xmmintrin.h 59.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
/*===---- xmmintrin.h - Implementation of SSE intrinsics on PowerPC --------===
 *
 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 * See https://llvm.org/LICENSE.txt for license information.
 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 *
 *===-----------------------------------------------------------------------===
 */

/* Implemented from the specification included in the Intel C++ Compiler
   User Guide and Reference, version 9.0.  */

#ifndef NO_WARN_X86_INTRINSICS
/* This header file is to help porting code using Intel intrinsics
   explicitly from x86_64 to powerpc64/powerpc64le.

   Since X86 SSE intrinsics mainly handles __m128 type, PowerPC
   VMX/VSX ISA is a good match for vector float SIMD operations.
   However scalar float operations in vector (XMM) registers require
   the POWER8 VSX ISA (2.07) level. There are differences for data
   format and placement of float scalars in the vector register, which
   require extra steps to match SSE scalar float semantics on POWER.

   It should be noted that there's much difference between X86_64's
   MXSCR and PowerISA's FPSCR/VSCR registers. It's recommended to use
   portable <fenv.h> instead of access MXSCR directly.

   Most SSE scalar float intrinsic operations can be performed more
   efficiently as C language float scalar operations or optimized to
   use vector SIMD operations. We recommend this for new applications. */
#error "Please read comment above.  Use -DNO_WARN_X86_INTRINSICS to disable this error."
#endif

#ifndef _XMMINTRIN_H_INCLUDED
#define _XMMINTRIN_H_INCLUDED

#if defined(__linux__) && defined(__ppc64__)

/* Define four value permute mask */
#define _MM_SHUFFLE(w,x,y,z) (((w) << 6) | ((x) << 4) | ((y) << 2) | (z))

#include <altivec.h>

/* Avoid collisions between altivec.h and strict adherence to C++ and
   C11 standards.  This should eventually be done inside altivec.h itself,
   but only after testing a full distro build.  */
#if defined(__STRICT_ANSI__) && (defined(__cplusplus) || \
				 (defined(__STDC_VERSION__) &&	\
				  __STDC_VERSION__ >= 201112L))
#undef vector
#undef pixel
#undef bool
#endif

/* We need type definitions from the MMX header file.  */
#include <mmintrin.h>

/* Get _mm_malloc () and _mm_free ().  */
#if __STDC_HOSTED__
#include <mm_malloc.h>
#endif

/* The Intel API is flexible enough that we must allow aliasing with other
   vector types, and their scalar components.  */
typedef float __m128 __attribute__ ((__vector_size__ (16), __may_alias__));

/* Unaligned version of the same type.  */
typedef float __m128_u __attribute__ ((__vector_size__ (16), __may_alias__,
				       __aligned__ (1)));

/* Internal data types for implementing the intrinsics.  */
typedef float __v4sf __attribute__ ((__vector_size__ (16)));

/* Create an undefined vector.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_undefined_ps (void)
{
  __m128 __Y = __Y;
  return __Y;
}

/* Create a vector of zeros.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_setzero_ps (void)
{
  return __extension__ (__m128){ 0.0f, 0.0f, 0.0f, 0.0f };
}

/* Load four SPFP values from P.  The address must be 16-byte aligned.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_load_ps (float const *__P)
{
  return ((__m128)vec_ld(0, (__v4sf*)__P));
}

/* Load four SPFP values from P.  The address need not be 16-byte aligned.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_loadu_ps (float const *__P)
{
  return (vec_vsx_ld(0, __P));
}

/* Load four SPFP values in reverse order.  The address must be aligned.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_loadr_ps (float const *__P)
{
  __v4sf   __tmp;
  __m128 result;
  static const __vector unsigned char permute_vector =
    { 0x1C, 0x1D, 0x1E, 0x1F, 0x18, 0x19, 0x1A, 0x1B, 0x14, 0x15, 0x16,
	0x17, 0x10, 0x11, 0x12, 0x13 };

  __tmp = vec_ld (0, (__v4sf *) __P);
  result = (__m128) vec_perm (__tmp, __tmp, permute_vector);
  return result;
}

/* Create a vector with all four elements equal to F.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set1_ps (float __F)
{
  return __extension__ (__m128)(__v4sf){ __F, __F, __F, __F };
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set_ps1 (float __F)
{
  return _mm_set1_ps (__F);
}

/* Create the vector [Z Y X W].  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set_ps (const float __Z, const float __Y, const float __X, const float __W)
{
  return __extension__ (__m128)(__v4sf){ __W, __X, __Y, __Z };
}

/* Create the vector [W X Y Z].  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_setr_ps (float __Z, float __Y, float __X, float __W)
{
  return __extension__ (__m128)(__v4sf){ __Z, __Y, __X, __W };
}

/* Store four SPFP values.  The address must be 16-byte aligned.  */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_store_ps (float *__P, __m128 __A)
{
  vec_st((__v4sf)__A, 0, (__v4sf*)__P);
}

/* Store four SPFP values.  The address need not be 16-byte aligned.  */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_storeu_ps (float *__P, __m128 __A)
{
  *(__m128_u *)__P = __A;
}

/* Store four SPFP values in reverse order.  The address must be aligned.  */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_storer_ps (float *__P, __m128 __A)
{
  __v4sf   __tmp;
  static const __vector unsigned char permute_vector =
    { 0x1C, 0x1D, 0x1E, 0x1F, 0x18, 0x19, 0x1A, 0x1B, 0x14, 0x15, 0x16,
	0x17, 0x10, 0x11, 0x12, 0x13 };

  __tmp = (__m128) vec_perm (__A, __A, permute_vector);

  _mm_store_ps (__P, __tmp);
}

/* Store the lower SPFP value across four words.  */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_store1_ps (float *__P, __m128 __A)
{
  __v4sf __va = vec_splat((__v4sf)__A, 0);
  _mm_store_ps (__P, __va);
}

extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_store_ps1 (float *__P, __m128 __A)
{
  _mm_store1_ps (__P, __A);
}

/* Create a vector with element 0 as F and the rest zero.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_set_ss (float __F)
{
  return __extension__ (__m128)(__v4sf){ __F, 0.0f, 0.0f, 0.0f };
}

/* Sets the low SPFP value of A from the low value of B.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_move_ss (__m128 __A, __m128 __B)
{
  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};

  return (vec_sel ((__v4sf)__A, (__v4sf)__B, mask));
}

/* Create a vector with element 0 as *P and the rest zero.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_load_ss (float const *__P)
{
  return _mm_set_ss (*__P);
}

/* Stores the lower SPFP value.  */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_store_ss (float *__P, __m128 __A)
{
  *__P = ((__v4sf)__A)[0];
}

/* Perform the respective operation on the lower SPFP (single-precision
   floating-point) values of A and B; the upper three SPFP values are
   passed through from A.  */

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_add_ss (__m128 __A, __m128 __B)
{
#ifdef _ARCH_PWR7
  __m128 a, b, c;
  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
  /* PowerISA VSX does not allow partial (for just lower double)
     results. So to insure we don't generate spurious exceptions
     (from the upper double values) we splat the lower double
     before we to the operation.  */
  a = vec_splat (__A, 0);
  b = vec_splat (__B, 0);
  c = a + b;
  /* Then we merge the lower float result with the original upper
     float elements from __A.  */
  return (vec_sel (__A, c, mask));
#else
  __A[0] = __A[0] + __B[0];
  return (__A);
#endif
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sub_ss (__m128 __A, __m128 __B)
{
#ifdef _ARCH_PWR7
  __m128 a, b, c;
  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
  /* PowerISA VSX does not allow partial (for just lower double)
     results. So to insure we don't generate spurious exceptions
     (from the upper double values) we splat the lower double
     before we to the operation.  */
  a = vec_splat (__A, 0);
  b = vec_splat (__B, 0);
  c = a - b;
  /* Then we merge the lower float result with the original upper
     float elements from __A.  */
  return (vec_sel (__A, c, mask));
#else
  __A[0] = __A[0] - __B[0];
  return (__A);
#endif
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_mul_ss (__m128 __A, __m128 __B)
{
#ifdef _ARCH_PWR7
  __m128 a, b, c;
  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
  /* PowerISA VSX does not allow partial (for just lower double)
     results. So to insure we don't generate spurious exceptions
     (from the upper double values) we splat the lower double
     before we to the operation.  */
  a = vec_splat (__A, 0);
  b = vec_splat (__B, 0);
  c = a * b;
  /* Then we merge the lower float result with the original upper
     float elements from __A.  */
  return (vec_sel (__A, c, mask));
#else
  __A[0] = __A[0] * __B[0];
  return (__A);
#endif
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_div_ss (__m128 __A, __m128 __B)
{
#ifdef _ARCH_PWR7
  __m128 a, b, c;
  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
  /* PowerISA VSX does not allow partial (for just lower double)
     results. So to insure we don't generate spurious exceptions
     (from the upper double values) we splat the lower double
     before we to the operation.  */
  a = vec_splat (__A, 0);
  b = vec_splat (__B, 0);
  c = a / b;
  /* Then we merge the lower float result with the original upper
     float elements from __A.  */
  return (vec_sel (__A, c, mask));
#else
  __A[0] = __A[0] / __B[0];
  return (__A);
#endif
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sqrt_ss (__m128 __A)
{
  __m128 a, c;
  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
  /* PowerISA VSX does not allow partial (for just lower double)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper double values) we splat the lower double
   * before we to the operation. */
  a = vec_splat (__A, 0);
  c = vec_sqrt (a);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return (vec_sel (__A, c, mask));
}

/* Perform the respective operation on the four SPFP values in A and B.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_add_ps (__m128 __A, __m128 __B)
{
  return (__m128) ((__v4sf)__A + (__v4sf)__B);
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sub_ps (__m128 __A, __m128 __B)
{
  return (__m128) ((__v4sf)__A - (__v4sf)__B);
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_mul_ps (__m128 __A, __m128 __B)
{
  return (__m128) ((__v4sf)__A * (__v4sf)__B);
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_div_ps (__m128 __A, __m128 __B)
{
  return (__m128) ((__v4sf)__A / (__v4sf)__B);
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sqrt_ps (__m128 __A)
{
  return (vec_sqrt ((__v4sf)__A));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_rcp_ps (__m128 __A)
{
  return (vec_re ((__v4sf)__A));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_rsqrt_ps (__m128 __A)
{
  return (vec_rsqrte (__A));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_rcp_ss (__m128 __A)
{
  __m128 a, c;
  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
  /* PowerISA VSX does not allow partial (for just lower double)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper double values) we splat the lower double
   * before we to the operation. */
  a = vec_splat (__A, 0);
  c = _mm_rcp_ps (a);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return (vec_sel (__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_rsqrt_ss (__m128 __A)
{
  __m128 a, c;
  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
  /* PowerISA VSX does not allow partial (for just lower double)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper double values) we splat the lower double
   * before we to the operation. */
  a = vec_splat (__A, 0);
  c = vec_rsqrte (a);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return (vec_sel (__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_min_ss (__m128 __A, __m128 __B)
{
  __v4sf a, b, c;
  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
  /* PowerISA VSX does not allow partial (for just lower float)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper float values) we splat the lower float
   * before we to the operation. */
  a = vec_splat ((__v4sf)__A, 0);
  b = vec_splat ((__v4sf)__B, 0);
  c = vec_min (a, b);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return (vec_sel ((__v4sf)__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_max_ss (__m128 __A, __m128 __B)
{
  __v4sf a, b, c;
  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
  /* PowerISA VSX does not allow partial (for just lower float)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper float values) we splat the lower float
   * before we to the operation. */
  a = vec_splat (__A, 0);
  b = vec_splat (__B, 0);
  c = vec_max (a, b);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return (vec_sel ((__v4sf)__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_min_ps (__m128 __A, __m128 __B)
{
  __vector __bool int m = vec_cmpgt ((__v4sf) __B, (__v4sf) __A);
  return vec_sel (__B, __A, m);
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_max_ps (__m128 __A, __m128 __B)
{
  __vector __bool int m = vec_cmpgt ((__v4sf) __A, (__v4sf) __B);
  return vec_sel (__B, __A, m);
}

/* Perform logical bit-wise operations on 128-bit values.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_and_ps (__m128 __A, __m128 __B)
{
  return ((__m128)vec_and ((__v4sf)__A, (__v4sf)__B));
//  return __builtin_ia32_andps (__A, __B);
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_andnot_ps (__m128 __A, __m128 __B)
{
  return ((__m128)vec_andc ((__v4sf)__B, (__v4sf)__A));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_or_ps (__m128 __A, __m128 __B)
{
  return ((__m128)vec_or ((__v4sf)__A, (__v4sf)__B));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_xor_ps (__m128 __A, __m128 __B)
{
  return ((__m128)vec_xor ((__v4sf)__A, (__v4sf)__B));
}

/* Perform a comparison on the four SPFP values of A and B.  For each
   element, if the comparison is true, place a mask of all ones in the
   result, otherwise a mask of zeros.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpeq_ps (__m128 __A, __m128 __B)
{
  return ((__m128)vec_cmpeq ((__v4sf)__A,(__v4sf) __B));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmplt_ps (__m128 __A, __m128 __B)
{
  return ((__m128)vec_cmplt ((__v4sf)__A, (__v4sf)__B));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmple_ps (__m128 __A, __m128 __B)
{
  return ((__m128)vec_cmple ((__v4sf)__A, (__v4sf)__B));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpgt_ps (__m128 __A, __m128 __B)
{
  return ((__m128)vec_cmpgt ((__v4sf)__A, (__v4sf)__B));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpge_ps (__m128 __A, __m128 __B)
{
  return ((__m128)vec_cmpge ((__v4sf)__A, (__v4sf)__B));
}

extern __inline  __m128  __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpneq_ps (__m128  __A, __m128  __B)
{
  __v4sf temp = (__v4sf ) vec_cmpeq ((__v4sf) __A, (__v4sf)__B);
  return ((__m128)vec_nor (temp, temp));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpnlt_ps (__m128 __A, __m128 __B)
{
  return ((__m128)vec_cmpge ((__v4sf)__A, (__v4sf)__B));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpnle_ps (__m128 __A, __m128 __B)
{
  return ((__m128)vec_cmpgt ((__v4sf)__A, (__v4sf)__B));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpngt_ps (__m128 __A, __m128 __B)
{
  return ((__m128)vec_cmple ((__v4sf)__A, (__v4sf)__B));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpnge_ps (__m128 __A, __m128 __B)
{
  return ((__m128)vec_cmplt ((__v4sf)__A, (__v4sf)__B));
}

extern __inline  __m128  __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpord_ps (__m128  __A, __m128  __B)
{
  __vector unsigned int a, b;
  __vector unsigned int c, d;
  static const __vector unsigned int float_exp_mask =
    { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 };

  a = (__vector unsigned int) vec_abs ((__v4sf)__A);
  b = (__vector unsigned int) vec_abs ((__v4sf)__B);
  c = (__vector unsigned int) vec_cmpgt (float_exp_mask, a);
  d = (__vector unsigned int) vec_cmpgt (float_exp_mask, b);
  return ((__m128 ) vec_and (c, d));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpunord_ps (__m128 __A, __m128 __B)
{
  __vector unsigned int a, b;
  __vector unsigned int c, d;
  static const __vector unsigned int float_exp_mask =
    { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 };

  a = (__vector unsigned int) vec_abs ((__v4sf)__A);
  b = (__vector unsigned int) vec_abs ((__v4sf)__B);
  c = (__vector unsigned int) vec_cmpgt (a, float_exp_mask);
  d = (__vector unsigned int) vec_cmpgt (b, float_exp_mask);
  return ((__m128 ) vec_or (c, d));
}

/* Perform a comparison on the lower SPFP values of A and B.  If the
   comparison is true, place a mask of all ones in the result, otherwise a
   mask of zeros.  The upper three SPFP values are passed through from A.  */
extern __inline  __m128  __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpeq_ss (__m128  __A, __m128  __B)
{
  static const __vector unsigned int mask =
    { 0xffffffff, 0, 0, 0 };
  __v4sf a, b, c;
  /* PowerISA VMX does not allow partial (for just element 0)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper elements) we splat the lower float
   * before we to the operation. */
  a = vec_splat ((__v4sf) __A, 0);
  b = vec_splat ((__v4sf) __B, 0);
  c = (__v4sf) vec_cmpeq(a, b);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmplt_ss (__m128 __A, __m128 __B)
{
  static const __vector unsigned int mask =
    { 0xffffffff, 0, 0, 0 };
  __v4sf a, b, c;
  /* PowerISA VMX does not allow partial (for just element 0)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper elements) we splat the lower float
   * before we to the operation. */
  a = vec_splat ((__v4sf) __A, 0);
  b = vec_splat ((__v4sf) __B, 0);
  c = (__v4sf) vec_cmplt(a, b);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmple_ss (__m128 __A, __m128 __B)
{
  static const __vector unsigned int mask =
    { 0xffffffff, 0, 0, 0 };
  __v4sf a, b, c;
  /* PowerISA VMX does not allow partial (for just element 0)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper elements) we splat the lower float
   * before we to the operation. */
  a = vec_splat ((__v4sf) __A, 0);
  b = vec_splat ((__v4sf) __B, 0);
  c = (__v4sf) vec_cmple(a, b);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpgt_ss (__m128 __A, __m128 __B)
{
  static const __vector unsigned int mask =
    { 0xffffffff, 0, 0, 0 };
  __v4sf a, b, c;
  /* PowerISA VMX does not allow partial (for just element 0)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper elements) we splat the lower float
   * before we to the operation. */
  a = vec_splat ((__v4sf) __A, 0);
  b = vec_splat ((__v4sf) __B, 0);
  c = (__v4sf) vec_cmpgt(a, b);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpge_ss (__m128 __A, __m128 __B)
{
  static const __vector unsigned int mask =
    { 0xffffffff, 0, 0, 0 };
  __v4sf a, b, c;
  /* PowerISA VMX does not allow partial (for just element 0)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper elements) we splat the lower float
   * before we to the operation. */
  a = vec_splat ((__v4sf) __A, 0);
  b = vec_splat ((__v4sf) __B, 0);
  c = (__v4sf) vec_cmpge(a, b);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpneq_ss (__m128 __A, __m128 __B)
{
  static const __vector unsigned int mask =
    { 0xffffffff, 0, 0, 0 };
  __v4sf a, b, c;
  /* PowerISA VMX does not allow partial (for just element 0)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper elements) we splat the lower float
   * before we to the operation. */
  a = vec_splat ((__v4sf) __A, 0);
  b = vec_splat ((__v4sf) __B, 0);
  c = (__v4sf) vec_cmpeq(a, b);
  c = vec_nor (c, c);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpnlt_ss (__m128 __A, __m128 __B)
{
  static const __vector unsigned int mask =
    { 0xffffffff, 0, 0, 0 };
  __v4sf a, b, c;
  /* PowerISA VMX does not allow partial (for just element 0)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper elements) we splat the lower float
   * before we to the operation. */
  a = vec_splat ((__v4sf) __A, 0);
  b = vec_splat ((__v4sf) __B, 0);
  c = (__v4sf) vec_cmpge(a, b);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpnle_ss (__m128 __A, __m128 __B)
{
  static const __vector unsigned int mask =
    { 0xffffffff, 0, 0, 0 };
  __v4sf a, b, c;
  /* PowerISA VMX does not allow partial (for just element 0)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper elements) we splat the lower float
   * before we to the operation. */
  a = vec_splat ((__v4sf) __A, 0);
  b = vec_splat ((__v4sf) __B, 0);
  c = (__v4sf) vec_cmpgt(a, b);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpngt_ss (__m128 __A, __m128 __B)
{
  static const __vector unsigned int mask =
    { 0xffffffff, 0, 0, 0 };
  __v4sf a, b, c;
  /* PowerISA VMX does not allow partial (for just element 0)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper elements) we splat the lower float
   * before we to the operation. */
  a = vec_splat ((__v4sf) __A, 0);
  b = vec_splat ((__v4sf) __B, 0);
  c = (__v4sf) vec_cmple(a, b);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpnge_ss (__m128 __A, __m128 __B)
{
  static const __vector unsigned int mask =
    { 0xffffffff, 0, 0, 0 };
  __v4sf a, b, c;
  /* PowerISA VMX does not allow partial (for just element 0)
   * results. So to insure we don't generate spurious exceptions
   * (from the upper elements) we splat the lower float
   * before we do the operation. */
  a = vec_splat ((__v4sf) __A, 0);
  b = vec_splat ((__v4sf) __B, 0);
  c = (__v4sf) vec_cmplt(a, b);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpord_ss (__m128 __A, __m128 __B)
{
  __vector unsigned int a, b;
  __vector unsigned int c, d;
  static const __vector unsigned int float_exp_mask =
    { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 };
  static const __vector unsigned int mask =
    { 0xffffffff, 0, 0, 0 };

  a = (__vector unsigned int) vec_abs ((__v4sf)__A);
  b = (__vector unsigned int) vec_abs ((__v4sf)__B);
  c = (__vector unsigned int) vec_cmpgt (float_exp_mask, a);
  d = (__vector unsigned int) vec_cmpgt (float_exp_mask, b);
  c = vec_and (c, d);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return ((__m128)vec_sel ((__v4sf)__A, (__v4sf)c, mask));
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cmpunord_ss (__m128 __A, __m128 __B)
{
  __vector unsigned int a, b;
  __vector unsigned int c, d;
  static const __vector unsigned int float_exp_mask =
    { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 };
  static const __vector unsigned int mask =
    { 0xffffffff, 0, 0, 0 };

  a = (__vector unsigned int) vec_abs ((__v4sf)__A);
  b = (__vector unsigned int) vec_abs ((__v4sf)__B);
  c = (__vector unsigned int) vec_cmpgt (a, float_exp_mask);
  d = (__vector unsigned int) vec_cmpgt (b, float_exp_mask);
  c = vec_or (c, d);
  /* Then we merge the lower float result with the original upper
   * float elements from __A.  */
  return ((__m128)vec_sel ((__v4sf)__A, (__v4sf)c, mask));
}

/* Compare the lower SPFP values of A and B and return 1 if true
   and 0 if false.  */
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_comieq_ss (__m128 __A, __m128 __B)
{
  return (__A[0] == __B[0]);
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_comilt_ss (__m128 __A, __m128 __B)
{
  return (__A[0] < __B[0]);
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_comile_ss (__m128 __A, __m128 __B)
{
  return (__A[0] <= __B[0]);
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_comigt_ss (__m128 __A, __m128 __B)
{
  return (__A[0] > __B[0]);
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_comige_ss (__m128 __A, __m128 __B)
{
  return (__A[0] >= __B[0]);
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_comineq_ss (__m128 __A, __m128 __B)
{
  return (__A[0] != __B[0]);
}

/* FIXME
 * The __mm_ucomi??_ss implementations below are exactly the same as
 * __mm_comi??_ss because GCC for PowerPC only generates unordered
 * compares (scalar and vector).
 * Technically __mm_comieq_ss et al should be using the ordered
 * compare and signal for QNaNs.
 * The __mm_ucomieq_sd et all should be OK, as is.
 */
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_ucomieq_ss (__m128 __A, __m128 __B)
{
  return (__A[0] == __B[0]);
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_ucomilt_ss (__m128 __A, __m128 __B)
{
  return (__A[0] < __B[0]);
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_ucomile_ss (__m128 __A, __m128 __B)
{
  return (__A[0] <= __B[0]);
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_ucomigt_ss (__m128 __A, __m128 __B)
{
  return (__A[0] > __B[0]);
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_ucomige_ss (__m128 __A, __m128 __B)
{
  return (__A[0] >= __B[0]);
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_ucomineq_ss (__m128 __A, __m128 __B)
{
  return (__A[0] != __B[0]);
}

extern __inline float __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtss_f32 (__m128 __A)
{
  return ((__v4sf)__A)[0];
}

/* Convert the lower SPFP value to a 32-bit integer according to the current
   rounding mode.  */
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtss_si32 (__m128 __A)
{
  __m64 res = 0;
#ifdef _ARCH_PWR8
  double dtmp;
  __asm__(
#ifdef __LITTLE_ENDIAN__
      "xxsldwi %x0,%x0,%x0,3;\n"
#endif
      "xscvspdp %x2,%x0;\n"
      "fctiw  %2,%2;\n"
      "mfvsrd  %1,%x2;\n"
      : "+wa" (__A),
        "=r" (res),
        "=f" (dtmp)
      : );
#else
  res = __builtin_rint(__A[0]);
#endif
  return (res);
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvt_ss2si (__m128 __A)
{
  return _mm_cvtss_si32 (__A);
}

/* Convert the lower SPFP value to a 32-bit integer according to the
   current rounding mode.  */

/* Intel intrinsic.  */
extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtss_si64 (__m128 __A)
{
  __m64 res = 0;
#ifdef _ARCH_PWR8
  double dtmp;
  __asm__(
#ifdef __LITTLE_ENDIAN__
      "xxsldwi %x0,%x0,%x0,3;\n"
#endif
      "xscvspdp %x2,%x0;\n"
      "fctid  %2,%2;\n"
      "mfvsrd  %1,%x2;\n"
      : "+wa" (__A),
        "=r" (res),
        "=f" (dtmp)
      : );
#else
  res = __builtin_llrint(__A[0]);
#endif
  return (res);
}

/* Microsoft intrinsic.  */
extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtss_si64x (__m128 __A)
{
  return _mm_cvtss_si64 ((__v4sf) __A);
}

/* Constants for use with _mm_prefetch.  */
enum _mm_hint
{
  /* _MM_HINT_ET is _MM_HINT_T with set 3rd bit.  */
  _MM_HINT_ET0 = 7,
  _MM_HINT_ET1 = 6,
  _MM_HINT_T0 = 3,
  _MM_HINT_T1 = 2,
  _MM_HINT_T2 = 1,
  _MM_HINT_NTA = 0
};

/* Loads one cache line from address P to a location "closer" to the
   processor.  The selector I specifies the type of prefetch operation.  */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_prefetch (const void *__P, enum _mm_hint __I)
{
  /* Current PowerPC will ignores the hint parameters.  */
  __builtin_prefetch (__P);
}

/* Convert the two lower SPFP values to 32-bit integers according to the
   current rounding mode.  Return the integers in packed form.  */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtps_pi32 (__m128 __A)
{
  /* Splat two lower SPFP values to both halves.  */
  __v4sf temp, rounded;
  __vector unsigned long long result;

  /* Splat two lower SPFP values to both halves.  */
  temp = (__v4sf) vec_splat ((__vector long long)__A, 0);
  rounded = vec_rint(temp);
  result = (__vector unsigned long long) vec_cts (rounded, 0);

  return (__m64) ((__vector long long) result)[0];
}

extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvt_ps2pi (__m128 __A)
{
  return _mm_cvtps_pi32 (__A);
}

/* Truncate the lower SPFP value to a 32-bit integer.  */
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvttss_si32 (__m128 __A)
{
  /* Extract the lower float element.  */
  float temp = __A[0];
  /* truncate to 32-bit integer and return.  */
  return temp;
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtt_ss2si (__m128 __A)
{
  return _mm_cvttss_si32 (__A);
}

/* Intel intrinsic.  */
extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvttss_si64 (__m128 __A)
{
  /* Extract the lower float element.  */
  float temp = __A[0];
  /* truncate to 32-bit integer and return.  */
  return temp;
}

/* Microsoft intrinsic.  */
extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvttss_si64x (__m128 __A)
{
  /* Extract the lower float element.  */
  float temp = __A[0];
  /* truncate to 32-bit integer and return.  */
  return temp;
}

/* Truncate the two lower SPFP values to 32-bit integers.  Return the
   integers in packed form.  */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvttps_pi32 (__m128 __A)
{
  __v4sf temp;
  __vector unsigned long long result;

  /* Splat two lower SPFP values to both halves.  */
  temp = (__v4sf) vec_splat ((__vector long long)__A, 0);
  result = (__vector unsigned long long) vec_cts (temp, 0);

  return (__m64) ((__vector long long) result)[0];
}

extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtt_ps2pi (__m128 __A)
{
  return _mm_cvttps_pi32 (__A);
}

/* Convert B to a SPFP value and insert it as element zero in A.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtsi32_ss (__m128 __A, int __B)
{
  float temp = __B;
  __A[0] = temp;

  return __A;
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvt_si2ss (__m128 __A, int __B)
{
  return _mm_cvtsi32_ss (__A, __B);
}

/* Convert B to a SPFP value and insert it as element zero in A.  */
/* Intel intrinsic.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtsi64_ss (__m128 __A, long long __B)
{
  float temp = __B;
  __A[0] = temp;

  return __A;
}

/* Microsoft intrinsic.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtsi64x_ss (__m128 __A, long long __B)
{
  return _mm_cvtsi64_ss (__A, __B);
}

/* Convert the two 32-bit values in B to SPFP form and insert them
   as the two lower elements in A.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtpi32_ps (__m128        __A, __m64        __B)
{
  __vector signed int vm1;
  __vector float vf1;

  vm1 = (__vector signed int) (__vector unsigned long long) {__B, __B};
  vf1 = (__vector float) vec_ctf (vm1, 0);

  return ((__m128) (__vector unsigned long long)
    { ((__vector unsigned long long)vf1) [0],
	((__vector unsigned long long)__A) [1]});
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvt_pi2ps (__m128 __A, __m64 __B)
{
  return _mm_cvtpi32_ps (__A, __B);
}

/* Convert the four signed 16-bit values in A to SPFP form.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtpi16_ps (__m64 __A)
{
  __vector signed short vs8;
  __vector signed int vi4;
  __vector float vf1;

  vs8 = (__vector signed short) (__vector unsigned long long) { __A, __A };
  vi4 = vec_vupklsh (vs8);
  vf1 = (__vector float) vec_ctf (vi4, 0);

  return (__m128) vf1;
}

/* Convert the four unsigned 16-bit values in A to SPFP form.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtpu16_ps (__m64 __A)
{
  const __vector unsigned short zero =
    { 0, 0, 0, 0, 0, 0, 0, 0 };
  __vector unsigned short vs8;
  __vector unsigned int vi4;
  __vector float vf1;

  vs8 = (__vector unsigned short) (__vector unsigned long long) { __A, __A };
  vi4 = (__vector unsigned int) vec_mergel
#ifdef __LITTLE_ENDIAN__
                                           (vs8, zero);
#else
                                           (zero, vs8);
#endif
  vf1 = (__vector float) vec_ctf (vi4, 0);

  return (__m128) vf1;
}

/* Convert the low four signed 8-bit values in A to SPFP form.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtpi8_ps (__m64 __A)
{
  __vector signed char vc16;
  __vector signed short vs8;
  __vector signed int vi4;
  __vector float vf1;

  vc16 = (__vector signed char) (__vector unsigned long long) { __A, __A };
  vs8 = vec_vupkhsb (vc16);
  vi4 = vec_vupkhsh (vs8);
  vf1 = (__vector float) vec_ctf (vi4, 0);

  return (__m128) vf1;
}

/* Convert the low four unsigned 8-bit values in A to SPFP form.  */
extern __inline  __m128  __attribute__((__gnu_inline__, __always_inline__, __artificial__))

_mm_cvtpu8_ps (__m64  __A)
{
  const __vector unsigned char zero =
    { 0, 0, 0, 0, 0, 0, 0, 0 };
  __vector unsigned char vc16;
  __vector unsigned short vs8;
  __vector unsigned int vi4;
  __vector float vf1;

  vc16 = (__vector unsigned char) (__vector unsigned long long) { __A, __A };
#ifdef __LITTLE_ENDIAN__
  vs8 = (__vector unsigned short) vec_mergel (vc16, zero);
  vi4 = (__vector unsigned int) vec_mergeh (vs8,
					    (__vector unsigned short) zero);
#else
  vs8 = (__vector unsigned short) vec_mergel (zero, vc16);
  vi4 = (__vector unsigned int) vec_mergeh ((__vector unsigned short) zero,
                                            vs8);
#endif
  vf1 = (__vector float) vec_ctf (vi4, 0);

  return (__m128) vf1;
}

/* Convert the four signed 32-bit values in A and B to SPFP form.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtpi32x2_ps (__m64 __A, __m64 __B)
{
  __vector signed int vi4;
  __vector float vf4;

  vi4 = (__vector signed int) (__vector unsigned long long) { __A, __B };
  vf4 = (__vector float) vec_ctf (vi4, 0);
  return (__m128) vf4;
}

/* Convert the four SPFP values in A to four signed 16-bit integers.  */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtps_pi16 (__m128 __A)
{
  __v4sf rounded;
  __vector signed int temp;
  __vector unsigned long long result;

  rounded = vec_rint(__A);
  temp = vec_cts (rounded, 0);
  result = (__vector unsigned long long) vec_pack (temp, temp);

  return (__m64) ((__vector long long) result)[0];
}

/* Convert the four SPFP values in A to four signed 8-bit integers.  */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_cvtps_pi8 (__m128 __A)
{
  __v4sf rounded;
  __vector signed int tmp_i;
  static const __vector signed int zero = {0, 0, 0, 0};
  __vector signed short tmp_s;
  __vector signed char res_v;

  rounded = vec_rint(__A);
  tmp_i = vec_cts (rounded, 0);
  tmp_s = vec_pack (tmp_i, zero);
  res_v = vec_pack (tmp_s, tmp_s);
  return (__m64) ((__vector long long) res_v)[0];
}

/* Selects four specific SPFP values from A and B based on MASK.  */
extern __inline  __m128  __attribute__((__gnu_inline__, __always_inline__, __artificial__))

_mm_shuffle_ps (__m128  __A, __m128  __B, int const __mask)
{
  unsigned long element_selector_10 = __mask & 0x03;
  unsigned long element_selector_32 = (__mask >> 2) & 0x03;
  unsigned long element_selector_54 = (__mask >> 4) & 0x03;
  unsigned long element_selector_76 = (__mask >> 6) & 0x03;
  static const unsigned int permute_selectors[4] =
    {
#ifdef __LITTLE_ENDIAN__
      0x03020100, 0x07060504, 0x0B0A0908, 0x0F0E0D0C
#else
      0x00010203, 0x04050607, 0x08090A0B, 0x0C0D0E0F
#endif
    };
  __vector unsigned int t;

  t[0] = permute_selectors[element_selector_10];
  t[1] = permute_selectors[element_selector_32];
  t[2] = permute_selectors[element_selector_54] + 0x10101010;
  t[3] = permute_selectors[element_selector_76] + 0x10101010;
  return vec_perm ((__v4sf) __A, (__v4sf)__B, (__vector unsigned char)t);
}

/* Selects and interleaves the upper two SPFP values from A and B.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpackhi_ps (__m128 __A, __m128 __B)
{
  return (__m128) vec_vmrglw ((__v4sf) __A, (__v4sf)__B);
}

/* Selects and interleaves the lower two SPFP values from A and B.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_unpacklo_ps (__m128 __A, __m128 __B)
{
  return (__m128) vec_vmrghw ((__v4sf) __A, (__v4sf)__B);
}

/* Sets the upper two SPFP values with 64-bits of data loaded from P;
   the lower two values are passed through from A.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_loadh_pi (__m128 __A, __m64 const *__P)
{
  __vector unsigned long long __a = (__vector unsigned long long)__A;
  __vector unsigned long long __p = vec_splats(*__P);
  __a [1] = __p [1];

  return (__m128)__a;
}

/* Stores the upper two SPFP values of A into P.  */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_storeh_pi (__m64 *__P, __m128 __A)
{
  __vector unsigned long long __a = (__vector unsigned long long) __A;

  *__P = __a[1];
}

/* Moves the upper two values of B into the lower two values of A.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_movehl_ps (__m128 __A, __m128 __B)
{
  return (__m128) vec_mergel ((__vector unsigned long long)__B,
			      (__vector unsigned long long)__A);
}

/* Moves the lower two values of B into the upper two values of A.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_movelh_ps (__m128 __A, __m128 __B)
{
  return (__m128) vec_mergeh ((__vector unsigned long long)__A,
			      (__vector unsigned long long)__B);
}

/* Sets the lower two SPFP values with 64-bits of data loaded from P;
   the upper two values are passed through from A.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_loadl_pi (__m128 __A, __m64 const *__P)
{
  __vector unsigned long long __a = (__vector unsigned long long)__A;
  __vector unsigned long long __p = vec_splats(*__P);
  __a [0] = __p [0];

  return (__m128)__a;
}

/* Stores the lower two SPFP values of A into P.  */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_storel_pi (__m64 *__P, __m128 __A)
{
  __vector unsigned long long __a = (__vector unsigned long long) __A;

  *__P = __a[0];
}

#ifdef _ARCH_PWR8
/* Intrinsic functions that require PowerISA 2.07 minimum.  */

/* Creates a 4-bit mask from the most significant bits of the SPFP values.  */
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_movemask_ps (__m128  __A)
{
  __vector unsigned long long result;
  static const __vector unsigned int perm_mask =
    {
#ifdef __LITTLE_ENDIAN__
	0x00204060, 0x80808080, 0x80808080, 0x80808080
#else
      0x80808080, 0x80808080, 0x80808080, 0x00204060
#endif
    };

  result = ((__vector unsigned long long)
	    vec_vbpermq ((__vector unsigned char) __A,
			 (__vector unsigned char) perm_mask));

#ifdef __LITTLE_ENDIAN__
  return result[1];
#else
  return result[0];
#endif
}
#endif /* _ARCH_PWR8 */

/* Create a vector with all four elements equal to *P.  */
extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_load1_ps (float const *__P)
{
  return _mm_set1_ps (*__P);
}

extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_load_ps1 (float const *__P)
{
  return _mm_load1_ps (__P);
}

/* Extracts one of the four words of A.  The selector N must be immediate.  */
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_extract_pi16 (__m64 const __A, int const __N)
{
  unsigned int shiftr = __N & 3;
#ifdef __BIG_ENDIAN__
  shiftr = 3 - shiftr;
#endif

  return ((__A >> (shiftr * 16)) & 0xffff);
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pextrw (__m64 const __A, int const __N)
{
  return _mm_extract_pi16 (__A, __N);
}

/* Inserts word D into one of four words of A.  The selector N must be
   immediate.  */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_insert_pi16 (__m64 const __A, int const __D, int const __N)
{
  const int shiftl = (__N & 3) * 16;
  const __m64 shiftD = (const __m64) __D << shiftl;
  const __m64 mask = 0xffffUL << shiftl;
  __m64 result = (__A & (~mask)) | (shiftD & mask);

  return (result);
}

extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pinsrw (__m64 const __A, int const __D, int const __N)
{
  return _mm_insert_pi16 (__A, __D, __N);
}

/* Compute the element-wise maximum of signed 16-bit values.  */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))

_mm_max_pi16 (__m64 __A, __m64 __B)
{
#if _ARCH_PWR8
  __vector signed short a, b, r;
  __vector __bool short c;

  a = (__vector signed short)vec_splats (__A);
  b = (__vector signed short)vec_splats (__B);
  c = (__vector __bool short)vec_cmpgt (a, b);
  r = vec_sel (b, a, c);
  return (__m64) ((__vector long long) r)[0];
#else
  __m64_union m1, m2, res;

  m1.as_m64 = __A;
  m2.as_m64 = __B;

  res.as_short[0] =
      (m1.as_short[0] > m2.as_short[0]) ? m1.as_short[0] : m2.as_short[0];
  res.as_short[1] =
      (m1.as_short[1] > m2.as_short[1]) ? m1.as_short[1] : m2.as_short[1];
  res.as_short[2] =
      (m1.as_short[2] > m2.as_short[2]) ? m1.as_short[2] : m2.as_short[2];
  res.as_short[3] =
      (m1.as_short[3] > m2.as_short[3]) ? m1.as_short[3] : m2.as_short[3];

  return (__m64) res.as_m64;
#endif
}

extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pmaxsw (__m64 __A, __m64 __B)
{
  return _mm_max_pi16 (__A, __B);
}

/* Compute the element-wise maximum of unsigned 8-bit values.  */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_max_pu8 (__m64 __A, __m64 __B)
{
#if _ARCH_PWR8
  __vector unsigned char a, b, r;
  __vector __bool char c;

  a = (__vector unsigned char)vec_splats (__A);
  b = (__vector unsigned char)vec_splats (__B);
  c = (__vector __bool char)vec_cmpgt (a, b);
  r = vec_sel (b, a, c);
  return (__m64) ((__vector long long) r)[0];
#else
  __m64_union m1, m2, res;
  long i;

  m1.as_m64 = __A;
  m2.as_m64 = __B;


  for (i = 0; i < 8; i++)
  res.as_char[i] =
      ((unsigned char) m1.as_char[i] > (unsigned char) m2.as_char[i]) ?
	  m1.as_char[i] : m2.as_char[i];

  return (__m64) res.as_m64;
#endif
}

extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pmaxub (__m64 __A, __m64 __B)
{
  return _mm_max_pu8 (__A, __B);
}

/* Compute the element-wise minimum of signed 16-bit values.  */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_min_pi16 (__m64 __A, __m64 __B)
{
#if _ARCH_PWR8
  __vector signed short a, b, r;
  __vector __bool short c;

  a = (__vector signed short)vec_splats (__A);
  b = (__vector signed short)vec_splats (__B);
  c = (__vector __bool short)vec_cmplt (a, b);
  r = vec_sel (b, a, c);
  return (__m64) ((__vector long long) r)[0];
#else
  __m64_union m1, m2, res;

  m1.as_m64 = __A;
  m2.as_m64 = __B;

  res.as_short[0] =
      (m1.as_short[0] < m2.as_short[0]) ? m1.as_short[0] : m2.as_short[0];
  res.as_short[1] =
      (m1.as_short[1] < m2.as_short[1]) ? m1.as_short[1] : m2.as_short[1];
  res.as_short[2] =
      (m1.as_short[2] < m2.as_short[2]) ? m1.as_short[2] : m2.as_short[2];
  res.as_short[3] =
      (m1.as_short[3] < m2.as_short[3]) ? m1.as_short[3] : m2.as_short[3];

  return (__m64) res.as_m64;
#endif
}

extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pminsw (__m64 __A, __m64 __B)
{
  return _mm_min_pi16 (__A, __B);
}

/* Compute the element-wise minimum of unsigned 8-bit values.  */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_min_pu8 (__m64 __A, __m64 __B)
{
#if _ARCH_PWR8
  __vector unsigned char a, b, r;
  __vector __bool char c;

  a = (__vector unsigned char)vec_splats (__A);
  b = (__vector unsigned char)vec_splats (__B);
  c = (__vector __bool char)vec_cmplt (a, b);
  r = vec_sel (b, a, c);
  return (__m64) ((__vector long long) r)[0];
#else
  __m64_union m1, m2, res;
  long i;

  m1.as_m64 = __A;
  m2.as_m64 = __B;


  for (i = 0; i < 8; i++)
  res.as_char[i] =
      ((unsigned char) m1.as_char[i] < (unsigned char) m2.as_char[i]) ?
	  m1.as_char[i] : m2.as_char[i];

  return (__m64) res.as_m64;
#endif
}

extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pminub (__m64 __A, __m64 __B)
{
  return _mm_min_pu8 (__A, __B);
}

/* Create an 8-bit mask of the signs of 8-bit values.  */
extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_movemask_pi8 (__m64 __A)
{
  unsigned long long p =
#ifdef __LITTLE_ENDIAN__
                         0x0008101820283038UL; // permute control for sign bits
#else
                         0x3830282018100800UL; // permute control for sign bits
#endif
  return __builtin_bpermd (p, __A);
}

extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pmovmskb (__m64 __A)
{
  return _mm_movemask_pi8 (__A);
}

/* Multiply four unsigned 16-bit values in A by four unsigned 16-bit values
   in B and produce the high 16 bits of the 32-bit results.  */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_mulhi_pu16 (__m64 __A, __m64 __B)
{
  __vector unsigned short a, b;
  __vector unsigned short c;
  __vector unsigned int w0, w1;
  __vector unsigned char xform1 = {
#ifdef __LITTLE_ENDIAN__
      0x02, 0x03, 0x12, 0x13,  0x06, 0x07, 0x16, 0x17,
      0x0A, 0x0B, 0x1A, 0x1B,  0x0E, 0x0F, 0x1E, 0x1F
#else
      0x00, 0x01, 0x10, 0x11,  0x04, 0x05, 0x14, 0x15,
      0x00, 0x01, 0x10, 0x11,  0x04, 0x05, 0x14, 0x15
#endif
    };

  a = (__vector unsigned short)vec_splats (__A);
  b = (__vector unsigned short)vec_splats (__B);

  w0 = vec_vmuleuh (a, b);
  w1 = vec_vmulouh (a, b);
  c = (__vector unsigned short)vec_perm (w0, w1, xform1);

  return (__m64) ((__vector long long) c)[0];
}

extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pmulhuw (__m64 __A, __m64 __B)
{
  return _mm_mulhi_pu16 (__A, __B);
}

/* Return a combination of the four 16-bit values in A.  The selector
   must be an immediate.  */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_shuffle_pi16 (__m64 __A, int const __N)
{
  unsigned long element_selector_10 = __N & 0x03;
  unsigned long element_selector_32 = (__N >> 2) & 0x03;
  unsigned long element_selector_54 = (__N >> 4) & 0x03;
  unsigned long element_selector_76 = (__N >> 6) & 0x03;
  static const unsigned short permute_selectors[4] =
    {
#ifdef __LITTLE_ENDIAN__
	      0x0908, 0x0B0A, 0x0D0C, 0x0F0E
#else
	      0x0607, 0x0405, 0x0203, 0x0001
#endif
    };
  __m64_union t;
  __vector unsigned long long a, p, r;

#ifdef __LITTLE_ENDIAN__
  t.as_short[0] = permute_selectors[element_selector_10];
  t.as_short[1] = permute_selectors[element_selector_32];
  t.as_short[2] = permute_selectors[element_selector_54];
  t.as_short[3] = permute_selectors[element_selector_76];
#else
  t.as_short[3] = permute_selectors[element_selector_10];
  t.as_short[2] = permute_selectors[element_selector_32];
  t.as_short[1] = permute_selectors[element_selector_54];
  t.as_short[0] = permute_selectors[element_selector_76];
#endif
  p = vec_splats (t.as_m64);
  a = vec_splats (__A);
  r = vec_perm (a, a, (__vector unsigned char)p);
  return (__m64) ((__vector long long) r)[0];
}

extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pshufw (__m64 __A, int const __N)
{
  return _mm_shuffle_pi16 (__A, __N);
}

/* Conditionally store byte elements of A into P.  The high bit of each
   byte in the selector N determines whether the corresponding byte from
   A is stored.  */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_maskmove_si64 (__m64 __A, __m64 __N, char *__P)
{
  __m64 hibit = 0x8080808080808080UL;
  __m64 mask, tmp;
  __m64 *p = (__m64*)__P;

  tmp = *p;
  mask = _mm_cmpeq_pi8 ((__N & hibit), hibit);
  tmp = (tmp & (~mask)) | (__A & mask);
  *p = tmp;
}

extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_maskmovq (__m64 __A, __m64 __N, char *__P)
{
  _mm_maskmove_si64 (__A, __N, __P);
}

/* Compute the rounded averages of the unsigned 8-bit values in A and B.  */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_avg_pu8 (__m64 __A, __m64 __B)
{
  __vector unsigned char a, b, c;

  a = (__vector unsigned char)vec_splats (__A);
  b = (__vector unsigned char)vec_splats (__B);
  c = vec_avg (a, b);
  return (__m64) ((__vector long long) c)[0];
}

extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pavgb (__m64 __A, __m64 __B)
{
  return _mm_avg_pu8 (__A, __B);
}

/* Compute the rounded averages of the unsigned 16-bit values in A and B.  */
extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_avg_pu16 (__m64 __A, __m64 __B)
{
  __vector unsigned short a, b, c;

  a = (__vector unsigned short)vec_splats (__A);
  b = (__vector unsigned short)vec_splats (__B);
  c = vec_avg (a, b);
  return (__m64) ((__vector long long) c)[0];
}

extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_pavgw (__m64 __A, __m64 __B)
{
  return _mm_avg_pu16 (__A, __B);
}

/* Compute the sum of the absolute differences of the unsigned 8-bit
   values in A and B.  Return the value in the lower 16-bit word; the
   upper words are cleared.  */
extern __inline    __m64    __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sad_pu8 (__m64  __A, __m64  __B)
{
  __vector unsigned char a, b;
  __vector unsigned char vmin, vmax, vabsdiff;
  __vector signed int vsum;
  const __vector unsigned int zero =
    { 0, 0, 0, 0 };
  __m64_union result = {0};

  a = (__vector unsigned char) (__vector unsigned long long) { 0UL, __A };
  b = (__vector unsigned char) (__vector unsigned long long) { 0UL, __B };
  vmin = vec_min (a, b);
  vmax = vec_max (a, b);
  vabsdiff = vec_sub (vmax, vmin);
  /* Sum four groups of bytes into integers.  */
  vsum = (__vector signed int) vec_sum4s (vabsdiff, zero);
  /* Sum across four integers with integer result.  */
  vsum = vec_sums (vsum, (__vector signed int) zero);
  /* The sum is in the right most 32-bits of the vector result.
     Transfer to a GPR and truncate to 16 bits.  */
  result.as_short[0] = vsum[3];
  return result.as_m64;
}

extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_m_psadbw (__m64 __A, __m64 __B)
{
  return _mm_sad_pu8 (__A, __B);
}

/* Stores the data in A to the address P without polluting the caches.  */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_stream_pi (__m64 *__P, __m64 __A)
{
  /* Use the data cache block touch for store transient.  */
  __asm__ (
    "	dcbtstt	0,%0"
    :
    : "b" (__P)
    : "memory"
  );
  *__P = __A;
}

/* Likewise.  The address must be 16-byte aligned.  */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_stream_ps (float *__P, __m128 __A)
{
  /* Use the data cache block touch for store transient.  */
  __asm__ (
    "	dcbtstt	0,%0"
    :
    : "b" (__P)
    : "memory"
  );
  _mm_store_ps (__P, __A);
}

/* Guarantees that every preceding store is globally visible before
   any subsequent store.  */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_sfence (void)
{
  /* Generate a light weight sync.  */
  __atomic_thread_fence (__ATOMIC_RELEASE);
}

/* The execution of the next instruction is delayed by an implementation
   specific amount of time.  The instruction does not modify the
   architectural state.  This is after the pop_options pragma because
   it does not require SSE support in the processor--the encoding is a
   nop on processors that do not support it.  */
extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
_mm_pause (void)
{
  /* There is no exact match with this construct, but the following is
     close to the desired effect.  */
#if _ARCH_PWR8
  /* On power8 and later processors we can depend on Program Priority
     (PRI) and associated "very low" PPI setting.  Since we don't know
     what PPI this thread is running at we: 1) save the current PRI
     from the PPR SPR into a local GRP, 2) set the PRI to "very low*
     via the special or 31,31,31 encoding. 3) issue an "isync" to
     insure the PRI change takes effect before we execute any more
     instructions.
     Now we can execute a lwsync (release barrier) while we execute
     this thread at "very low" PRI.  Finally we restore the original
     PRI and continue execution.  */
  unsigned long __PPR;

  __asm__ volatile (
    "	mfppr	%0;"
    "   or 31,31,31;"
    "   isync;"
    "   lwsync;"
    "   isync;"
    "   mtppr	%0;"
    : "=r" (__PPR)
    :
    : "memory"
  );
#else
  /* For older processor where we may not even have Program Priority
     controls we can only depend on Heavy Weight Sync.  */
  __atomic_thread_fence (__ATOMIC_SEQ_CST);
#endif
}

/* Transpose the 4x4 matrix composed of row[0-3].  */
#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3)			\
do {									\
  __v4sf __r0 = (row0), __r1 = (row1), __r2 = (row2), __r3 = (row3);	\
  __v4sf __t0 = vec_vmrghw (__r0, __r1);			\
  __v4sf __t1 = vec_vmrghw (__r2, __r3);			\
  __v4sf __t2 = vec_vmrglw (__r0, __r1);			\
  __v4sf __t3 = vec_vmrglw (__r2, __r3);			\
  (row0) = (__v4sf)vec_mergeh ((__vector long long)__t0, 	\
			       (__vector long long)__t1);	\
  (row1) = (__v4sf)vec_mergel ((__vector long long)__t0,	\
			       (__vector long long)__t1);	\
  (row2) = (__v4sf)vec_mergeh ((__vector long long)__t2,	\
			       (__vector long long)__t3);	\
  (row3) = (__v4sf)vec_mergel ((__vector long long)__t2,	\
			       (__vector long long)__t3);	\
} while (0)

/* For backward source compatibility.  */
//# include <emmintrin.h>

#else
#include_next <xmmintrin.h>
#endif /* defined(__linux__) && defined(__ppc64__) */

#endif /* _XMMINTRIN_H_INCLUDED */