X86_64.cpp 25.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
//===- X86_64.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;

namespace lld {
namespace elf {

namespace {
class X86_64 : public TargetInfo {
public:
  X86_64();
  int getTlsGdRelaxSkip(RelType type) const override;
  RelExpr getRelExpr(RelType type, const Symbol &s,
                     const uint8_t *loc) const override;
  RelType getDynRel(RelType type) const override;
  void writeGotPltHeader(uint8_t *buf) const override;
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
  void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;

  RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
                          RelExpr expr) const override;
  void relaxGot(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const override;
  void relaxTlsLdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
  bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
                                        uint8_t stOther) const override;
};
} // namespace

X86_64::X86_64() {
  copyRel = R_X86_64_COPY;
  gotRel = R_X86_64_GLOB_DAT;
  noneRel = R_X86_64_NONE;
  pltRel = R_X86_64_JUMP_SLOT;
  relativeRel = R_X86_64_RELATIVE;
  iRelativeRel = R_X86_64_IRELATIVE;
  symbolicRel = R_X86_64_64;
  tlsDescRel = R_X86_64_TLSDESC;
  tlsGotRel = R_X86_64_TPOFF64;
  tlsModuleIndexRel = R_X86_64_DTPMOD64;
  tlsOffsetRel = R_X86_64_DTPOFF64;
  pltHeaderSize = 16;
  pltEntrySize = 16;
  ipltEntrySize = 16;
  trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3

  // Align to the large page size (known as a superpage or huge page).
  // FreeBSD automatically promotes large, superpage-aligned allocations.
  defaultImageBase = 0x200000;
}

int X86_64::getTlsGdRelaxSkip(RelType type) const { return 2; }

RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
                           const uint8_t *loc) const {
  if (type == R_X86_64_GOTTPOFF)
    config->hasStaticTlsModel = true;

  switch (type) {
  case R_X86_64_8:
  case R_X86_64_16:
  case R_X86_64_32:
  case R_X86_64_32S:
  case R_X86_64_64:
    return R_ABS;
  case R_X86_64_DTPOFF32:
  case R_X86_64_DTPOFF64:
    return R_DTPREL;
  case R_X86_64_TPOFF32:
    return R_TLS;
  case R_X86_64_TLSDESC_CALL:
    return R_TLSDESC_CALL;
  case R_X86_64_TLSLD:
    return R_TLSLD_PC;
  case R_X86_64_TLSGD:
    return R_TLSGD_PC;
  case R_X86_64_SIZE32:
  case R_X86_64_SIZE64:
    return R_SIZE;
  case R_X86_64_PLT32:
    return R_PLT_PC;
  case R_X86_64_PC8:
  case R_X86_64_PC16:
  case R_X86_64_PC32:
  case R_X86_64_PC64:
    return R_PC;
  case R_X86_64_GOT32:
  case R_X86_64_GOT64:
    return R_GOTPLT;
  case R_X86_64_GOTPC32_TLSDESC:
    return R_TLSDESC_PC;
  case R_X86_64_GOTPCREL:
  case R_X86_64_GOTPCRELX:
  case R_X86_64_REX_GOTPCRELX:
  case R_X86_64_GOTTPOFF:
    return R_GOT_PC;
  case R_X86_64_GOTOFF64:
    return R_GOTPLTREL;
  case R_X86_64_GOTPC32:
  case R_X86_64_GOTPC64:
    return R_GOTPLTONLY_PC;
  case R_X86_64_NONE:
    return R_NONE;
  default:
    error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
          ") against symbol " + toString(s));
    return R_NONE;
  }
}

void X86_64::writeGotPltHeader(uint8_t *buf) const {
  // The first entry holds the value of _DYNAMIC. It is not clear why that is
  // required, but it is documented in the psabi and the glibc dynamic linker
  // seems to use it (note that this is relevant for linking ld.so, not any
  // other program).
  write64le(buf, mainPart->dynamic->getVA());
}

void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
  // See comments in X86::writeGotPlt.
  write64le(buf, s.getPltVA() + 6);
}

void X86_64::writePltHeader(uint8_t *buf) const {
  const uint8_t pltData[] = {
      0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
      0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
      0x0f, 0x1f, 0x40, 0x00, // nop
  };
  memcpy(buf, pltData, sizeof(pltData));
  uint64_t gotPlt = in.gotPlt->getVA();
  uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
  write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
  write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
}

void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
                      uint64_t pltEntryAddr) const {
  const uint8_t inst[] = {
      0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
      0x68, 0, 0, 0, 0,       // pushq <relocation index>
      0xe9, 0, 0, 0, 0,       // jmpq plt[0]
  };
  memcpy(buf, inst, sizeof(inst));

  write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
  write32le(buf + 7, sym.pltIndex);
  write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
}

RelType X86_64::getDynRel(RelType type) const {
  if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
      type == R_X86_64_SIZE64)
    return type;
  return R_X86_64_NONE;
}

void X86_64::relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const {
  if (type == R_X86_64_TLSGD) {
    // Convert
    //   .byte 0x66
    //   leaq x@tlsgd(%rip), %rdi
    //   .word 0x6666
    //   rex64
    //   call __tls_get_addr@plt
    // to the following two instructions.
    const uint8_t inst[] = {
        0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
        0x00, 0x00,                            // mov %fs:0x0,%rax
        0x48, 0x8d, 0x80, 0,    0,    0,    0, // lea x@tpoff,%rax
    };
    memcpy(loc - 4, inst, sizeof(inst));

    // The original code used a pc relative relocation and so we have to
    // compensate for the -4 in had in the addend.
    write32le(loc + 8, val + 4);
  } else {
    // Convert
    //   lea x@tlsgd(%rip), %rax
    //   call *(%rax)
    // to the following two instructions.
    assert(type == R_X86_64_GOTPC32_TLSDESC);
    if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
      error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
                                        "in callq *x@tlsdesc(%rip), %rax");
      return;
    }
    // movq $x@tpoff(%rip),%rax
    loc[-2] = 0xc7;
    loc[-1] = 0xc0;
    write32le(loc, val + 4);
    // xchg ax,ax
    loc[4] = 0x66;
    loc[5] = 0x90;
  }
}

void X86_64::relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const {
  if (type == R_X86_64_TLSGD) {
    // Convert
    //   .byte 0x66
    //   leaq x@tlsgd(%rip), %rdi
    //   .word 0x6666
    //   rex64
    //   call __tls_get_addr@plt
    // to the following two instructions.
    const uint8_t inst[] = {
        0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
        0x00, 0x00,                            // mov %fs:0x0,%rax
        0x48, 0x03, 0x05, 0,    0,    0,    0, // addq x@gottpoff(%rip),%rax
    };
    memcpy(loc - 4, inst, sizeof(inst));

    // Both code sequences are PC relatives, but since we are moving the
    // constant forward by 8 bytes we have to subtract the value by 8.
    write32le(loc + 8, val - 8);
  } else {
    // Convert
    //   lea x@tlsgd(%rip), %rax
    //   call *(%rax)
    // to the following two instructions.
    assert(type == R_X86_64_GOTPC32_TLSDESC);
    if (memcmp(loc - 3, "\x48\x8d\x05", 3)) {
      error(getErrorLocation(loc - 3) + "R_X86_64_GOTPC32_TLSDESC must be used "
                                        "in callq *x@tlsdesc(%rip), %rax");
      return;
    }
    // movq x@gottpoff(%rip),%rax
    loc[-2] = 0x8b;
    write32le(loc, val);
    // xchg ax,ax
    loc[4] = 0x66;
    loc[5] = 0x90;
  }
}

// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
// R_X86_64_TPOFF32 so that it does not use GOT.
void X86_64::relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const {
  uint8_t *inst = loc - 3;
  uint8_t reg = loc[-1] >> 3;
  uint8_t *regSlot = loc - 1;

  // Note that ADD with RSP or R12 is converted to ADD instead of LEA
  // because LEA with these registers needs 4 bytes to encode and thus
  // wouldn't fit the space.

  if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
    // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
    memcpy(inst, "\x48\x81\xc4", 3);
  } else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
    // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
    memcpy(inst, "\x49\x81\xc4", 3);
  } else if (memcmp(inst, "\x4c\x03", 2) == 0) {
    // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
    memcpy(inst, "\x4d\x8d", 2);
    *regSlot = 0x80 | (reg << 3) | reg;
  } else if (memcmp(inst, "\x48\x03", 2) == 0) {
    // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
    memcpy(inst, "\x48\x8d", 2);
    *regSlot = 0x80 | (reg << 3) | reg;
  } else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
    // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
    memcpy(inst, "\x49\xc7", 2);
    *regSlot = 0xc0 | reg;
  } else if (memcmp(inst, "\x48\x8b", 2) == 0) {
    // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
    memcpy(inst, "\x48\xc7", 2);
    *regSlot = 0xc0 | reg;
  } else {
    error(getErrorLocation(loc - 3) +
          "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
  }

  // The original code used a PC relative relocation.
  // Need to compensate for the -4 it had in the addend.
  write32le(loc, val + 4);
}

void X86_64::relaxTlsLdToLe(uint8_t *loc, RelType type, uint64_t val) const {
  if (type == R_X86_64_DTPOFF64) {
    write64le(loc, val);
    return;
  }
  if (type == R_X86_64_DTPOFF32) {
    write32le(loc, val);
    return;
  }

  const uint8_t inst[] = {
      0x66, 0x66,                                           // .word 0x6666
      0x66,                                                 // .byte 0x66
      0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
  };

  if (loc[4] == 0xe8) {
    // Convert
    //   leaq bar@tlsld(%rip), %rdi           # 48 8d 3d <Loc>
    //   callq __tls_get_addr@PLT             # e8 <disp32>
    //   leaq bar@dtpoff(%rax), %rcx
    // to
    //   .word 0x6666
    //   .byte 0x66
    //   mov %fs:0,%rax
    //   leaq bar@tpoff(%rax), %rcx
    memcpy(loc - 3, inst, sizeof(inst));
    return;
  }

  if (loc[4] == 0xff && loc[5] == 0x15) {
    // Convert
    //   leaq  x@tlsld(%rip),%rdi               # 48 8d 3d <Loc>
    //   call *__tls_get_addr@GOTPCREL(%rip)    # ff 15 <disp32>
    // to
    //   .long  0x66666666
    //   movq   %fs:0,%rax
    // See "Table 11.9: LD -> LE Code Transition (LP64)" in
    // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
    loc[-3] = 0x66;
    memcpy(loc - 2, inst, sizeof(inst));
    return;
  }

  error(getErrorLocation(loc - 3) +
        "expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
}

void X86_64::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
  switch (type) {
  case R_X86_64_8:
    checkIntUInt(loc, val, 8, type);
    *loc = val;
    break;
  case R_X86_64_PC8:
    checkInt(loc, val, 8, type);
    *loc = val;
    break;
  case R_X86_64_16:
    checkIntUInt(loc, val, 16, type);
    write16le(loc, val);
    break;
  case R_X86_64_PC16:
    checkInt(loc, val, 16, type);
    write16le(loc, val);
    break;
  case R_X86_64_32:
    checkUInt(loc, val, 32, type);
    write32le(loc, val);
    break;
  case R_X86_64_32S:
  case R_X86_64_TPOFF32:
  case R_X86_64_GOT32:
  case R_X86_64_GOTPC32:
  case R_X86_64_GOTPC32_TLSDESC:
  case R_X86_64_GOTPCREL:
  case R_X86_64_GOTPCRELX:
  case R_X86_64_REX_GOTPCRELX:
  case R_X86_64_PC32:
  case R_X86_64_GOTTPOFF:
  case R_X86_64_PLT32:
  case R_X86_64_TLSGD:
  case R_X86_64_TLSLD:
  case R_X86_64_DTPOFF32:
  case R_X86_64_SIZE32:
    checkInt(loc, val, 32, type);
    write32le(loc, val);
    break;
  case R_X86_64_64:
  case R_X86_64_DTPOFF64:
  case R_X86_64_PC64:
  case R_X86_64_SIZE64:
  case R_X86_64_GOT64:
  case R_X86_64_GOTOFF64:
  case R_X86_64_GOTPC64:
    write64le(loc, val);
    break;
  default:
    llvm_unreachable("unknown relocation");
  }
}

RelExpr X86_64::adjustRelaxExpr(RelType type, const uint8_t *data,
                                RelExpr relExpr) const {
  if (type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX)
    return relExpr;
  const uint8_t op = data[-2];
  const uint8_t modRm = data[-1];

  // FIXME: When PIC is disabled and foo is defined locally in the
  // lower 32 bit address space, memory operand in mov can be converted into
  // immediate operand. Otherwise, mov must be changed to lea. We support only
  // latter relaxation at this moment.
  if (op == 0x8b)
    return R_RELAX_GOT_PC;

  // Relax call and jmp.
  if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
    return R_RELAX_GOT_PC;

  // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
  // If PIC then no relaxation is available.
  // We also don't relax test/binop instructions without REX byte,
  // they are 32bit operations and not common to have.
  assert(type == R_X86_64_REX_GOTPCRELX);
  return config->isPic ? relExpr : R_RELAX_GOT_PC_NOPIC;
}

// A subset of relaxations can only be applied for no-PIC. This method
// handles such relaxations. Instructions encoding information was taken from:
// "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
//    64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
                          uint8_t modRm) {
  const uint8_t rex = loc[-3];
  // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
  if (op == 0x85) {
    // See "TEST-Logical Compare" (4-428 Vol. 2B),
    // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).

    // ModR/M byte has form XX YYY ZZZ, where
    // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
    // XX has different meanings:
    // 00: The operand's memory address is in reg1.
    // 01: The operand's memory address is reg1 + a byte-sized displacement.
    // 10: The operand's memory address is reg1 + a word-sized displacement.
    // 11: The operand is reg1 itself.
    // If an instruction requires only one operand, the unused reg2 field
    // holds extra opcode bits rather than a register code
    // 0xC0 == 11 000 000 binary.
    // 0x38 == 00 111 000 binary.
    // We transfer reg2 to reg1 here as operand.
    // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
    loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.

    // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
    // See "TEST-Logical Compare" (4-428 Vol. 2B).
    loc[-2] = 0xf7;

    // Move R bit to the B bit in REX byte.
    // REX byte is encoded as 0100WRXB, where
    // 0100 is 4bit fixed pattern.
    // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
    //   default operand size is used (which is 32-bit for most but not all
    //   instructions).
    // REX.R This 1-bit value is an extension to the MODRM.reg field.
    // REX.X This 1-bit value is an extension to the SIB.index field.
    // REX.B This 1-bit value is an extension to the MODRM.rm field or the
    // SIB.base field.
    // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
    loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
    write32le(loc, val);
    return;
  }

  // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
  // or xor operations.

  // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
  // Logic is close to one for test instruction above, but we also
  // write opcode extension here, see below for details.
  loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.

  // Primary opcode is 0x81, opcode extension is one of:
  // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
  // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
  // This value was wrote to MODRM.reg in a line above.
  // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
  // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
  // descriptions about each operation.
  loc[-2] = 0x81;
  loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
  write32le(loc, val);
}

void X86_64::relaxGot(uint8_t *loc, RelType type, uint64_t val) const {
  const uint8_t op = loc[-2];
  const uint8_t modRm = loc[-1];

  // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
  if (op == 0x8b) {
    loc[-2] = 0x8d;
    write32le(loc, val);
    return;
  }

  if (op != 0xff) {
    // We are relaxing a rip relative to an absolute, so compensate
    // for the old -4 addend.
    assert(!config->isPic);
    relaxGotNoPic(loc, val + 4, op, modRm);
    return;
  }

  // Convert call/jmp instructions.
  if (modRm == 0x15) {
    // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
    // Instead we convert to "addr32 call foo" where addr32 is an instruction
    // prefix. That makes result expression to be a single instruction.
    loc[-2] = 0x67; // addr32 prefix
    loc[-1] = 0xe8; // call
    write32le(loc, val);
    return;
  }

  // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
  // jmp doesn't return, so it is fine to use nop here, it is just a stub.
  assert(modRm == 0x25);
  loc[-2] = 0xe9; // jmp
  loc[3] = 0x90;  // nop
  write32le(loc - 1, val + 1);
}

// A split-stack prologue starts by checking the amount of stack remaining
// in one of two ways:
// A) Comparing of the stack pointer to a field in the tcb.
// B) Or a load of a stack pointer offset with an lea to r10 or r11.
bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
                                              uint8_t stOther) const {
  if (!config->is64) {
    error("Target doesn't support split stacks.");
    return false;
  }

  if (loc + 8 >= end)
    return false;

  // Replace "cmp %fs:0x70,%rsp" and subsequent branch
  // with "stc, nopl 0x0(%rax,%rax,1)"
  if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
    memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
    return true;
  }

  // Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
  // be r10 or r11. The lea instruction feeds a subsequent compare which checks
  // if there is X available stack space. Making X larger effectively reserves
  // that much additional space. The stack grows downward so subtract the value.
  if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
      memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
    // The offset bytes are encoded four bytes after the start of the
    // instruction.
    write32le(loc + 4, read32le(loc + 4) - 0x4000);
    return true;
  }
  return false;
}

// If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
// entries containing endbr64 instructions. A PLT entry will be split into two
// parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
namespace {
class IntelIBT : public X86_64 {
public:
  IntelIBT();
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
  void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;

  static const unsigned IBTPltHeaderSize = 16;
};
} // namespace

IntelIBT::IntelIBT() { pltHeaderSize = 0; }

void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
  uint64_t va =
      in.ibtPlt->getVA() + IBTPltHeaderSize + s.pltIndex * pltEntrySize;
  write64le(buf, va);
}

void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
                        uint64_t pltEntryAddr) const {
  const uint8_t Inst[] = {
      0xf3, 0x0f, 0x1e, 0xfa,       // endbr64
      0xff, 0x25, 0,    0,    0, 0, // jmpq *got(%rip)
      0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
  };
  memcpy(buf, Inst, sizeof(Inst));
  write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
}

void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
  writePltHeader(buf);
  buf += IBTPltHeaderSize;

  const uint8_t inst[] = {
      0xf3, 0x0f, 0x1e, 0xfa,    // endbr64
      0x68, 0,    0,    0,    0, // pushq <relocation index>
      0xe9, 0,    0,    0,    0, // jmpq plt[0]
      0x66, 0x90,                // nop
  };

  for (size_t i = 0; i < numEntries; ++i) {
    memcpy(buf, inst, sizeof(inst));
    write32le(buf + 5, i);
    write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
    buf += sizeof(inst);
  }
}

// These nonstandard PLT entries are to migtigate Spectre v2 security
// vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
// branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
// entries, we use a CALL followed by MOV and RET to do the same thing as an
// indirect jump. That instruction sequence is so-called "retpoline".
//
// We have two types of retpoline PLTs as a size optimization. If `-z now`
// is specified, all dynamic symbols are resolved at load-time. Thus, when
// that option is given, we can omit code for symbol lazy resolution.
namespace {
class Retpoline : public X86_64 {
public:
  Retpoline();
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
};

class RetpolineZNow : public X86_64 {
public:
  RetpolineZNow();
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
};
} // namespace

Retpoline::Retpoline() {
  pltHeaderSize = 48;
  pltEntrySize = 32;
  ipltEntrySize = 32;
}

void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
  write64le(buf, s.getPltVA() + 17);
}

void Retpoline::writePltHeader(uint8_t *buf) const {
  const uint8_t insn[] = {
      0xff, 0x35, 0,    0,    0,    0,          // 0:    pushq GOTPLT+8(%rip)
      0x4c, 0x8b, 0x1d, 0,    0,    0,    0,    // 6:    mov GOTPLT+16(%rip), %r11
      0xe8, 0x0e, 0x00, 0x00, 0x00,             // d:    callq next
      0xf3, 0x90,                               // 12: loop: pause
      0x0f, 0xae, 0xe8,                         // 14:   lfence
      0xeb, 0xf9,                               // 17:   jmp loop
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19:   int3; .align 16
      0x4c, 0x89, 0x1c, 0x24,                   // 20: next: mov %r11, (%rsp)
      0xc3,                                     // 24:   ret
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25:   int3; padding
      0xcc, 0xcc, 0xcc, 0xcc,                   // 2c:   int3; padding
  };
  memcpy(buf, insn, sizeof(insn));

  uint64_t gotPlt = in.gotPlt->getVA();
  uint64_t plt = in.plt->getVA();
  write32le(buf + 2, gotPlt - plt - 6 + 8);
  write32le(buf + 9, gotPlt - plt - 13 + 16);
}

void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
                         uint64_t pltEntryAddr) const {
  const uint8_t insn[] = {
      0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0:  mov foo@GOTPLT(%rip), %r11
      0xe8, 0,    0,    0,    0,    // 7:  callq plt+0x20
      0xe9, 0,    0,    0,    0,    // c:  jmp plt+0x12
      0x68, 0,    0,    0,    0,    // 11: pushq <relocation index>
      0xe9, 0,    0,    0,    0,    // 16: jmp plt+0
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
  };
  memcpy(buf, insn, sizeof(insn));

  uint64_t off = pltEntryAddr - in.plt->getVA();

  write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
  write32le(buf + 8, -off - 12 + 32);
  write32le(buf + 13, -off - 17 + 18);
  write32le(buf + 18, sym.pltIndex);
  write32le(buf + 23, -off - 27);
}

RetpolineZNow::RetpolineZNow() {
  pltHeaderSize = 32;
  pltEntrySize = 16;
  ipltEntrySize = 16;
}

void RetpolineZNow::writePltHeader(uint8_t *buf) const {
  const uint8_t insn[] = {
      0xe8, 0x0b, 0x00, 0x00, 0x00, // 0:    call next
      0xf3, 0x90,                   // 5:  loop: pause
      0x0f, 0xae, 0xe8,             // 7:    lfence
      0xeb, 0xf9,                   // a:    jmp loop
      0xcc, 0xcc, 0xcc, 0xcc,       // c:    int3; .align 16
      0x4c, 0x89, 0x1c, 0x24,       // 10: next: mov %r11, (%rsp)
      0xc3,                         // 14:   ret
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15:   int3; padding
      0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a:   int3; padding
      0xcc,                         // 1f:   int3; padding
  };
  memcpy(buf, insn, sizeof(insn));
}

void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
                             uint64_t pltEntryAddr) const {
  const uint8_t insn[] = {
      0x4c, 0x8b, 0x1d, 0,    0, 0, 0, // mov foo@GOTPLT(%rip), %r11
      0xe9, 0,    0,    0,    0,       // jmp plt+0
      0xcc, 0xcc, 0xcc, 0xcc,          // int3; padding
  };
  memcpy(buf, insn, sizeof(insn));

  write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
  write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
}

static TargetInfo *getTargetInfo() {
  if (config->zRetpolineplt) {
    if (config->zNow) {
      static RetpolineZNow t;
      return &t;
    }
    static Retpoline t;
    return &t;
  }

  if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
    static IntelIBT t;
    return &t;
  }

  static X86_64 t;
  return &t;
}

TargetInfo *getX86_64TargetInfo() { return getTargetInfo(); }

} // namespace elf
} // namespace lld