func.go 18.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

// This file implements the Function and BasicBlock types.

import (
	"bytes"
	"fmt"
	"go/ast"
	"go/token"
	"io"
	"os"
	"strings"

	"llvm.org/llgo/third_party/gotools/go/types"
)

// addEdge adds a control-flow graph edge from from to to.
func addEdge(from, to *BasicBlock) {
	from.Succs = append(from.Succs, to)
	to.Preds = append(to.Preds, from)
}

// Parent returns the function that contains block b.
func (b *BasicBlock) Parent() *Function { return b.parent }

// String returns a human-readable label of this block.
// It is not guaranteed unique within the function.
//
func (b *BasicBlock) String() string {
	return fmt.Sprintf("%d", b.Index)
}

// emit appends an instruction to the current basic block.
// If the instruction defines a Value, it is returned.
//
func (b *BasicBlock) emit(i Instruction) Value {
	i.setBlock(b)
	b.Instrs = append(b.Instrs, i)
	v, _ := i.(Value)
	return v
}

// predIndex returns the i such that b.Preds[i] == c or panics if
// there is none.
func (b *BasicBlock) predIndex(c *BasicBlock) int {
	for i, pred := range b.Preds {
		if pred == c {
			return i
		}
	}
	panic(fmt.Sprintf("no edge %s -> %s", c, b))
}

// hasPhi returns true if b.Instrs contains φ-nodes.
func (b *BasicBlock) hasPhi() bool {
	_, ok := b.Instrs[0].(*Phi)
	return ok
}

// phis returns the prefix of b.Instrs containing all the block's φ-nodes.
func (b *BasicBlock) phis() []Instruction {
	for i, instr := range b.Instrs {
		if _, ok := instr.(*Phi); !ok {
			return b.Instrs[:i]
		}
	}
	return nil // unreachable in well-formed blocks
}

// replacePred replaces all occurrences of p in b's predecessor list with q.
// Ordinarily there should be at most one.
//
func (b *BasicBlock) replacePred(p, q *BasicBlock) {
	for i, pred := range b.Preds {
		if pred == p {
			b.Preds[i] = q
		}
	}
}

// replaceSucc replaces all occurrences of p in b's successor list with q.
// Ordinarily there should be at most one.
//
func (b *BasicBlock) replaceSucc(p, q *BasicBlock) {
	for i, succ := range b.Succs {
		if succ == p {
			b.Succs[i] = q
		}
	}
}

// removePred removes all occurrences of p in b's
// predecessor list and φ-nodes.
// Ordinarily there should be at most one.
//
func (b *BasicBlock) removePred(p *BasicBlock) {
	phis := b.phis()

	// We must preserve edge order for φ-nodes.
	j := 0
	for i, pred := range b.Preds {
		if pred != p {
			b.Preds[j] = b.Preds[i]
			// Strike out φ-edge too.
			for _, instr := range phis {
				phi := instr.(*Phi)
				phi.Edges[j] = phi.Edges[i]
			}
			j++
		}
	}
	// Nil out b.Preds[j:] and φ-edges[j:] to aid GC.
	for i := j; i < len(b.Preds); i++ {
		b.Preds[i] = nil
		for _, instr := range phis {
			instr.(*Phi).Edges[i] = nil
		}
	}
	b.Preds = b.Preds[:j]
	for _, instr := range phis {
		phi := instr.(*Phi)
		phi.Edges = phi.Edges[:j]
	}
}

// Destinations associated with unlabelled for/switch/select stmts.
// We push/pop one of these as we enter/leave each construct and for
// each BranchStmt we scan for the innermost target of the right type.
//
type targets struct {
	tail         *targets // rest of stack
	_break       *BasicBlock
	_continue    *BasicBlock
	_fallthrough *BasicBlock
}

// Destinations associated with a labelled block.
// We populate these as labels are encountered in forward gotos or
// labelled statements.
//
type lblock struct {
	_goto     *BasicBlock
	_break    *BasicBlock
	_continue *BasicBlock
}

// labelledBlock returns the branch target associated with the
// specified label, creating it if needed.
//
func (f *Function) labelledBlock(label *ast.Ident) *lblock {
	lb := f.lblocks[label.Obj]
	if lb == nil {
		lb = &lblock{_goto: f.newBasicBlock(label.Name)}
		if f.lblocks == nil {
			f.lblocks = make(map[*ast.Object]*lblock)
		}
		f.lblocks[label.Obj] = lb
	}
	return lb
}

// addParam adds a (non-escaping) parameter to f.Params of the
// specified name, type and source position.
//
func (f *Function) addParam(name string, typ types.Type, pos token.Pos) *Parameter {
	v := &Parameter{
		name:   name,
		typ:    typ,
		pos:    pos,
		parent: f,
	}
	f.Params = append(f.Params, v)
	return v
}

func (f *Function) addParamObj(obj types.Object) *Parameter {
	name := obj.Name()
	if name == "" {
		name = fmt.Sprintf("arg%d", len(f.Params))
	}
	param := f.addParam(name, obj.Type(), obj.Pos())
	param.object = obj
	return param
}

// addSpilledParam declares a parameter that is pre-spilled to the
// stack; the function body will load/store the spilled location.
// Subsequent lifting will eliminate spills where possible.
//
func (f *Function) addSpilledParam(obj types.Object) {
	param := f.addParamObj(obj)
	spill := &Alloc{Comment: obj.Name()}
	spill.setType(types.NewPointer(obj.Type()))
	spill.setPos(obj.Pos())
	f.objects[obj] = spill
	f.Locals = append(f.Locals, spill)
	f.emit(spill)
	f.emit(&Store{Addr: spill, Val: param})
}

// startBody initializes the function prior to generating SSA code for its body.
// Precondition: f.Type() already set.
//
func (f *Function) startBody() {
	f.currentBlock = f.newBasicBlock("entry")
	f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init
}

// createSyntacticParams populates f.Params and generates code (spills
// and named result locals) for all the parameters declared in the
// syntax.  In addition it populates the f.objects mapping.
//
// Preconditions:
// f.startBody() was called.
// Postcondition:
// len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0)
//
func (f *Function) createSyntacticParams(recv *ast.FieldList, functype *ast.FuncType) {
	// Receiver (at most one inner iteration).
	if recv != nil {
		for _, field := range recv.List {
			for _, n := range field.Names {
				f.addSpilledParam(f.Pkg.info.Defs[n])
			}
			// Anonymous receiver?  No need to spill.
			if field.Names == nil {
				f.addParamObj(f.Signature.Recv())
			}
		}
	}

	// Parameters.
	if functype.Params != nil {
		n := len(f.Params) // 1 if has recv, 0 otherwise
		for _, field := range functype.Params.List {
			for _, n := range field.Names {
				f.addSpilledParam(f.Pkg.info.Defs[n])
			}
			// Anonymous parameter?  No need to spill.
			if field.Names == nil {
				f.addParamObj(f.Signature.Params().At(len(f.Params) - n))
			}
		}
	}

	// Named results.
	if functype.Results != nil {
		for _, field := range functype.Results.List {
			// Implicit "var" decl of locals for named results.
			for _, n := range field.Names {
				f.namedResults = append(f.namedResults, f.addLocalForIdent(n))
			}
		}
	}
}

// numberRegisters assigns numbers to all SSA registers
// (value-defining Instructions) in f, to aid debugging.
// (Non-Instruction Values are named at construction.)
//
func numberRegisters(f *Function) {
	v := 0
	for _, b := range f.Blocks {
		for _, instr := range b.Instrs {
			switch instr.(type) {
			case Value:
				instr.(interface {
					setNum(int)
				}).setNum(v)
				v++
			}
		}
	}
}

// buildReferrers populates the def/use information in all non-nil
// Value.Referrers slice.
// Precondition: all such slices are initially empty.
func buildReferrers(f *Function) {
	var rands []*Value
	for _, b := range f.Blocks {
		for _, instr := range b.Instrs {
			rands = instr.Operands(rands[:0]) // recycle storage
			for _, rand := range rands {
				if r := *rand; r != nil {
					if ref := r.Referrers(); ref != nil {
						*ref = append(*ref, instr)
					}
				}
			}
		}
	}
}

// finishBody() finalizes the function after SSA code generation of its body.
func (f *Function) finishBody() {
	f.objects = nil
	f.currentBlock = nil
	f.lblocks = nil

	// Don't pin the AST in memory (except in debug mode).
	if n := f.syntax; n != nil && !f.debugInfo() {
		f.syntax = extentNode{n.Pos(), n.End()}
	}

	// Remove from f.Locals any Allocs that escape to the heap.
	j := 0
	for _, l := range f.Locals {
		if !l.Heap {
			f.Locals[j] = l
			j++
		}
	}
	// Nil out f.Locals[j:] to aid GC.
	for i := j; i < len(f.Locals); i++ {
		f.Locals[i] = nil
	}
	f.Locals = f.Locals[:j]

	optimizeBlocks(f)

	buildReferrers(f)

	buildDomTree(f)

	if f.Prog.mode&NaiveForm == 0 {
		// For debugging pre-state of lifting pass:
		// numberRegisters(f)
		// f.WriteTo(os.Stderr)
		lift(f)
	}

	f.namedResults = nil // (used by lifting)

	numberRegisters(f)

	if f.Prog.mode&PrintFunctions != 0 {
		printMu.Lock()
		f.WriteTo(os.Stdout)
		printMu.Unlock()
	}

	if f.Prog.mode&SanityCheckFunctions != 0 {
		mustSanityCheck(f, nil)
	}
}

// removeNilBlocks eliminates nils from f.Blocks and updates each
// BasicBlock.Index.  Use this after any pass that may delete blocks.
//
func (f *Function) removeNilBlocks() {
	j := 0
	for _, b := range f.Blocks {
		if b != nil {
			b.Index = j
			f.Blocks[j] = b
			j++
		}
	}
	// Nil out f.Blocks[j:] to aid GC.
	for i := j; i < len(f.Blocks); i++ {
		f.Blocks[i] = nil
	}
	f.Blocks = f.Blocks[:j]
}

// SetDebugMode sets the debug mode for package pkg.  If true, all its
// functions will include full debug info.  This greatly increases the
// size of the instruction stream, and causes Functions to depend upon
// the ASTs, potentially keeping them live in memory for longer.
//
func (pkg *Package) SetDebugMode(debug bool) {
	// TODO(adonovan): do we want ast.File granularity?
	pkg.debug = debug
}

// debugInfo reports whether debug info is wanted for this function.
func (f *Function) debugInfo() bool {
	return f.Pkg != nil && f.Pkg.debug
}

// addNamedLocal creates a local variable, adds it to function f and
// returns it.  Its name and type are taken from obj.  Subsequent
// calls to f.lookup(obj) will return the same local.
//
func (f *Function) addNamedLocal(obj types.Object) *Alloc {
	l := f.addLocal(obj.Type(), obj.Pos())
	l.Comment = obj.Name()
	f.objects[obj] = l
	return l
}

func (f *Function) addLocalForIdent(id *ast.Ident) *Alloc {
	return f.addNamedLocal(f.Pkg.info.Defs[id])
}

// addLocal creates an anonymous local variable of type typ, adds it
// to function f and returns it.  pos is the optional source location.
//
func (f *Function) addLocal(typ types.Type, pos token.Pos) *Alloc {
	v := &Alloc{}
	v.setType(types.NewPointer(typ))
	v.setPos(pos)
	f.Locals = append(f.Locals, v)
	f.emit(v)
	return v
}

// lookup returns the address of the named variable identified by obj
// that is local to function f or one of its enclosing functions.
// If escaping, the reference comes from a potentially escaping pointer
// expression and the referent must be heap-allocated.
//
func (f *Function) lookup(obj types.Object, escaping bool) Value {
	if v, ok := f.objects[obj]; ok {
		if alloc, ok := v.(*Alloc); ok && escaping {
			alloc.Heap = true
		}
		return v // function-local var (address)
	}

	// Definition must be in an enclosing function;
	// plumb it through intervening closures.
	if f.parent == nil {
		panic("no ssa.Value for " + obj.String())
	}
	outer := f.parent.lookup(obj, true) // escaping
	v := &FreeVar{
		name:   obj.Name(),
		typ:    outer.Type(),
		pos:    outer.Pos(),
		outer:  outer,
		parent: f,
	}
	f.objects[obj] = v
	f.FreeVars = append(f.FreeVars, v)
	return v
}

// emit emits the specified instruction to function f.
func (f *Function) emit(instr Instruction) Value {
	return f.currentBlock.emit(instr)
}

// RelString returns the full name of this function, qualified by
// package name, receiver type, etc.
//
// The specific formatting rules are not guaranteed and may change.
//
// Examples:
//      "math.IsNaN"                  // a package-level function
//      "(*bytes.Buffer).Bytes"       // a declared method or a wrapper
//      "(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0)
//      "(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure)
//      "main.main$1"                 // an anonymous function in main
//      "main.init#1"                 // a declared init function
//      "main.init"                   // the synthesized package initializer
//
// When these functions are referred to from within the same package
// (i.e. from == f.Pkg.Object), they are rendered without the package path.
// For example: "IsNaN", "(*Buffer).Bytes", etc.
//
// All non-synthetic functions have distinct package-qualified names.
// (But two methods may have the same name "(T).f" if one is a synthetic
// wrapper promoting a non-exported method "f" from another package; in
// that case, the strings are equal but the identifiers "f" are distinct.)
//
func (f *Function) RelString(from *types.Package) string {
	// Anonymous?
	if f.parent != nil {
		// An anonymous function's Name() looks like "parentName$1",
		// but its String() should include the type/package/etc.
		parent := f.parent.RelString(from)
		for i, anon := range f.parent.AnonFuncs {
			if anon == f {
				return fmt.Sprintf("%s$%d", parent, 1+i)
			}
		}

		return f.name // should never happen
	}

	// Method (declared or wrapper)?
	if recv := f.Signature.Recv(); recv != nil {
		return f.relMethod(from, recv.Type())
	}

	// Thunk?
	if f.method != nil {
		return f.relMethod(from, f.method.Recv())
	}

	// Bound?
	if len(f.FreeVars) == 1 && strings.HasSuffix(f.name, "$bound") {
		return f.relMethod(from, f.FreeVars[0].Type())
	}

	// Package-level function?
	// Prefix with package name for cross-package references only.
	if p := f.pkgobj(); p != nil && p != from {
		return fmt.Sprintf("%s.%s", p.Path(), f.name)
	}

	// Unknown.
	return f.name
}

func (f *Function) relMethod(from *types.Package, recv types.Type) string {
	return fmt.Sprintf("(%s).%s", relType(recv, from), f.name)
}

// writeSignature writes to buf the signature sig in declaration syntax.
func writeSignature(buf *bytes.Buffer, from *types.Package, name string, sig *types.Signature, params []*Parameter) {
	buf.WriteString("func ")
	if recv := sig.Recv(); recv != nil {
		buf.WriteString("(")
		if n := params[0].Name(); n != "" {
			buf.WriteString(n)
			buf.WriteString(" ")
		}
		types.WriteType(buf, from, params[0].Type())
		buf.WriteString(") ")
	}
	buf.WriteString(name)
	types.WriteSignature(buf, from, sig)
}

func (f *Function) pkgobj() *types.Package {
	if f.Pkg != nil {
		return f.Pkg.Object
	}
	return nil
}

var _ io.WriterTo = (*Function)(nil) // *Function implements io.Writer

func (f *Function) WriteTo(w io.Writer) (int64, error) {
	var buf bytes.Buffer
	WriteFunction(&buf, f)
	n, err := w.Write(buf.Bytes())
	return int64(n), err
}

// WriteFunction writes to buf a human-readable "disassembly" of f.
func WriteFunction(buf *bytes.Buffer, f *Function) {
	fmt.Fprintf(buf, "# Name: %s\n", f.String())
	if f.Pkg != nil {
		fmt.Fprintf(buf, "# Package: %s\n", f.Pkg.Object.Path())
	}
	if syn := f.Synthetic; syn != "" {
		fmt.Fprintln(buf, "# Synthetic:", syn)
	}
	if pos := f.Pos(); pos.IsValid() {
		fmt.Fprintf(buf, "# Location: %s\n", f.Prog.Fset.Position(pos))
	}

	if f.parent != nil {
		fmt.Fprintf(buf, "# Parent: %s\n", f.parent.Name())
	}

	if f.Recover != nil {
		fmt.Fprintf(buf, "# Recover: %s\n", f.Recover)
	}

	from := f.pkgobj()

	if f.FreeVars != nil {
		buf.WriteString("# Free variables:\n")
		for i, fv := range f.FreeVars {
			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, fv.Name(), relType(fv.Type(), from))
		}
	}

	if len(f.Locals) > 0 {
		buf.WriteString("# Locals:\n")
		for i, l := range f.Locals {
			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, l.Name(), relType(deref(l.Type()), from))
		}
	}
	writeSignature(buf, from, f.Name(), f.Signature, f.Params)
	buf.WriteString(":\n")

	if f.Blocks == nil {
		buf.WriteString("\t(external)\n")
	}

	// NB. column calculations are confused by non-ASCII
	// characters and assume 8-space tabs.
	const punchcard = 80 // for old time's sake.
	const tabwidth = 8
	for _, b := range f.Blocks {
		if b == nil {
			// Corrupt CFG.
			fmt.Fprintf(buf, ".nil:\n")
			continue
		}
		n, _ := fmt.Fprintf(buf, "%d:", b.Index)
		bmsg := fmt.Sprintf("%s P:%d S:%d", b.Comment, len(b.Preds), len(b.Succs))
		fmt.Fprintf(buf, "%*s%s\n", punchcard-1-n-len(bmsg), "", bmsg)

		if false { // CFG debugging
			fmt.Fprintf(buf, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs)
		}
		for _, instr := range b.Instrs {
			buf.WriteString("\t")
			switch v := instr.(type) {
			case Value:
				l := punchcard - tabwidth
				// Left-align the instruction.
				if name := v.Name(); name != "" {
					n, _ := fmt.Fprintf(buf, "%s = ", name)
					l -= n
				}
				n, _ := buf.WriteString(instr.String())
				l -= n
				// Right-align the type if there's space.
				if t := v.Type(); t != nil {
					buf.WriteByte(' ')
					ts := relType(t, from)
					l -= len(ts) + len("  ") // (spaces before and after type)
					if l > 0 {
						fmt.Fprintf(buf, "%*s", l, "")
					}
					buf.WriteString(ts)
				}
			case nil:
				// Be robust against bad transforms.
				buf.WriteString("<deleted>")
			default:
				buf.WriteString(instr.String())
			}
			buf.WriteString("\n")
		}
	}
	fmt.Fprintf(buf, "\n")
}

// newBasicBlock adds to f a new basic block and returns it.  It does
// not automatically become the current block for subsequent calls to emit.
// comment is an optional string for more readable debugging output.
//
func (f *Function) newBasicBlock(comment string) *BasicBlock {
	b := &BasicBlock{
		Index:   len(f.Blocks),
		Comment: comment,
		parent:  f,
	}
	b.Succs = b.succs2[:0]
	f.Blocks = append(f.Blocks, b)
	return b
}

// NewFunction returns a new synthetic Function instance belonging to
// prog, with its name and signature fields set as specified.
//
// The caller is responsible for initializing the remaining fields of
// the function object, e.g. Pkg, Params, Blocks.
//
// It is practically impossible for clients to construct well-formed
// SSA functions/packages/programs directly, so we assume this is the
// job of the Builder alone.  NewFunction exists to provide clients a
// little flexibility.  For example, analysis tools may wish to
// construct fake Functions for the root of the callgraph, a fake
// "reflect" package, etc.
//
// TODO(adonovan): think harder about the API here.
//
func (prog *Program) NewFunction(name string, sig *types.Signature, provenance string) *Function {
	return &Function{Prog: prog, name: name, Signature: sig, Synthetic: provenance}
}

type extentNode [2]token.Pos

func (n extentNode) Pos() token.Pos { return n[0] }
func (n extentNode) End() token.Pos { return n[1] }

// Syntax returns an ast.Node whose Pos/End methods provide the
// lexical extent of the function if it was defined by Go source code
// (f.Synthetic==""), or nil otherwise.
//
// If f was built with debug information (see Package.SetDebugRef),
// the result is the *ast.FuncDecl or *ast.FuncLit that declared the
// function.  Otherwise, it is an opaque Node providing only position
// information; this avoids pinning the AST in memory.
//
func (f *Function) Syntax() ast.Node { return f.syntax }