__clang_cuda_cmath.h
16.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/*===---- __clang_cuda_cmath.h - Device-side CUDA cmath support ------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __CLANG_CUDA_CMATH_H__
#define __CLANG_CUDA_CMATH_H__
#ifndef __CUDA__
#error "This file is for CUDA compilation only."
#endif
#include <limits>
// CUDA lets us use various std math functions on the device side. This file
// works in concert with __clang_cuda_math_forward_declares.h to make this work.
//
// Specifically, the forward-declares header declares __device__ overloads for
// these functions in the global namespace, then pulls them into namespace std
// with 'using' statements. Then this file implements those functions, after
// their implementations have been pulled in.
//
// It's important that we declare the functions in the global namespace and pull
// them into namespace std with using statements, as opposed to simply declaring
// these functions in namespace std, because our device functions need to
// overload the standard library functions, which may be declared in the global
// namespace or in std, depending on the degree of conformance of the stdlib
// implementation. Declaring in the global namespace and pulling into namespace
// std covers all of the known knowns.
#ifdef _OPENMP
#define __DEVICE__ static __attribute__((always_inline))
#else
#define __DEVICE__ static __device__ __inline__ __attribute__((always_inline))
#endif
// For C++ 17 we need to include noexcept attribute to be compatible
// with the header-defined version. This may be removed once
// variant is supported.
#if defined(_OPENMP) && defined(__cplusplus) && __cplusplus >= 201703L
#define __NOEXCEPT noexcept
#else
#define __NOEXCEPT
#endif
#if !(defined(_OPENMP) && defined(__cplusplus))
__DEVICE__ long long abs(long long __n) { return ::llabs(__n); }
__DEVICE__ long abs(long __n) { return ::labs(__n); }
__DEVICE__ float abs(float __x) { return ::fabsf(__x); }
__DEVICE__ double abs(double __x) { return ::fabs(__x); }
#endif
// TODO: remove once variat is supported.
#if defined(_OPENMP) && defined(__cplusplus)
__DEVICE__ const float abs(const float __x) { return ::fabsf((float)__x); }
__DEVICE__ const double abs(const double __x) { return ::fabs((double)__x); }
#endif
__DEVICE__ float acos(float __x) { return ::acosf(__x); }
__DEVICE__ float asin(float __x) { return ::asinf(__x); }
__DEVICE__ float atan(float __x) { return ::atanf(__x); }
__DEVICE__ float atan2(float __x, float __y) { return ::atan2f(__x, __y); }
__DEVICE__ float ceil(float __x) { return ::ceilf(__x); }
__DEVICE__ float cos(float __x) { return ::cosf(__x); }
__DEVICE__ float cosh(float __x) { return ::coshf(__x); }
__DEVICE__ float exp(float __x) { return ::expf(__x); }
__DEVICE__ float fabs(float __x) __NOEXCEPT { return ::fabsf(__x); }
__DEVICE__ float floor(float __x) { return ::floorf(__x); }
__DEVICE__ float fmod(float __x, float __y) { return ::fmodf(__x, __y); }
// TODO: remove when variant is supported
#ifndef _OPENMP
__DEVICE__ int fpclassify(float __x) {
return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
FP_ZERO, __x);
}
__DEVICE__ int fpclassify(double __x) {
return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
FP_ZERO, __x);
}
#endif
__DEVICE__ float frexp(float __arg, int *__exp) {
return ::frexpf(__arg, __exp);
}
// For inscrutable reasons, the CUDA headers define these functions for us on
// Windows.
#ifndef _MSC_VER
__DEVICE__ bool isinf(float __x) { return ::__isinff(__x); }
__DEVICE__ bool isinf(double __x) { return ::__isinf(__x); }
__DEVICE__ bool isfinite(float __x) { return ::__finitef(__x); }
// For inscrutable reasons, __finite(), the double-precision version of
// __finitef, does not exist when compiling for MacOS. __isfinited is available
// everywhere and is just as good.
__DEVICE__ bool isfinite(double __x) { return ::__isfinited(__x); }
__DEVICE__ bool isnan(float __x) { return ::__isnanf(__x); }
__DEVICE__ bool isnan(double __x) { return ::__isnan(__x); }
#endif
__DEVICE__ bool isgreater(float __x, float __y) {
return __builtin_isgreater(__x, __y);
}
__DEVICE__ bool isgreater(double __x, double __y) {
return __builtin_isgreater(__x, __y);
}
__DEVICE__ bool isgreaterequal(float __x, float __y) {
return __builtin_isgreaterequal(__x, __y);
}
__DEVICE__ bool isgreaterequal(double __x, double __y) {
return __builtin_isgreaterequal(__x, __y);
}
__DEVICE__ bool isless(float __x, float __y) {
return __builtin_isless(__x, __y);
}
__DEVICE__ bool isless(double __x, double __y) {
return __builtin_isless(__x, __y);
}
__DEVICE__ bool islessequal(float __x, float __y) {
return __builtin_islessequal(__x, __y);
}
__DEVICE__ bool islessequal(double __x, double __y) {
return __builtin_islessequal(__x, __y);
}
__DEVICE__ bool islessgreater(float __x, float __y) {
return __builtin_islessgreater(__x, __y);
}
__DEVICE__ bool islessgreater(double __x, double __y) {
return __builtin_islessgreater(__x, __y);
}
__DEVICE__ bool isnormal(float __x) { return __builtin_isnormal(__x); }
__DEVICE__ bool isnormal(double __x) { return __builtin_isnormal(__x); }
__DEVICE__ bool isunordered(float __x, float __y) {
return __builtin_isunordered(__x, __y);
}
__DEVICE__ bool isunordered(double __x, double __y) {
return __builtin_isunordered(__x, __y);
}
__DEVICE__ float ldexp(float __arg, int __exp) {
return ::ldexpf(__arg, __exp);
}
__DEVICE__ float log(float __x) { return ::logf(__x); }
__DEVICE__ float log10(float __x) { return ::log10f(__x); }
__DEVICE__ float modf(float __x, float *__iptr) { return ::modff(__x, __iptr); }
__DEVICE__ float pow(float __base, float __exp) {
return ::powf(__base, __exp);
}
__DEVICE__ float pow(float __base, int __iexp) {
return ::powif(__base, __iexp);
}
__DEVICE__ double pow(double __base, int __iexp) {
return ::powi(__base, __iexp);
}
__DEVICE__ bool signbit(float __x) { return ::__signbitf(__x); }
__DEVICE__ bool signbit(double __x) { return ::__signbitd(__x); }
__DEVICE__ float sin(float __x) { return ::sinf(__x); }
__DEVICE__ float sinh(float __x) { return ::sinhf(__x); }
__DEVICE__ float sqrt(float __x) { return ::sqrtf(__x); }
__DEVICE__ float tan(float __x) { return ::tanf(__x); }
__DEVICE__ float tanh(float __x) { return ::tanhf(__x); }
// Notably missing above is nexttoward. We omit it because
// libdevice doesn't provide an implementation, and we don't want to be in the
// business of implementing tricky libm functions in this header.
// Now we've defined everything we promised we'd define in
// __clang_cuda_math_forward_declares.h. We need to do two additional things to
// fix up our math functions.
//
// 1) Define __device__ overloads for e.g. sin(int). The CUDA headers define
// only sin(float) and sin(double), which means that e.g. sin(0) is
// ambiguous.
//
// 2) Pull the __device__ overloads of "foobarf" math functions into namespace
// std. These are defined in the CUDA headers in the global namespace,
// independent of everything else we've done here.
// We can't use std::enable_if, because we want to be pre-C++11 compatible. But
// we go ahead and unconditionally define functions that are only available when
// compiling for C++11 to match the behavior of the CUDA headers.
template<bool __B, class __T = void>
struct __clang_cuda_enable_if {};
template <class __T> struct __clang_cuda_enable_if<true, __T> {
typedef __T type;
};
// Defines an overload of __fn that accepts one integral argument, calls
// __fn((double)x), and returns __retty.
#define __CUDA_CLANG_FN_INTEGER_OVERLOAD_1(__retty, __fn) \
template <typename __T> \
__DEVICE__ \
typename __clang_cuda_enable_if<std::numeric_limits<__T>::is_integer, \
__retty>::type \
__fn(__T __x) { \
return ::__fn((double)__x); \
}
// Defines an overload of __fn that accepts one two arithmetic arguments, calls
// __fn((double)x, (double)y), and returns a double.
//
// Note this is different from OVERLOAD_1, which generates an overload that
// accepts only *integral* arguments.
#define __CUDA_CLANG_FN_INTEGER_OVERLOAD_2(__retty, __fn) \
template <typename __T1, typename __T2> \
__DEVICE__ typename __clang_cuda_enable_if< \
std::numeric_limits<__T1>::is_specialized && \
std::numeric_limits<__T2>::is_specialized, \
__retty>::type \
__fn(__T1 __x, __T2 __y) { \
return __fn((double)__x, (double)__y); \
}
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, acos)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, acosh)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, asin)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, asinh)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, atan)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, atan2);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, atanh)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, cbrt)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, ceil)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, copysign);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, cos)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, cosh)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, erf)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, erfc)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, exp)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, exp2)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, expm1)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, fabs)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, fdim);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, floor)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, fmax);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, fmin);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, fmod);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(int, fpclassify)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, hypot);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(int, ilogb)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(bool, isfinite)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(bool, isgreater);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(bool, isgreaterequal);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(bool, isinf);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(bool, isless);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(bool, islessequal);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(bool, islessgreater);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(bool, isnan);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(bool, isnormal)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(bool, isunordered);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, lgamma)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, log)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, log10)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, log1p)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, log2)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, logb)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(long long, llrint)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(long long, llround)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(long, lrint)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(long, lround)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, nearbyint);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, nextafter);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, pow);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_2(double, remainder);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, rint);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, round);
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(bool, signbit)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, sin)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, sinh)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, sqrt)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, tan)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, tanh)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, tgamma)
__CUDA_CLANG_FN_INTEGER_OVERLOAD_1(double, trunc);
#undef __CUDA_CLANG_FN_INTEGER_OVERLOAD_1
#undef __CUDA_CLANG_FN_INTEGER_OVERLOAD_2
// Overloads for functions that don't match the patterns expected by
// __CUDA_CLANG_FN_INTEGER_OVERLOAD_{1,2}.
template <typename __T1, typename __T2, typename __T3>
__DEVICE__ typename __clang_cuda_enable_if<
std::numeric_limits<__T1>::is_specialized &&
std::numeric_limits<__T2>::is_specialized &&
std::numeric_limits<__T3>::is_specialized,
double>::type
fma(__T1 __x, __T2 __y, __T3 __z) {
return std::fma((double)__x, (double)__y, (double)__z);
}
template <typename __T>
__DEVICE__ typename __clang_cuda_enable_if<std::numeric_limits<__T>::is_integer,
double>::type
frexp(__T __x, int *__exp) {
return std::frexp((double)__x, __exp);
}
template <typename __T>
__DEVICE__ typename __clang_cuda_enable_if<std::numeric_limits<__T>::is_integer,
double>::type
ldexp(__T __x, int __exp) {
return std::ldexp((double)__x, __exp);
}
template <typename __T1, typename __T2>
__DEVICE__ typename __clang_cuda_enable_if<
std::numeric_limits<__T1>::is_specialized &&
std::numeric_limits<__T2>::is_specialized,
double>::type
remquo(__T1 __x, __T2 __y, int *__quo) {
return std::remquo((double)__x, (double)__y, __quo);
}
template <typename __T>
__DEVICE__ typename __clang_cuda_enable_if<std::numeric_limits<__T>::is_integer,
double>::type
scalbln(__T __x, long __exp) {
return std::scalbln((double)__x, __exp);
}
template <typename __T>
__DEVICE__ typename __clang_cuda_enable_if<std::numeric_limits<__T>::is_integer,
double>::type
scalbn(__T __x, int __exp) {
return std::scalbn((double)__x, __exp);
}
// We need to define these overloads in exactly the namespace our standard
// library uses (including the right inline namespace), otherwise they won't be
// picked up by other functions in the standard library (e.g. functions in
// <complex>). Thus the ugliness below.
#ifdef _LIBCPP_BEGIN_NAMESPACE_STD
_LIBCPP_BEGIN_NAMESPACE_STD
#else
namespace std {
#ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_VERSION
#endif
#endif
// Pull the new overloads we defined above into namespace std.
using ::acos;
using ::acosh;
using ::asin;
using ::asinh;
using ::atan;
using ::atan2;
using ::atanh;
using ::cbrt;
using ::ceil;
using ::copysign;
using ::cos;
using ::cosh;
using ::erf;
using ::erfc;
using ::exp;
using ::exp2;
using ::expm1;
using ::fabs;
using ::fdim;
using ::floor;
using ::fma;
using ::fmax;
using ::fmin;
using ::fmod;
using ::fpclassify;
using ::frexp;
using ::hypot;
using ::ilogb;
using ::isfinite;
using ::isgreater;
using ::isgreaterequal;
using ::isless;
using ::islessequal;
using ::islessgreater;
using ::isnormal;
using ::isunordered;
using ::ldexp;
using ::lgamma;
using ::llrint;
using ::llround;
using ::log;
using ::log10;
using ::log1p;
using ::log2;
using ::logb;
using ::lrint;
using ::lround;
using ::nearbyint;
using ::nextafter;
using ::pow;
using ::remainder;
using ::remquo;
using ::rint;
using ::round;
using ::scalbln;
using ::scalbn;
using ::signbit;
using ::sin;
using ::sinh;
using ::sqrt;
using ::tan;
using ::tanh;
using ::tgamma;
using ::trunc;
// Well this is fun: We need to pull these symbols in for libc++, but we can't
// pull them in with libstdc++, because its ::isinf and ::isnan are different
// than its std::isinf and std::isnan.
#ifndef __GLIBCXX__
using ::isinf;
using ::isnan;
#endif
// Finally, pull the "foobarf" functions that CUDA defines in its headers into
// namespace std.
using ::acosf;
using ::acoshf;
using ::asinf;
using ::asinhf;
using ::atan2f;
using ::atanf;
using ::atanhf;
using ::cbrtf;
using ::ceilf;
using ::copysignf;
using ::cosf;
using ::coshf;
using ::erfcf;
using ::erff;
using ::exp2f;
using ::expf;
using ::expm1f;
using ::fabsf;
using ::fdimf;
using ::floorf;
using ::fmaf;
using ::fmaxf;
using ::fminf;
using ::fmodf;
using ::frexpf;
using ::hypotf;
using ::ilogbf;
using ::ldexpf;
using ::lgammaf;
using ::llrintf;
using ::llroundf;
using ::log10f;
using ::log1pf;
using ::log2f;
using ::logbf;
using ::logf;
using ::lrintf;
using ::lroundf;
using ::modff;
using ::nearbyintf;
using ::nextafterf;
using ::powf;
using ::remainderf;
using ::remquof;
using ::rintf;
using ::roundf;
// TODO: remove once variant is supported
#ifndef _OPENMP
using ::scalblnf;
#endif
using ::scalbnf;
using ::sinf;
using ::sinhf;
using ::sqrtf;
using ::tanf;
using ::tanhf;
using ::tgammaf;
using ::truncf;
#ifdef _LIBCPP_END_NAMESPACE_STD
_LIBCPP_END_NAMESPACE_STD
#else
#ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_END_NAMESPACE_VERSION
#endif
} // namespace std
#endif
#undef __NOEXCEPT
#undef __DEVICE__
#endif