.
  // TODO: do a binary search if Entries is big enough for it to matter.
  size_t index = Entries.size() - 1;
  while (index != 0) {
    if (Entries[index - 1].End <= begin) break;
    --index;
  }

  // The entry ends after the start of the new data.
  // If the entry starts after the end of the new data, there's no conflict.
  if (Entries[index].Begin >= end) {
    // This insertion is potentially O(n), but the way we generally build
    // these layouts makes that unlikely to matter: we'd need a union of
    // several very large types.
    Entries.insert(Entries.begin() + index, {begin, end, type});
    return;
  }

  // Otherwise, the ranges overlap.  The new range might also overlap
  // with later ranges.
restartAfterSplit:

  // Simplest case: an exact overlap.
  if (Entries[index].Begin == begin && Entries[index].End == end) {
    // If the types match exactly, great.
    if (Entries[index].Type == type) return;

    // If either type is opaque, make the entry opaque and return.
    if (Entries[index].Type == nullptr) {
      return;
    } else if (type == nullptr) {
      Entries[index].Type = nullptr;
      return;
    }

    // If they disagree in an ABI-agnostic way, just resolve the conflict
    // arbitrarily.
    if (auto entryType = getCommonType(Entries[index].Type, type)) {
      Entries[index].Type = entryType;
      return;
    }

    // Otherwise, make the entry opaque.
    Entries[index].Type = nullptr;
    return;
  }

  // Okay, we have an overlapping conflict of some sort.

  // If we have a vector type, split it.
  if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
    auto eltTy = vecTy->getElementType();
    CharUnits eltSize = (end - begin) / vecTy->getNumElements();
    assert(eltSize == getTypeStoreSize(CGM, eltTy));
    for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) {
      addEntry(eltTy, begin, begin + eltSize);
      begin += eltSize;
    }
    assert(begin == end);
    return;
  }

  // If the entry is a vector type, split it and try again.
  if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
    splitVectorEntry(index);
    goto restartAfterSplit;
  }

  // Okay, we have no choice but to make the existing entry opaque.

  Entries[index].Type = nullptr;

  // Stretch the start of the entry to the beginning of the range.
  if (begin < Entries[index].Begin) {
    Entries[index].Begin = begin;
    assert(index == 0 || begin >= Entries[index - 1].End);
  }

  // Stretch the end of the entry to the end of the range; but if we run
  // into the start of the next entry, just leave the range there and repeat.
  while (end > Entries[index].End) {
    assert(Entries[index].Type == nullptr);

    // If the range doesn't overlap the next entry, we're done.
    if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
      Entries[index].End = end;
      break;
    }

    // Otherwise, stretch to the start of the next entry.
    Entries[index].End = Entries[index + 1].Begin;

    // Continue with the next entry.
    index++;

    // This entry needs to be made opaque if it is not already.
    if (Entries[index].Type == nullptr)
      continue;

    // Split vector entries unless we completely subsume them.
    if (Entries[index].Type->isVectorTy() &&
        end < Entries[index].End) {
      splitVectorEntry(index);
    }

    // Make the entry opaque.
    Entries[index].Type = nullptr;
  }
}

/// Replace the entry of vector type at offset 'index' with a sequence
/// of its component vectors.
void SwiftAggLowering::splitVectorEntry(unsigned index) {
  auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
  auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);

  auto eltTy = split.first;
  CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
  auto numElts = split.second;
  Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());

  CharUnits begin = Entries[index].Begin;
  for (unsigned i = 0; i != numElts; ++i) {
    Entries[index].Type = eltTy;
    Entries[index].Begin = begin;
    Entries[index].End = begin + eltSize;
    begin += eltSize;
  }
}

/// Given a power-of-two unit size, return the offset of the aligned unit
/// of that size which contains the given offset.
///
/// In other words, round down to the nearest multiple of the unit size.
static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
  assert(isPowerOf2(unitSize.getQuantity()));
  auto unitMask = ~(unitSize.getQuantity() - 1);
  return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
}

static bool areBytesInSameUnit(CharUnits first, CharUnits second,
                               CharUnits chunkSize) {
  return getOffsetAtStartOfUnit(first, chunkSize)
      == getOffsetAtStartOfUnit(second, chunkSize);
}

static bool isMergeableEntryType(llvm::Type *type) {
  // Opaquely-typed memory is always mergeable.
  if (type == nullptr) return true;

  // Pointers and integers are always mergeable.  In theory we should not
  // merge pointers, but (1) it doesn't currently matter in practice because
  // the chunk size is never greater than the size of a pointer and (2)
  // Swift IRGen uses integer types for a lot of things that are "really"
  // just storing pointers (like Optional<SomePointer>).  If we ever have a
  // target that would otherwise combine pointers, we should put some effort
  // into fixing those cases in Swift IRGen and then call out pointer types
  // here.

  // Floating-point and vector types should never be merged.
  // Most such types are too large and highly-aligned to ever trigger merging
  // in practice, but it's important for the rule to cover at least 'half'
  // and 'float', as well as things like small vectors of 'i1' or 'i8'.
  return (!type->isFloatingPointTy() && !type->isVectorTy());
}

bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
                                          const StorageEntry &second,
                                          CharUnits chunkSize) {
  // Only merge entries that overlap the same chunk.  We test this first
  // despite being a bit more expensive because this is the condition that
  // tends to prevent merging.
  if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
                          chunkSize))
    return false;

  return (isMergeableEntryType(first.Type) &&
          isMergeableEntryType(second.Type));
}

void SwiftAggLowering::finish() {
  if (Entries.empty()) {
    Finished = true;
    return;
  }

  // We logically split the layout down into a series of chunks of this size,
  // which is generally the size of a pointer.
  const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);

  // First pass: if two entries should be merged, make them both opaque
  // and stretch one to meet the next.
  // Also, remember if there are any opaque entries.
  bool hasOpaqueEntries = (Entries[0].Type == nullptr);
  for (size_t i = 1, e = Entries.size(); i != e; ++i) {
    if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
      Entries[i - 1].Type = nullptr;
      Entries[i].Type = nullptr;
      Entries[i - 1].End = Entries[i].Begin;
      hasOpaqueEntries = true;

    } else if (Entries[i].Type == nullptr) {
      hasOpaqueEntries = true;
    }
  }

  // The rest of the algorithm leaves non-opaque entries alone, so if we
  // have no opaque entries, we're done.
  if (!hasOpaqueEntries) {
    Finished = true;
    return;
  }

  // Okay, move the entries to a temporary and rebuild Entries.
  auto orig = std::move(Entries);
  assert(Entries.empty());

  for (size_t i = 0, e = orig.size(); i != e; ++i) {
    // Just copy over non-opaque entries.
    if (orig[i].Type != nullptr) {
      Entries.push_back(orig[i]);
      continue;
    }

    // Scan forward to determine the full extent of the next opaque range.
    // We know from the first pass that only contiguous ranges will overlap
    // the same aligned chunk.
    auto begin = orig[i].Begin;
    auto end = orig[i].End;
    while (i + 1 != e &&
           orig[i + 1].Type == nullptr &&
           end == orig[i + 1].Begin) {
      end = orig[i + 1].End;
      i++;
    }

    // Add an entry per intersected chunk.
    do {
      // Find the smallest aligned storage unit in the maximal aligned
      // storage unit containing 'begin' that contains all the bytes in
      // the intersection between the range and this chunk.
      CharUnits localBegin = begin;
      CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
      CharUnits chunkEnd = chunkBegin + chunkSize;
      CharUnits localEnd = std::min(end, chunkEnd);

      // Just do a simple loop over ever-increasing unit sizes.
      CharUnits unitSize = CharUnits::One();
      CharUnits unitBegin, unitEnd;
      for (; ; unitSize *= 2) {
        assert(unitSize <= chunkSize);
        unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
        unitEnd = unitBegin + unitSize;
        if (unitEnd >= localEnd) break;
      }

      // Add an entry for this unit.
      auto entryTy =
        llvm::IntegerType::get(CGM.getLLVMContext(),
                               CGM.getContext().toBits(unitSize));
      Entries.push_back({unitBegin, unitEnd, entryTy});

      // The next chunk starts where this chunk left off.
      begin = localEnd;
    } while (begin != end);
  }

  // Okay, finally finished.
  Finished = true;
}

void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
  assert(Finished && "haven't yet finished lowering");

  for (auto &entry : Entries) {
    callback(entry.Begin, entry.End, entry.Type);
  }
}

std::pair<llvm::StructType*, llvm::Type*>
SwiftAggLowering::getCoerceAndExpandTypes() const {
  assert(Finished && "haven't yet finished lowering");

  auto &ctx = CGM.getLLVMContext();

  if (Entries.empty()) {
    auto type = llvm::StructType::get(ctx);
    return { type, type };
  }

  SmallVector<llvm::Type*, 8> elts;
  CharUnits lastEnd = CharUnits::Zero();
  bool hasPadding = false;
  bool packed = false;
  for (auto &entry : Entries) {
    if (entry.Begin != lastEnd) {
      auto paddingSize = entry.Begin - lastEnd;
      assert(!paddingSize.isNegative());

      auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
                                          paddingSize.getQuantity());
      elts.push_back(padding);
      hasPadding = true;
    }

    if (!packed && !entry.Begin.isMultipleOf(
          CharUnits::fromQuantity(
            CGM.getDataLayout().getABITypeAlignment(entry.Type))))
      packed = true;

    elts.push_back(entry.Type);

    lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
    assert(entry.End <= lastEnd);
  }

  // We don't need to adjust 'packed' to deal with possible tail padding
  // because we never do that kind of access through the coercion type.
  auto coercionType = llvm::StructType::get(ctx, elts, packed);

  llvm::Type *unpaddedType = coercionType;
  if (hasPadding) {
    elts.clear();
    for (auto &entry : Entries) {
      elts.push_back(entry.Type);
    }
    if (elts.size() == 1) {
      unpaddedType = elts[0];
    } else {
      unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
    }
  } else if (Entries.size() == 1) {
    unpaddedType = Entries[0].Type;
  }

  return { coercionType, unpaddedType };
}

bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
  assert(Finished && "haven't yet finished lowering");

  // Empty types don't need to be passed indirectly.
  if (Entries.empty()) return false;

  // Avoid copying the array of types when there's just a single element.
  if (Entries.size() == 1) {
    return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(
                                                           Entries.back().Type,
                                                             asReturnValue);
  }

  SmallVector<llvm::Type*, 8> componentTys;
  componentTys.reserve(Entries.size());
  for (auto &entry : Entries) {
    componentTys.push_back(entry.Type);
  }
  return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
                                                           asReturnValue);
}

bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
                                     ArrayRef<llvm::Type*> componentTys,
                                     bool asReturnValue) {
  return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
                                                           asReturnValue);
}

CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
  // Currently always the size of an ordinary pointer.
  return CGM.getContext().toCharUnitsFromBits(
           CGM.getContext().getTargetInfo().getPointerWidth(0));
}

CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
  // For Swift's purposes, this is always just the store size of the type
  // rounded up to a power of 2.
  auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
  if (!isPowerOf2(size)) {
    size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
  }
  assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
  return CharUnits::fromQuantity(size);
}

bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
                                   llvm::IntegerType *intTy) {
  auto size = intTy->getBitWidth();
  switch (size) {
  case 1:
  case 8:
  case 16:
  case 32:
  case 64:
    // Just assume that the above are always legal.
    return true;

  case 128:
    return CGM.getContext().getTargetInfo().hasInt128Type();

  default:
    return false;
  }
}

bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
                                  llvm::VectorType *vectorTy) {
  return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(),
                           vectorTy->getNumElements());
}

bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
                                  llvm::Type *eltTy, unsigned numElts) {
  assert(numElts > 1 && "illegal vector length");
  return getSwiftABIInfo(CGM)
           .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
}

std::pair<llvm::Type*, unsigned>
swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
                                llvm::VectorType *vectorTy) {
  auto numElts = vectorTy->getNumElements();
  auto eltTy = vectorTy->getElementType();

  // Try to split the vector type in half.
  if (numElts >= 4 && isPowerOf2(numElts)) {
    if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
      return {llvm::VectorType::get(eltTy, numElts / 2), 2};
  }

  return {eltTy, numElts};
}

void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
                                   llvm::VectorType *origVectorTy,
                             llvm::SmallVectorImpl<llvm::Type*> &components) {
  // If it's already a legal vector type, use it.
  if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
    components.push_back(origVectorTy);
    return;
  }

  // Try to split the vector into legal subvectors.
  auto numElts = origVectorTy->getNumElements();
  auto eltTy = origVectorTy->getElementType();
  assert(numElts != 1);

  // The largest size that we're still considering making subvectors of.
  // Always a power of 2.
  unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
  unsigned candidateNumElts = 1U << logCandidateNumElts;
  assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);

  // Minor optimization: don't check the legality of this exact size twice.
  if (candidateNumElts == numElts) {
    logCandidateNumElts--;
    candidateNumElts >>= 1;
  }

  CharUnits eltSize = (origVectorSize / numElts);
  CharUnits candidateSize = eltSize * candidateNumElts;

  // The sensibility of this algorithm relies on the fact that we never
  // have a legal non-power-of-2 vector size without having the power of 2
  // also be legal.
  while (logCandidateNumElts > 0) {
    assert(candidateNumElts == 1U << logCandidateNumElts);
    assert(candidateNumElts <= numElts);
    assert(candidateSize == eltSize * candidateNumElts);

    // Skip illegal vector sizes.
    if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
      logCandidateNumElts--;
      candidateNumElts /= 2;
      candidateSize /= 2;
      continue;
    }

    // Add the right number of vectors of this size.
    auto numVecs = numElts >> logCandidateNumElts;
    components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts));
    numElts -= (numVecs << logCandidateNumElts);

    if (numElts == 0) return;

    // It's possible that the number of elements remaining will be legal.
    // This can happen with e.g. <7 x float> when <3 x float> is legal.
    // This only needs to be separately checked if it's not a power of 2.
    if (numElts > 2 && !isPowerOf2(numElts) &&
        isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
      components.push_back(llvm::VectorType::get(eltTy, numElts));
      return;
    }

    // Bring vecSize down to something no larger than numElts.
    do {
      logCandidateNumElts--;
      candidateNumElts /= 2;
      candidateSize /= 2;
    } while (candidateNumElts > numElts);
  }

  // Otherwise, just append a bunch of individual elements.
  components.append(numElts, eltTy);
}

bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
                                         const RecordDecl *record) {
  // FIXME: should we not rely on the standard computation in Sema, just in
  // case we want to diverge from the platform ABI (e.g. on targets where
  // that uses the MSVC rule)?
  return !record->canPassInRegisters();
}

static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
                                       bool forReturn,
                                       CharUnits alignmentForIndirect) {
  if (lowering.empty()) {
    return ABIArgInfo::getIgnore();
  } else if (lowering.shouldPassIndirectly(forReturn)) {
    return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
  } else {
    auto types = lowering.getCoerceAndExpandTypes();
    return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
  }
}

static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
                               bool forReturn) {
  if (auto recordType = dyn_cast<RecordType>(type)) {
    auto record = recordType->getDecl();
    auto &layout = CGM.getContext().getASTRecordLayout(record);

    if (mustPassRecordIndirectly(CGM, record))
      return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);

    SwiftAggLowering lowering(CGM);
    lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
    lowering.finish();

    return classifyExpandedType(lowering, forReturn, layout.getAlignment());
  }

  // Just assume that all of our target ABIs can support returning at least
  // two integer or floating-point values.
  if (isa<ComplexType>(type)) {
    return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
  }

  // Vector types may need to be legalized.
  if (isa<VectorType>(type)) {
    SwiftAggLowering lowering(CGM);
    lowering.addTypedData(type, CharUnits::Zero());
    lowering.finish();

    CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
    return classifyExpandedType(lowering, forReturn, alignment);
  }

  // Member pointer types need to be expanded, but it's a simple form of
  // expansion that 'Direct' can handle.  Note that CanBeFlattened should be
  // true for this to work.

  // 'void' needs to be ignored.
  if (type->isVoidType()) {
    return ABIArgInfo::getIgnore();
  }

  // Everything else can be passed directly.
  return ABIArgInfo::getDirect();
}

ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
  return classifyType(CGM, type, /*forReturn*/ true);
}

ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
                                           CanQualType type) {
  return classifyType(CGM, type, /*forReturn*/ false);
}

void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
  auto &retInfo = FI.getReturnInfo();
  retInfo = classifyReturnType(CGM, FI.getReturnType());

  for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
    auto &argInfo = FI.arg_begin()[i];
    argInfo.info = classifyArgumentType(CGM, argInfo.type);
  }
}

// Is swifterror lowered to a register by the target ABI.
bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
  return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
}